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l.Introduction

Recently several authors have investigated the Euclidean
boson quantum-field models ( the so-called P(¢)d-models) &s
a classical statistical mechanics [1],[2] . In these articles
we see that the Lee-Yang circle theorem and the correlation
inequalities ‘do play a_central role in the studying. On the
other hand, Griffiths et al conjectured that a set of
correlation inequalities will determine the forms of the
interactions [3],[4 j .From the view points of these appli-
cations and the conjectures, it is an interesting problem
to decide the partition functions which satisfy the Lee-Yang

circle theorem or the desired correlation inequalities.

Adding to these problems; Newman recently  proved that the
Lee-Yang circle theorem leads tb,soﬁe'correlation'ineAuali-‘
ties [SJ: Therefore it is also an inferesting problem to
discuss the relation between the Lee~Yan§ circle theorem and
the correlation‘inequalities} Finally. since the properties
of the partition functions which satisfy- the Lee-Yang circle
theorem seem to be’open; wef‘investigate'tﬁe’genefal properties

of them.

We organize the paper as follows:.
In section 2, we define <classes of the partition functions
Lo, L. D, 4 ,and summarize the releyant correlation ine-s

qualities without proof. In section 3, we investigate the



Griffiths first (G-1) and the second (G-IX) inequalities and
discuss the relation between these inequalities and the Lee-
Yang circle theorem. In sections 4 and 5, we investigate the

Griffiths-Hurst-Sherman inequality (CHS-inequality~ ] and tie

~( - ’ . - -
Lebowitz inequality. Insection 6,general prcperties of the
~ /\‘

partition functions which belong to the Lee-Yang class are

given.

2.Classes Z. L. 4/.

We summarize notations and definitions used in the following

=
(<)

et
.

D ; unit desk =i{ ze'C;{ 4< 1!}

3 D ; boundary of D= z.C L =14

iicz) ordfe' ; polynomials:of nsvariableS'zl,~";zn
which are linear with respect to each
'Zi,and satisfy
Pczl ’..."Zn ) )—=PCZ1,..’Zn1 H yA
with P(0,0---,0)=1 .
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For the sake of the brevity, we restrict ourselves to the
case where all the coefiicients are real, thus Pele is typical-
ly given by _

o : Neb A
P=_Cl+zlz2--zn)+ Z bg'lczi+zlzz-.zi--zn1
. @3] .
+ Zs . 7'«'" B .lA o0 -
1] Czi“j.zlzz°‘izi zj, zn) +.. (2-3)

with CON -.e.'(- 2 )



A A s . ! . .
Here- Z5 (or 1 ) means that the variable z; should be omitted.

ffcn)_ or /~ ; the Lee-Yang class Cf.e . We -say that
Péafé belongs to £ provided that any

~ root of P=0 satisfies 'zi(zj; j#i) € p©
provided ‘zjé‘D (j#i) and zkéDO for some

k (k#1).

4  Set of Pélz such that all the roots of

P(z,..,z)=01lies on 3D. Obviously L 22 .

These definitions are general and independent of models. In order
to define «class  , we use the Ising model of spin 1/2 where

there are only ferromagnetic pair inteiactions :

Hy == Ig 55 (sy5551)/2 - Ihy(si#1)/2 (2-2)
where 0 iJ%jﬁ ® and s, (i€ A) isa random variable at the lattice
site i€\ which tzkes the values % 1 . Let P be the relevant

partition function;
P gy ey SRty e
1 .
with _ z;= exp (hi) .

Therefore P is given by the coefficients

¢ Q.)

i _
Bi.liz;'iz B iiiln jéA33'¢’5‘1iz"i,g}'Y H e
with Yij= ekp (—Jij) I |
Then obviously ngij_il, however we extend  this as. -1 < Yij.il,
and denote the resultant set by D,
, ' L
For Péﬁ%, we identify P with its coefficients {Biliz"ix 3

e rY (d=2""1 -1), and consider the sets of functions [Le and £

as the set of the coefficients. Iﬂ§his sense ,we denote the

-3-
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onvex hulls ¢f ﬁ,ﬁfé7by 5'45 and ufrespectively, ana the closurer
of £ by z, |

Finally in order to study the correlation inequalities, we some-
times restrict ourselves to the subsets where all the coefficients
are real non negative . We denote these by ‘£;,Ji* andfﬂ*respec—
tively. |

