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Abstract. The quantum'field theory in terms of
Fourier hyperfunctions 1is constructed. The test
function space for hyperfunctiofis does not contain
C*® functions with compact support. In spite of this
defect the support concept of H-valued Fourier
hyperfunctions allows to formulate the locality
axiom for hyperfunction quantum field theory.
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§ 1. Introduction

In the usual framework of quantum field theory,
founded by Wightman [1], one assumes fields to be operator-
valued tempered distributions. For nonrenormalizable
interactions, however, the fields seem no longer remain
tempered [2]. Several attempts have been made to extend
Wightman's axioms‘for the quantum field.theory so as to
include a wider class of filelds [2,3,4]. On the other
hand,‘the recent development of the Euclidean field theory
reveils that the temperedness of fields shows some incon-
veninece in.coming back to the relativistic quantum field
theory [5].

From the mathematical point of view the extension of
Wightman's axioms starts with replacing the test function
space ,X of tempered fields, the Schwartz space of rapidly
decreasing functions, by 1ts sulitable dense subspace. In
carrying through this program the most obstructivé ié the
axiom concerning the localizability of fields. Thertest
function spaces considered so far by several authors contain
C® functions with compact support in configuration and/or
momentum spaces. Hence the localizability of the field
has been preserved quite naturally in some way or other.

In the present paper we wish to formulate the quantum

field theory in terms of Fourier hyperfunctions. The
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space of Fourier hyperfunctions is the dual of the space
of rapidly decreasing holomorphic functions [6]. One of
the characteristics of the latter space is that it is
topologically invariant under Fourier transformations as 1is
the case for the space ,X . But since our space contains
no functions of compact support, we are rot allowed to
state the locallty of the field in the usual sense. 1In
order to avoid this difflculty one of the present authors
(S.N.), in collaboration with Ito, has developed the theory
of vector-valued Fourier hyperfunctions [7]. Combining
with a remarkable notion of the "support of hyperfunctions"
we succeed to formulate the lbcality of hyperfunction
fields. We note that our test function space is the
smallest of all that have been proposed up to the present.
After some mathematical preliminaries we discuss in A
what follows the axioms for hyperfunction quantum field
theory, prdperties of Wightman Fourier hyperfunctions,
and the reconstruction theorem, wherein our principal
attention will be turned to the "locality" problem. In a
forthqoming paper we shall study the Euclidean field theory

for hyperfunction fields.
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§ 2. Test Function Spaces

We adopt the standard notations for n-tuple of numbers.

Thus, let x & R, k = (Kyseows k) and 2= (Ry,000, 2)

be n-tuples of nonnegative integers, then xk = xi’ ---xzn

[ 2 2 2 !
and D" = Bl I/axl1 --~axnn. Here |&| = gt t L

more generally |z]| = [zll + oo+ Iznl if z e c? =

The inequality k > & means that kJ > 23 for

R® x 1iR".

The test function space for Jaffe's class of ulﬁra-
distributions [2] 1is characterized by a real-valued
function w(s) on [0, «), called a Jaffe indicatrix,
which satisfies the following conditions [8]:

a) (Regularity) exp(w(s)) 1is a real entire function:

(s) T K
e = ¥ a,s
k=0

and a =1, a, >0 (k =1, 2, 3, ... ).
b) (Subadditivity) wis +t) < w(s) + w(t) for all
s, t e [0, «).

¢) (Carleman's criterion)

o 2
w(s®) -
L ij:ga ds < o,
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d) (Nuclearity) 2w(s) < w(As) + C  for some

constants A, C.

To avoid trivial cases we assume the Jaffe indicatrix

to satisfy one more condition [8]:

e) w(s) > log(l + s).