Now we define the so-called ursell functioms:

for P¢ L ; , we define

@, iy

g, r,i) F(nizil z.8702; 1log P >2 |

Cl) . ) CZ'S)
u (1) =z a/azi log P -1/2
As is well known HCL (S+anﬁ), and for P@@f we see [3],[4],[7]
(81, (9] :
Gfiffiths first inequality ; ucl)(i)z Q for‘zj >1,jén,

Griffiths second inequality ; ucz%i,j) >0 for zj >1,4€h,

GHS-inequality ; u(s)(il,iz,is)i 0 for zj >1, jeén,
' s : . ,
Lebowithz inequality; u‘é)Cil,iz,iz,i4)i 0 for zj=l,jéAJ'
Sylvester inequality ; ufﬁ)(il,",iﬁ) 3@ for'zj=1,jéA,
where A ={1,2,""",n }.
Following inequalities are conjectured by Newman for PEN'[5],[3]:
(-1}t uc2£7(ii,--,ivz)> 0 for z.=1,3€A.
. 227~ 73
€y s The set of the partition functions Pegtz which
satisfy the expected inequality £for the i'th

ursell function.

3. £ and u(l),ucz)
Lemma 1. Let Pé£f>then ucz)(i) >Q provided zjz 1 ,jéA.

- -
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proof. Let P be given by
P=B(zl,-‘;zn_l) + A(zl,",znfl)zn

wherc A,B are linear functiomns of CZq, ’zn%l_'witﬁ;positive

coefficients. PEL implies:
| |B/A|<1 provided |z |>1. i=1,2,°*,n-1.
On the other hand,

ul) (ny=z_caz_-B)/2P .

=

-Lemma 2. For I’é.fe”/followings hold:

(i) 1If ucl)(i) 20 provided zJ_l ,JéA,then

ucz)til,iz)y 20
.=

(11) 1£ ul® (i;,1,) 20 provided z; 21,jex, then

u(l)(il)'lo_provided 25

proof. (if‘Let all z except z; be equal to 1. Since
P éi%, (1) (11) (z l)f(z 2) wﬁere the G-f‘inequality .

21,j €

ensures  E(z; ) 0 prov1ded z, > 1. Thus ul? ) (4 =£(1)2 0.

kd 1’123‘ =1
(1) 2 .
(ii) Since Péif,tx (11)1 _.=0. 2
z=1 ‘
However, unfortunately PEL™ does not necessarily imply
the second Griffiths inequality-with positive external fields,
i.e., Pcoc does not imply
’ L . > e > A
| u(.1(1l,12)h~0 with zj_l yjedte
An explicit counterexample is given in the next section.
Finally for Péi+ we can show thé correlation inequalities

which correspond to <slsz"‘s >>0 prov1ded h >0 i€ep.This is

-
the G-1 inequality in usual sense.

: -\\'51-
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Theorem 1. Let P.(zl, o ,zn)et," then

‘ 5 -1/2 .
) Hiés (z:.L a/azi) [P(z *,Z )(II]_=1 zi) 1 >0 (3-1)
~ provided z; >1 ,i€Awhere SC A denotes the set of indices.

proof It 1s suff1c1ent to consider the case that all the

indices are dlfferent Let P Be glven by

. . ) . . _a‘ Y '3 Z¢ Z- .oZn
_-;"{_il,iz Ttaig)es i Lr T M U B
where ‘{a 1»12, ’iz Vo oare 11near functlons of z>j€ A\S with

posn:nre coffxcnents. Then

1 (2 3/ )[p ?_ ziI/Z] -l z‘sln1 1 zi/zl Q,
where ‘ o S _
18}.8, _,|S|-1 sNi CLlIsl=2. - - _s\(@i) .

| *'f'*,_('fl)'sll’ ,_
- c-1y!S1-11] a2t G-2)
E R co

with

a-f-a- Vo ‘.--“‘;..Z"n -
R L LR L) jer /%

Let zj_EA\S be fixed and > 1, thus we 's’tudy the necessary and

iélzi; PIT' I 3/3 P

sufficient conditidn that ensurés Q >0 prov1ded that z;> 1 ,1.6 S.
Follow:mg Lemma 4, Whlch w111 be proved later this is
@ ey z,..,i-O ﬁ
) %1,2,..,2 ° 1,2,.1 z.-O i‘s ’ | -
;(3)_{ _‘1‘1‘,‘2,;’..,z' 1-,2‘,.;.1 1 z,.j'z' "“1,2,.1'.3.9['_-‘>-°7'~1:‘J€5r

(!,-l»l) a -Z.

ieS 1 2,.1 z 41

i,jes %1,2,.1.5.8

+a.v¢o+( 1g'a s’.'i 2'0 o

1 2'001

Here without loss of generality, we put S={1,2,3,..,2}CA .