Consider a set of seminorms for functions f(x) on R™

HfH,(L‘fi = s;clp erolll=l12) p2ecyy ), (2.1)

where X > 0, & 1is an n-tuple of nonnegative integers and
l|x|| 1is the Euclidean norm in R". The space M, is

defined by
u¢£m = {f;‘llfnifi < » for every '2, AL, (2.2)

It is evident that { = £, the space of c® functions
with compact support. The condition e) above assures that
JAM c:,f, the Schwartz space of rapidly decreasing functions.
Carleman's criterion c¢) implies that the Fourier transform

of Mw, c w'= ‘3"'-((/{/(“), contains functions of compact

support.

2.2 4,

The space consists of those functions f(x) on
1,4

n

R" -which satisfy the inequalities
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|Kp*e(x)| <, (A + 5y 1%y (2.3)

for any & > 0. It is known [9] that the space ”gl‘A is

a countably normed space with an infinite set of norms
]| - su lDﬂ.f(x)[e(l/m)(l-l/p)lx[ (2.1)
™o x,[e]sp

where p =2, 3, ... and m = eA. The topology of ”fl A
. 9

eA,p}p=2' The space /f]_ is

is given by the norms {

a union of ng A and the inductive limit topology is
introduced in it. '
We shall show that ’Xl.:‘ALw for any Jaffe indicatrix

w. Let us begin by verifying the limit

5 .
S+ S

In fact, if one assumes the contrary, there would be a
sequence of increasing positive numbers tending to infinity,
{am}, and € >0 such that w(am) > ea_ . By the condition
a) the indicatrix w(se) is monotone increasing and hence
we have w(sz) > ea for any s 2 a,- Then it is easy to

see that for any a, > 1

°° 2,
w(s=) 3
L 1es2 B2 2

whichfcontradicts Carleman's criterion c¢). Therefore for



26

any a > 0 we have w(sz) < a|s| for suffiéiently4iarge
|s|. Combining with the conditions a) and b) this means

that

wlllxl®) (¢ galxl

< C e
= a

which implies ,Sl < J{w.:

2.3 47

The space /X i’i consists of those functions f(x) on
b4 .

R® which satlsfy the inequalities

lkazf(x)l < Csp(A + 5)|k[(B + p)!llkkzz (2.5)
for §, p = 1/2, 1/3, ... [9]. The space )J i’i is a countably

normed space with an infinite set of norms
kL | x| o], k,2
= su D*f A+3§ B+ « . .6
1ella,5,5,, = SER, I DT /&) EIE 4 It (2.6)

The space }X i is defined by )Xi = ind 1imji’i. This
A,B >

space can also be regarded as an inductive limit of Banach

spaces. Let us define the space ,Jri by

T a= s el <, (2.7)

where
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£l 5 = sup [xEDrco|/al*lslt s, (2.8)

From the obvious relations

”f”A,B =>, ”f”A,B;ﬁ,p =>- ]lfllA+1’B+l’ (2'9)

or B 1
we at once conclude that 1n2,%im Ty = J 1 [1o03.

The spaces ”Yl and ,J i are both of type S. The
spaces of type S are studied in detail in a textbook
]

by Gel'fand and Shilov [9]. Among other properties of

the space ,3 i, the followings are worthy to be noticed.
l .
1° /jlcjl'.
2° /X i is a nuclear space [10].
L 1 1l
P Fdh = 41
>y (P,

t is the Banach space of those functions which are
holomorphic in |Im z| < 1/m ..and continuous in |Im z|

< 1/m. The norm of this space is defined by

el = . 59 |r(z)|el?l/m, (2.10)

" | Im z'[<1/m

The space of rapidly decreasing holomorphic functions 09*

is the inductive 1limit of the Banach spaces (9’:: P, =
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ind 1lim & ©.
m c

Proposition 2.1. The spaces (P, and ’j i are

isomorphic.

Proof. It suffices to show that for any 7'2 (resp.

B
2

m
o]

m m o= B
O'C) there exists O‘c (resp. J such that I R

(resp. (& I: C:ji) and thereby the embedding is continuous.

In order to avoid the notational complication we prove
the proposition only in the case n = 1. The géneralizatidn
of the proof to an arbltrary n 1is straightforward.

Gel'fand and Shilov [9] state that []fHA'B =M < *® implies

ID*£(x)| < c,M exp(-|x|/en)B*e* with c, = exp(e/2). This
in turn assures that f(x) can be analytically continued

to |Im z| < 1/eB and therein the estimate [f(z)]| <

C M exp(~|x|/eA)(1 - eB|Im z|)™1 holds for some constant

C2 independent of A and B. If we take m > max(eA, eB),
then f(z) 1is analytic in |[Im 2| < 1/m and satisfies

M exp(—]zl/m); where C is a constant depending

3 3
on B. Thus we have |[[f|[ < Cy ||fHA gs Which means that

£(2)] < ¢

j’i c:C%f with m > max(eA, eB) and the embedding is
continuous.
The remaining part of the proof is carried out on the

basis of Theorem 4 on p.223 of Gel'fand and Shilov's textbook
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[91. Let |[f][, =M <, then f(z) is analytic in [Im z|
< a < 1/m and satisfies |[f(z)| < M exp(-a|z|). The
above-mentioned theorem states that there exists a constant
B > 1/a and the estimate ]sz(x)! < ClM gt exp(-a|x]|)
holds, where Cl is a constant depending on a. By means
of the inequality exp(-|g|/e) < igf kk/lglk, which also

is verified in [9], and by putting A = 1l/ae we finally

obtain ‘Hf‘][A’B < ¢, llfll,. This means that (7 cj‘i

with A > m/e, B > m and the embedding is continuous.

The proof of Proposition 2.1 is thus completed.
In closing this section we summarize the test function
spaces. studled above in the following scheme:

L 2 My /XA1=/X§}¥@*

1] v I

/X > 2w > /gl: ,21

The spaces on the lower line are the Fourier transform of
corresponding spaces on the upper line. The space ,fl

is such that each f(x) ¢ /KI has an analytic continuation
in a certain complex neighbourhood of R™. The spaces

that contain functions of compact support are /X, ubgf

C:m and ,fl.

- 10 -
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§ 3. H-valued Fourier Hyperfunctiohs

In this section we give the definition of H-valued
Fourier hyperfunctions and make mention of their main
properties, especially the concept of the "support of
Fourier hyperfunctions", which becomes important in
formulating the loqality axiom of the quantum field theory.

- We shall either omit or sketch only briefly the proof of
' most of the;étatements. For more details we refer to papers
of Kawai [6],‘Ito and Nagamachi [7].

Recently the theory of vector-valued hyperfunctions
has been presented by Ion and Kawai [11]. 1In constructing
the theory they used the method of "soft analysis" in
parallel with Sato's theory of hyperfunctions. A similar
theory has also been developed by Ito and Nagamachi [7]
by the method analogous to Kawai's construction of the

Fourier hyperfunctions [6].

Let D" denote the compactification of R%: p® =
R" U S:'l, where S:'l is an (n-1)-dimensional sphere at

infinity. To each x € R" - {0} we associate a point. x

-
n-1

on S_ such that the point «x lies on the ray connecting

x_ and the origin. We identify s® %, an (n-1)-

dimensional sphere centered at the origin, with Rn-{O}/R+.

A natural topology 1s given to the space D®: (1) 1If a

- 11 -
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point x belongs to R a fundamental system of neigh-

bourhoods of  x 1s the set of all open balls containing
the point x. (ii) If a point x belongs to 52'1 we
write x =y and let y be the corresponding point on
Sn'l. A fundamental system of neighbourhoods of x 1is
given by {(C+a) UC_; C_3 y_}, where C 1is an open
cone generated by some open neighbourhood of y in Sn_1
with its vertex at the origin, a 1s some vector in Rn,
so that C + a 1s a cone with its vertex at a,  and C
signifies the points at infinity of that cone. In what

follows we use the notation QP = D" x {RP.

Let us begin
with the description of (scalar-valued) Fourier hyper-

functions.