-
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xnese cond‘-*ons are equivalent to

:-1}]§\I‘p (z.=-1;3¢S\I)
= (-1‘15\11’3 ska; Y Py '
Wier i zj=~1 3:5\12
for any subset ICS. Since PéL "all the roots of PI\“'Z ;36 SN\I) =

lie in the unit disk D. Now we investigate the sign of ﬁ\ 1.

ISNIL L _ NANY
Y= [ M o = 7 : i
PI(Z’ agZ *ar® L JiIcIcs &g @
o, lS\Il _
= aS ‘;Li:l[(z'wl ] H ( ":j)
wheve {w,B, lwjsl } are the complex roots,an&"{;j;[;F1 } are the
~ ) | | IS™II- 27
real roots' of P;=0. Since aS>O,£{1ﬁmi2(-}~wi)A>O .and‘ sgn Hj=1 (~;—cj,
=s5gn (-l)}S\It we see
N v
-1 -1y »0.
This completes the proof. “
L . 1) ,.
Finally we would like point OULL that if P&éL, u“/ (i) or
< S18pterSy” Q‘EGS z. a/az [P szl/z]‘ also satisfy  the definition
-7
of £ except the eveness condition P(z 1,..,2 )= P(zl,.. 3 Tz.”

N4

nls"C » e‘PU—@ )21:') \PClG

T
L4

This 1is obvious because if P(zl,..,z

with g.€R  agein satisfies the definition of £ except the

eveness condition,and these correlation functions are essentially
) R v

given by (3-2). However ,this is mnot true for the higher

ordexr ursell functiocnas. In fact if it were true, the higher ordey

ursell functions would have definite signs in'{ z; >1;1€A0. 5 .



4. L7 ana u(B), u:4)
Ih the cases of n= 1,2, £ = 9 (;*=;®* j, and
Ci= O*r=p*,(1=1,2,3,4) . In tre casalof n= 3, we will easily see
that £ =4 (Z*= &+ ), and PeL’ ‘oes not imply the desired
inequality . ‘

Lemma 3. Let Péaf,e, and be given by

- X e ; . -
12273 * T 1oqRlzg rzyzizg ) - G-1)

Then P&JL if and only

(&3]

P= 1+z

it

*..]t
Hy

|1i51l>%331 Bkl .
proof. It is necessary and sufiicient that
-1- ) N . E N K . N O
(25) 7= -[B3 *By29*By2, +212,1/1 1+8,21%8,2; +B5212,]1 €D
provided zl,zzé D and some of them ¢éD°. Remark thet the Shilov
boundary of the polydisk DoD®. .eD is5D@. ..03D.Since Z5 € 5D pro-
vidéd (zl,zz)éanaD, the problem reduces to " obtain a condition
which is equivalent to
P(21,27,25=0)=1+B812; #B,2, *+B52,2, 7 0
pro#ided (21,27) € DaD .
Therefore '
-4 2 .
z,[" = 1(82+83z1)/(1+8121)l <1 p?ov1ded z, € D.
This completes the proof. RZ

Now we investigcte the correlation inequal
given in the previous lemma 3., When =&l1 the arguments are differ-

ent with each other, we have

u(°)(1,2,3)~z1z2z

” B 1 = 3
5 18 /3ziA*og P=z,2,2, £;/ P

@51



10

where
2
£3= P P1,2,3 Pz Pin;k +PIPZP3
*<=so(l-z12223) +51(21"2223)+52FZ2'2321) +53(23-zlz2)

with
| T2 2
So= 18y -8z B3 *2B1885

a2 a2 2
51'«1(1 Bl +Bz +83) 28283’

(4-3)
5,28, (1 +87-87+82) "2858y,
s5=85(1 8% +87-80)-28,8,
'Lemma 4, Let | -
f= B ZqZpee2y * 231,122";i"in T ZaijIZIZZ";i'?;;..zn
| T+,

R 1 T
1,2,..n .

Then the necessary and sufficient condition that, f >0 provided

z, >1 (i€h) is

1
. >0
; ao Z
. +a. > 1 €& A
a, *+a; >0 i |
+a.+a.+a. . >0 - i,jeA
a *a; aJ i, 20 . ,3'
T I I R N T R R R I S S S S ST W'Y
+ Ta. + La. . *.,.% : >0.
ao_ i al,J ,al,z,..n~0 :

proof. Remark that £ is’a linear function with
réspect to each variable:. Therefore,the necessary and sufficient
;on&ition that £ >0 provided z, Zl'is
f(il,zz,..,zn_i,l) >0
0/ a2y E(agseee,2)= 8/02 (2 2) |, o1 2o
provided =z, > 1 ,i€.. This discussion leads to the
following éonditicn:

for any ICA ,( T /0z.)f,. _, >0Q. Z
el if7]z=1 = :

-0-
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Theorem 2. For P¢L’, we .see:

>]1 and z,=z_=..=2_=1.

.y 4, (3) 5
(i) u (1,2,3) %0 provided 21229325 2 4=%g A

(i1) u(23(1,2) is not necessarily positive provided zi.il,"

however, uczl(l,Z) >0 provided '21,22;1 and Z5=2,=. .72 =1,

4 yol

,then for P we sce

(1i1) For PeLy, let P=P|  _.._,
T ! n

~

that if u¥)(4) 2 0 provided 2,21 (3=1,2,3) ,Bel]

proofs ({)It is sufficient to consider P giv:z. by (4-7).
Thus following lemma 4 and (4-3), we must prove
so+si+5j'sk 20, - - (1,7,%=(1,2,3)

Sprsi2 0 (i=1,2,3)

provided (B;,8,,B; ) e, 1t is a straightforward but
tedious calculation.
(ii) We present an eiample . For P given by (4-1),
(2) - _— 2y pr_a2 o2 L2 2
u (1,2)—zlz2[ \83 8132)(1+23)_+(1 By -8, +83)23]/ P,
‘. :
Thus obviously u\A);O provided PeL’ and 23=1 (this.includes general
cases) ,however, consider the point5(1/3,1/3;0)62}. At the point
| 83-8132 =-1/9, then if Zq is large enough, we see uc2)< 0.
(iii) Following lemma 4, the necessary sufficient condition
that () (i)> 0 provided 2,21 (3=1,2,3) is

1 +8; 28548, (1,1,0=(1,2,3)

Finally we investigate the fourth urseil function [7],([8]:

(4) 4 .
ut '’ (1,2,3,4)= 1 (253 /azi) log P.

=1

. . + 43 ' .
As is well known , even if Ped., p( / does not necessarily

-10-
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negative . when zigl,bUt,negative provided Zi=1 (the so-called

. —~ \ .
Lebowitz Inequality ) .Contrary to the case of u(ZJ,u(q) is not

. . . + . - .
necessarily negative even if P&€ZL 2and zi=l (iep ).In fact

let PCZ ,ZA,Z“,Z )= P H e b =

= r AR vz, 3. -
_ const.g(1+zl..z43 +z Bi(zi zl.,zl,,z4)

: A A . . gAY
+Z Bi‘jczizj+zlzizj24) 1 (4-4)
Thus
u(4)(1,2;3,4)=z 2,22 [P P1 2.3.4 -ngpi P 1
2 : 5> . -4 ‘ )
. =P ZPinkl +2PEPiijPl 6P1P2P3P4J./P_v | (4-5)
and K ' . IR N . B (v -
(4) cbositiv | 2 - -1/2)
u (1,2,3,4)~[z=1—p051t1ve const.[{(Z si) /2.—2_ SiBj /2}
bl 24, 2 17 -
HO T a2 8y vmsys N (400)

A point C B.=0, Bij=1/3)é R7 is ézif, but at the point
[ 1=2/3>0. Thus w= see that P € £ implies neither u(4)z 0
with zero external fields nor u( )< 0 w1th pos*tlve external

fields (Jee the next sectxoﬂ)

'~ 5.Some remarks on the correlation

inequalities.

Now we sece. that the partition functions which Dbelong
4+ :Cf - . 3~ . Fod % . - T 4
to J do not necessarily satlsxy the correlation inequalities
expected from the results seen in Pe & . The reason is

. . + . « e e .
obvicus, in fact P¢L is a property Wthﬂ is derived from

-11-
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the behavior of P on Deb®..®D C c?, and on the other hand
correlation inequalities crucially depend on the behavior

on [1,e0 )7¢ R® . Our examples suggest

L
DC ne Lt (5-1)

However, Newman.Showed [5]
TN s/ B0 222,02 2 0 (5-2)

fz:l ==
provided Pe 0 ,. ‘

From our standing point of view, these are special ursel

Lt

functions.
Our analysis implies that L¥-class is too wide to
satisfy all the correlation inequalities . Finally we
show that the’evén'th- correlation'inéqualities with zero ex-
“ternal fields follow?.from the odd'th correlation inequalities

with positive, external fields (see also the note-added in [91).