Definition 3.1. (The sheaf of slowly increasing
holomorphic functions) We denote by E; the sheaf whose
section module é;(ﬂ)— over an open set Q in Qn,'is
the set of all holomorphic functions f(z) (e F(Q n c®))

such that sup  |f(z)] e'elzl < » for any positive ¢
zeKfl CB

and any compact set K 1in . It 1is clear that the pre-

sheaf {((Q)} constitutes a sheaf over QF.

Definition 3.2. (The sheaf of rapidly decreasing
holomorphic functions) We denote by g? the sheaf whose

section module (@ (Q) over an open set Q in Q" 1is the

- 12 -
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set of all holomorphic functions f(z) (e (2 n c*)) such

that for any compact set K 1in O there exists some

positive constant § and the estimate sup - ]f(z)[esK‘zi
K zeK n CP

< © holds.

Definition 3.3. (Topology of ( (K)) Let K be a
compact set in D®. We give O (K) the inductive limit

topology ind lim C%?(Um), where {Um} is a fundamental
m

syétem of neilghbourhoods of K in Qn, satisfying Um

m
»)) U, 41» and EYC(UA) is the Banach space of all holo-
morphic functions f(z) (e C}(Um n ¢®)) that are continuous
in ﬁ; nc® and for which [f(z)]| < C elzl/m po1as for
some constant C (depending oh f£). The norm of O—’:(Um)

is defined by ||fll, = _ sW_, |£(z)| elzl/m,
Z

eUm n 7
With this tépology G (K) becomes a DFS-space (a
dual Fréchet—Schwartz.space). When D" 1itself is taken
as K, Q(Dn) is evidently identical with (P % introduced

in § 2.4. Then we have
Proposition 3.4. Q:(Dn)_ is a nuclear space.

Proposition 3.5. (;)Q_'(D) is dense in O (D") and
g(p) = O (p").

5>

Proof. Mityagin [10] proved similar propositions for

/8 i Because of the lsomorphism between Q (Dn)“, or (P*,

.— 13—
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and /A i, Proposition 2.1, his argument does apply to
o).

Proposition 3.6. A separately continuous multilinear
form M on [Q?(D)]n uniquely defines an element of
(&(p"))', the dual space of Qj(Dn), such that

n

M(d)l’.'.’ ¢)=F(¢lx"'¥ ¢n) for qu EQ(D), J=

1, 2, ... , n.

Proof. Since Q(Dk) is a DFS-space, Q(Dk) is a
strong dual of a reflexive Fré&chet space [6,12]. By a
multilinear version of Theorem 41.1 of Treves [13] we can
state that the separately continucus multilinear form
on [QZ(D)]n is continuous. Since Q?(Dk) is nuclear
and (;5:) g (D) = Q(Dn) by the preceding propositions, the
form M defines a continuous linear functional F on
O (p"). The uniqueness of F 1is evident from the fact

that ® @ (D) is dense in ¢ (p").
n "

Definition 3.7. Let & Dbe an open set in D", We
choose an open set V in QP which contains 9 as a
relatively closed set and define (R (Q), the space of
Fourier hyperfunctions over {, by the cohomology
HS(V, 5’). (By the excision theorem the space R (Q) 1is

independent of the choice of V.)

Proposition 3.8. When K 1s a cbmpact set in Dn,

- 14 -
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we have H;(V, o)
(G (m"N".

v (O(K))', especially R (p?) ~

o=z ~

Proof. See Kawai [6].

Now we are in a position to generalize the above
definitions and propositions for Fourier hyperfunctions
to the case when Fourler hyperfunctions take on their

values in a separablé Hilbert space H.

Definition 3.1'. We denote by H@: the sheaf whose

section module IO (Q) over an open set Q in Q° is
the set of all H-valued holomorphic functions f£(z) - such
that for any positive ¢ and’any compact set K in 2,

sup -elz| |
the estimate sek pCa [£(z)]|| e < ® holds, where
l

| stands for the norm in H.