"Theorem 3. For Péi%, if ucs)(i,j,k)g @ with .positive
external fields holds, ut(i,5,k,1)__ < 0.

proof.

where the GHS inequalitiy emnsures f[zl) 50 provided z,> 1.

This compltes the proof. ' , ‘ 7

C.emark. As is well known, the higher order ursell

functions do not satisfy the expected inequality for z, >1°

=12+
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I . ) .. . . .
even for ©Ped . However, if they satisl{y the conjectur

ct
[
+3
o
o

inequalities (including odd'th ursell functions) for
: : 2,"1 )
12 z.% 1+e with e> 0 ,i€¢A,we see that (-1) uCZ \

can be derived from (-1)£'1u(22’1)

>0 with 1é}i< 1+g.
o 25w '
If this is.true, uCZ&) and uc“% 1) should be considered
~as a pair. See also the dicussions in lemma 2, and by the

same discussions, we see that the converse is true.

Corollazy 1. For P€Jﬁ+,u(4)(i,j,k,ljlz=1; 0
provided that at least two of (i,j;k;l) are equal.
proof. (i) Two arguments are equal.

Following Theorem Z and Theorem 3, it is obvious.‘”
| (ii) Three érguments_are equal.
Without loss of generality,let (i,j;k,1)=(1;2,2,2){ Thus

2 -

(4) - 2 LA o ) .
Ut 217 (PP By P) (PT46P; ~6PP,) P*| ey - "TATS fs-negative

» '
. + - .
since PEL . pinally if all the arguments ' are equal,the

problem reducas to P=const.(l+z). 1Z

6.Structure of & and 7. ,
Before studying the topological structure of £, we
would like to point out that a product can be defined on £

[6],[10],[11] .We call thiS'product the Asano product.

Theorem 4. Let {  (2> '}éifn) '{%CZ) }6‘tCn)
& i, S T {
NS ) S
Fi X
thep.‘{a i. .i B 1 }éi

e s ok i3



This is.a very well known theorem, and we

the proof. Details are shown in [6],[10],[11]. Therefcre X
has a semi-group structure by this product. Remark that &
is also closed wunder the product. We denote this oroduct

by {QB},‘ . or A[PGPS].._.

The Lee-Yang class L is a much complicated set in the

'space of the d-coefficients (d=2n-1-1). Let P be given by
a

(2-1), then we identify P with {B(iz...,ﬂ(i)z...... } e R™.
. : . 2
Lemma 5. I: P&/, then -1% Bgl} <1
.
proof. If PeL ,then A[PN]=A[PA[....A[PP]]..] € L .A[P"] is

(&)N

given by {8 . Since all the coefficients of must

£
l’ (i). . . !
be bounded, - |B's/ | < 1. This completes the proof. ¥/
iy,.0 = , '

" Theorem 4.
(i) £ is an open ,arcwise-connected set.
(ii) £  is homeomorphic to d-dimensional opendisk p(e),
proof. (i) The openess of £ follows from the definition.

S\

Let Pt'éoﬁ be given by putting all Yijwu tel0,]

THerefore Plé Z and P+évt forl t &[0,1) ‘Pt is a continuous

line connecting Hn(1+zi} ¢L and . I,+Hniiéaf ,and iies in
L ,.For any P€XL, gt = A[P . P]€ £ is continuous with
respect to t€[0,1], and §1=P€Z,?O= 1+ Hzi;égi . Thus £

is arcwise connected. .
(11) From the above discussions ,we see ,by operating
A[Pt-'],'that any sub set of £ can be continucusly contracted

to the origin. This completes the proof.. .%%

~14-
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Remark. Even if the coeff*c1eﬁbs are complex, thes

ments can be extended by sultable redefinitions [§

The main. theoxem in this section is:>
Theorem 5. |
Gy @cfc‘é ,
(i1) ,{‘)*‘Cx‘i*‘C@"
(1i1) P s@*"ﬁ*
proof (i) DCZ, BCE are well known. Comsider the followi ng
(d+1) functions :
I (1 z))

where the number of (-) sign 15 even, andehich>ensures that
=4
o . v .
" these functlons belong to Ii. We denote thse functions by P.