Definition 3.2'. We denote by HQ the sheaf whose
section module HQ;(Q) over an open set © in Q" is the
set of all H-valued holomorphic functions f(z)A such that

for any compact set XK 1In & there exists some positive

: 8
constant &, and the estimate sup  |If(z)]| e k|2l
y zgK( Ch

< « holds.

Definition 3.7'. Let Q be an open set in D". We
choose an open set V in Q" which contains Q as a

relatively closed set and define Hﬁi(ﬂ), the space of

s -



H-valued Fourier hyperfunctions over Q, by the cohomology

H (V, 5.

Theofem 3.8'. When K is a compact set of D" we
have HE(V, 55 v L(Q (K), H), especilally Hﬁ_ (D%) o
L(Q(Dn), H), where L(GQ(K), H) is the space of all
continuous linear operators from O (K) to H equipped

with the topology of bounded convergence.

The following corollary 1s evident from this theorem

and Proposition 3.8.

Corollary 3.9. If F 1is an H-valued Fourier hyper-
function, then (y, F) for every ¢ € H is a scalar-
valued Fourier hyperfunction, where (+,+ ) is the inner

product in the Hilbert space H.

We now outline the argument leading to Theorem 3.8'.
First let us show that an element ¢ of L(Q?(Dn), H)
defines a slowly increasing H-valued holomorphic function
¢ on (€ - R™ and ¢ can be considered as its boundary

value.

Proposition 3.10. Let
-n 2 2
hz(t) = (27m1) JTJ’l exp{—(tj-zd) '}/(tj—zj) © (3.1)

and ¢(z) =‘<I>(hz) for ¢ eL(Q’(Dn), H), then ¢(z) 1is

- 16 -
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a slowly incfeasing H-valued holomorphic function.

Proof. If |Im z| > &' > &8 > 0 we have

sup —(t. -z )2 0y Y]eElt]
1 4 ]<s H;Texp{ (65 -2}/ (6 -2,)]e

IIm(Z+u)]<6 Iﬂ_exp{ (u ) }/u ’e }Z"'U.I ; Ce ealzl

“ for all positive €. Thus it is found that hz(t) belongs

to & (D") and ¢(z) = Q(hz) is well defined as a slowly

increasing H-valued holomorphic funétion‘on (¢ - R)n.
Proposition 3.11. Let ¢(z) be as in the preceding

proposition. Then for any g ¢ Q (Dn) we have

[ s(2)e(z)dz = o(g), (3.2)
I‘lx e o0 xr'n

where dz dzl...dz.n and T 1s a path in the Jj-th

J
complex plane consisting of two straight lines parallel to
the real axis, one of which runs to the left below the real

axis, the other to the right above the real axis.

Proof.

e(g) = o h_g(z)dz)
g fr'x-.-xr zg z

[ 2(n, )8 (z)az
I’lx c e e xI‘n

- 17 -



= f $(z)g(z)dz.
I‘l)( s 00 xrn
Let V = 0® and V'j = {z e Q% ImzJ # 0}. Further-
more we put V = “§=1 VJ and 63 = ni#J Vi’ Propositions

3.10 and 3.11 provide a mapping x from L(® (p"), H)
to H(F§(V) and a mapping 1 from H(9(V) to
L( Q(Dn), H), respectively. However, since the integral

(3.2) vanishes for any ¢ € 231:1 H@'({}j ), namely for any

¢ = Z?ﬂ ‘¢J such that ¢ eH@"(\I/\"j), the mapping 1 1is

J
considered as a mapping from H§(V)/23 H@' ({\IJ) to

Iigz(Dn), H). Correspondingly k 1s naturally considered
as a mapping from L(Q(Dn), H) to H&(V)/Xlj H(3'(VJ).
The following proposition implies the isomorphism between

L(Q (™), ®) and P&/, FEE)).

Proposition 3.12. The mapping 1 1is injective, so

1 and «k are bijective.

Proof. For simplicity we assume n = 1. Using the
function hz(t), (3.1), for n =1 we consider integrals
along the paths T and T' in the complex t plane.
These paths are similar to T in (3.2), Dbut subject to

A J
the condition that T goes round the point t = z to the

- 18 -
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same side as the real axis, whereas T' to the side
opposite to the real axis. By Cauchy's integral formula

we have

o(z) = J ¢(t)hz(t)dt - I"¢(t)hz(t)dt. (3.3)

r r

Suppose 1(¢) = 0, then fr;¢(t)hz(t)dt =0 and ¢(z)

= - fr.cb(t)hz(t)dt is an element of 2§ (@) = Y@ (¥

That is ¢ = 0 as an element of i

(vy/™H (Gl). Hence
1 1is injective. Since 1 o « =Aidentity, 1 and Kk are

bijective.

_ n’ L n
Remark. Let W = {VJ}J=O’ W {vy},.,. It can be

shown [7] that Hgn(on, g v HYW, W'; Hg) Y

~ ~ A ~ &
Hca(V)/zJ H&(VJ), where H(W, W'; ©@) 1is the relative
cohomology of covering. Therefore, combining with Propo-
®, 58

sition 3.12 we have the isomorphism Hgn(Q ) N

L( QfDn), H), which provides Theorem 3.8'.

Proposition 3.13, Let K = Kl X oo X Kn, each KJ

being a compact subset of D. k(&) for every ¢ ¢
L(G®(K), H) 1is an element of 'ZJ H5()(‘1), where XJ =
\1"j n {z‘j £ Kj}.

Proof. ¢(z) = ¢(hz) is analytic if z, £ KJ for all

- 19 -
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If U 1is an open set in Q'n we denote by-,pU the
H ~ Ha oy H _
restriction map from (B(V)/X'j G(VJ) to "R (U) =
H(§(VHU)/2J H&(\'}J NU). By means of the map p; we ean

define the support of an element ¢ of H@(V)/}:‘j H@(\’;’J)
as the smallest closed set S such that pU(¢) =0 for

any open subset U <35°.

U

If U> U' we further denote by »p u' the restriction

map from SR (U) to 2R (U'). It is easy to see the

following properties of pUU.: pUU is identity, and if

U U . U H U
U= U'= U", then »p gt Pyt = e gne Hence { @(U),p U'}

forms a presheaf (over o). 1Ito and Nagamachi [7] have
verified that {HR(U), pUU.} really is a flabby sheaf,
that is '

(1) If for any 2z € U there exists a neighbourhood
V(z) of 2z such that va(z)(q)) = 0, then ¢ = 0.
(i1) Let {VU} be an open covering of U. If

H Vo : - Ve
0, ¢ RV ) sa‘cisf‘ie_s °v.n VT<¢G> =Py, ny, (0 for

v.onv, # @, then there exists ¢ € Hﬂ (U) such that
5 ) .
p Vo’(¢) = ¢o-‘

(i11i) (Flabbiness) oy is surjective.
H H U n
We denote by R the sheaf {"R(U), » y'} over D",

H

We call the sheaf of H-valued Fourier hyperfunctions.

- 20 -
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Proposition 3.14. Let K be a compact set of p"
and ¢ an element of L(O(K), H), thenthe support of

k(®) 1s contained in K.
For the proof of this proposition we need

Lemma 3.15. Let K be a compact set in D" and
let {Kc} be a finite compact covering of K. Then every
element ¢ of L(G(K), H) can be decomposed into ¢ =

I, ¢, with ¢ e L(G(K ), H).

[

Proof. PFirst we prove the lemma for the scalar-
valued case. Since the natural injection & (X) -
(-Do Q(KRKG) is of closed range, the dual map ® (Q('KnKo))'
+ (C(K))' 1is surjective. In the vector-valued case the
lemma follows from the isomorphisms, L(@(K), H) &
(O(K)' &H and L(O(X ), H) » (Q(K))' &H, which
are obtained by Proposition 50.6 .0of Treves [13], because
G (X) and ‘@(X_) are both DFS-spaces and so they are
complete and barreled [7]. |

‘We now return to the proof of Proposition 3.14. If
z £ K there exist an open neighbourhood U of 'z and -

a finite compact covering {Kc} of X such that K_p U

g, Kc = Kcl x ---X-Kcn and U = Ul X oo X Un. Then
we have ¢ =] ¢, ¢ e L(G(K ), H), by the lemma and
o (K(@c)) = 0 by Propositioh 3.13. The proof of Propo-
U

sition 3.14 is thus completed.