(1=1,..,d+1), and remark that P, e (P ¥ ) and these are

all linearly independent.Then P=I a. P "with a, L=

i 20,
in the d-d

|.,\ [EN

becomes a d-dimensional convex cel imensionel

space of the coefficlents. Thus denohlng thls convex cell
by ;8' ,we ShOW’ ai)**ii .If once 1t is proved, (i) follows
from theorem 4 and the fact DC L ., Bach of 3P is a (&-1)

dlmen51ona1 convex cell.We rewrite P as
P= %zﬂ=0 T In B/B?n
‘. ! v
—B(z-,..,z ) +A(z1,..,z ;1)Zn

Since FEL is eoukxgle“t to

lA/B ]< 1

- 1 - e} ‘ ‘ I a4 . .
provided 2, € D and some zje DY, %nd P € ~ im»nlies

iA/B | =l provided 2all z.£@3, it is necessary and suilicient

3 A
. 1

a P - 1 AdaA - o - N amdaT e

that E/‘O plov;»-.ﬂ-ﬁ ‘:vl,éz,,,bn_lJ &30 .



17

- . La . . N
B is given by by “%P. 2,20 > and consider the poin:

n-. - .
(zl,zz,...,z 1) (4, ,...,+') . There are 2 = & . points.
For the given point, the function which does not vanish at

the point 1is one of the follawing two possible functions

and only one of these functions belongs to‘ﬁe.T us d-functions

{7} vanish at the point. Therefore £ 2 90  ,and
(1) follows~
(ii) Each ~hypersurface of :£ is given by
' 2“ “i.0, 5d
_ l1 i 2 %;1
Since we restrict ourselves to £3+, one of P. (i=1,2,..,3)

a=1.
S

is II* -1 (l+z ) VThese hypersurfaces intersect the positive

part of the coordlnate axis at the points
) +
(1+IHeI z;) (L Y 5e1C zj)éaS

I o,A.
The convex hull of these points together with (i+Mz, )
Y -
' . +
and Hi(1+zi) includes £ .
(iii) This is obvious fron the above discussions. 'Za
Remark

(i) Set L is much complicated, and a;i is constructed

by algebraic manifolds. X seems to be a 'concave set ''.To

I

confirm the conjecture,consider the function P =(1i-A) {1+ H~i)

+A{1+z.) - with 0 @< 1,m 3 3. P €L 7 if and -nly if

0<A< [1+(2cos ﬂ/(n-l))n°1]'l.

soof L 0. In oovier

o

(1i) OCne may deline the vertice

to define . the vertices, however, we must use tie terminoiogics
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of algebraic geometry. Since £ and J are semi-analytic sets,

we can define the vertices as the zero dimensional singularities

“of 8L ,Bi).This is usually done through the stratification
of the singularity.We conjecture

(i) Ver L = Ver D

?

(i ]Ver =Ver5 *,

These can be con flrﬂad for n=1 2 4

Finally we comment on the some’interesting'prbg

(‘J
H
p
[0}
(7]
O
Hy

.. Let. P{z,...;z)=(1+zn) +al(z+zn‘l)i+aztzz‘+zn "y €0,
Recently Millard et al have obtained a.generalization of.the
Ruelle's lemma [6],[12] | -

Theorem 6.0 . Let A and B.- be closed. circular regions
not containing the origin:If f=z'2=0 B”zi vanisfkcs only in

ACC, and g= g .=d C. zi vanishes only in BCLC,then AIfg],_

-1. . .
_biciz vanlshes only in AB { z€C; z=- z1 2, ch{ZECB

e b

n. -
L i=0 nfi

Therefore , usu1~ the same- technlques in Theorem 4, we have:

Theorem 7.

(1 2 is closed arcuxsenconnected set and all of the

Rom tuples of »/ venish .

- 1 n-1 S T A -
ii) Let A={z"+a_ cz" "+ +a.z+1: (& ‘gl
C .L) S {a n-1 31_1_.\22 T 312“‘_‘_’Cun_\>1,..,aliﬁpg }

be functions whose roots are all. in an. open regkcn SCC which is

invariant under the rotation around the o**gin.Tﬁeﬁ'?%’is Romec-

.

morphic‘to (n-1) - dimension 1 open disk p*71

.

'-P:'k 0N ‘ﬁ‘dmam nt's
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