_ 21 -
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Remark. Lemma 3.15 1is a direct consequence of the

flabbiness of the sheaf °R .

Definition 3.16. For ¢ ¢ IAQQ(Dn), H) we define
its Fourier transform F & by the formula (F)(F L) =

®(f), where
(F £)(p) = J e1(Ps®) pryyax (3.1)

for f e Q‘(’Dn).

Since % ylelds a topological isomorphism of Q‘(Dn)
(see 88 2.3 and 2.4), the definition ébove is well defined.
The sheaf HcB of H-valued hyperfunétions over R coin-
cides with the restriction of the sheaf "R to R .
Hence, because of the flabbiness of the sheaf Hk, any
H-valued Fourier hyperfunction on R® can be extended to‘

~an H-valued hyperfunction on D" and we can consider its

Fourier transformation.

Proposition 3.17. (Paley-Wiener theorem) Let T .be
a closed and strictly convex cone in R® with its vertex
at the origin such that T < {x; (x, e)‘> 0} U {0} for
a unit vector e in R®. We denote by K the closure of
' in Dn, and by I° the polar set of T, namely r°

= {x; (x, £) 20, £ e T}. Then ¢ 1is an element of

L( Q(K), H) 1if and only if f(x) = @(ei("x)) is holomorphic

- 22 -



in R" x i(Po)i, where (T°)Y 1is the set of interior

points of TI°, and satisfies the condition that for every

I'ce T° and e > 0

Ilé(ei(-,c))” < Cs’r,exp(elRec['+Xr’€(Im z)) s

i

where ¢ ¢ R® x 1T’ and x., (n) = SUP  (_(x,n)+el|x]).
Tye xe(T'-ce)

Proof. See Ito and Nagamachi [7].

At the end of this section we mention the sheaf C
and Sato's fundamental principle. Let M be an oriented
real analytic manifold of dimension n, and let T*M be
the cotangential bundle over M;_ and finally let S*M

be the cosphere bundle S*M = (T¥M - M)/RY, where R'

{x ¢ R; x > 0}. When M = R®, the cosphere bundle S*M
is represented by R" x st _

We can construct a sheaf € over S*M and a sheaf
homomorphism B8 from the sheaf (B of germs of hyper-
functions over M to the direct image w,( of the sheaf

C by the projection m: S*¥M + M in such a way that the

following proposition is true.

Proposition 3.18. The sequence of sheaves over M

. 6 ‘
0 — A > B » 1y C — 0

wl
i



is exact. Here /4 is the sheaf of germs of real analytic
functions over M and a:/d — (B is the canonical

injection.

For the construction of € we refer to a paper of
Sato, Kawai and Kashiwara [14].

For a hyperfunction ¢ ¢ B(ﬂ) on an open set Q< Rn,
g6 defines a section of the sheaf € over Q) =

n-1

N x S and we can consider the support of B¢. We call

it the singularity spectrum of ¢ and denote it by S.S.¢.

Proposition 3.19. Let ¢ be a hyperfunction of B Q)
and {rk}§=1 be open convex cones. Then the following
two conditions are equivalent: |
(i) ¢ can be represented by boundary values of

holomorphic functions fk(z) defined on each §Q x irk,

Proof. See Morimoto [15].

Proposition 3.20. (Sato's fundamental principle) Let
P(x, D) Dbe a linear partial differential operator of order
m whose coefficients are real analytic on an open set
Q = RrR® and let Pm(x, £) be its principal symbol: Write

P(x, D) = } aa(x)D“ + ) b, (x)D®, then the
laf=m [Blsm-1
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principal symbol is defined by Pm(x, £) = ) ad(x)ga
fa|=n
If ¢ ¢ B(Q) satisfies P(x, D)¢ = 0, then S.S.¢ c

{(x, €) e @ x "% P_(x, £) = 0}.

Proof. See Sato [16].

§ 4. Axioms for Hyperfunction Quantum Field Theory

In extending the usual Wightman framework of the
axlomatic quantum field theofy our greatest cdncern is how
to formulate the locality axiom for extended theory. The
strict localizability of fields A(f) connects mathemati-
cally with the fact that f(x) belongs to a function
space which contains ¢” functions with compact support.
This requirement is satisfied by Wightman fields and Jaffe
fields, because these flelds are constructed on a basis of
the spaces_ /6 and- Cmﬁ respectively. The advantage of
the symmetry between configuration'and momentum .  spaces 1is
given to Wightman tempered fields, while it is lost 1in the
Jaffe fileld theory, since the space /5 is topologically
invariant under the Fouriler transformatio;, but the space
C’w is not. Constantinescu [3] used the space }fl to

construct local but nonsrtictly localizable fields. He

- 25 -
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proved that the theory can be formulated so that Wightman
functions in configuration space are still boﬁndary Véers
of analytic functions in the forward tube, but can gréw |
arbitrariiyfastnear the light cone in contrast to the éaSe
of tempered fields where they are only of polynomial
growth.

Here we wish to formulate axioms for Fourier hyper-
function fields. Since the test function space. Q (D)
of Fourier hyperfunctions no longer contains any function
of compact support, we are obliged to modify the axiom
of locality in an appropriate way. Instead, it should be
remarked that the symmetry between configuration and
momentum spaces is recovered in‘the hyperfunction quantum
field theory. Most of the axioms can be stated in parallel
with Wightman's axioms for tempered fields, but for
cémpleteness we write them down mutatis mutandis,following
Jost [17] (see also [1]).

The Lorentz-invariant inner product ?s introduced in

Rh‘ by writing X-y = x°y° - Xey for two four-vectors x

= (x°, x) and y = (y°, y), where x and y are three-
dimensional spatial vectors. Write also x2 = x+x for
short. With the same aim we shall use the notation X
to signify a set of n four-vectors (xl, cen ,»xn) and

write dx instead of dx., s<+dx_.
-n 1 n

- 26 -
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Zeroth axiom. The space of states is a separable
Hilbert space H over the complex number C. For ¢, ¥

e H the inner product in H will be denoted by (&, ¥).

First axiom. Q’(Du) is mapped into linear operators
{A(f)} over H. A(f) 1is defined on a dense subset D
of H, independent of f ¢ Q?(Dh). (¢, A(f)Y) for
®, ¥ ¢ D 1is a Fourier hyperfunction and (&, A(f)¥) =
(A(T)®, ¥). We require that A(f)D =D.

Second axiom. A unitary representation U(a, A) of
the restricted Poincaré group exists and satisfies

Ula, MADU™ (a, A) = A(f ., )

and U(a, A)D = D, where f. . (x) = £ (x-2)).

Third axiom. The spectrum of the energy—momenﬁum
operator P 1s contained in V+ and there is an 1lnvariant
state , corresponding to the vacuum, sych that U(a,A)Q

= Q. Here V_-= {p=(°, p); p° > 0, p2 > 0} and V; is
)y _

- the closure of V+ in D.

By the first axiom (@, A(f;) -+« A(f )¥) for o, ¥ ¢
D 1is a separately continuous multilinear form on KQ(Dh)]n.
Proposition 3.6 says that (¢, A(fl) ---A(fn)w) uniquely

determines a Fourier hyperfunction belonging to (Q?(Dhn))'

- 27 -
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which we denote by (9, A(xi) +++ A(x )¥) in the sense

that formally

(@, A(£)) +++ AL DY)
- [ o, A s aGDE ) e A, (305)

‘More generally we write
F(f) = f F(x )f(x )ax_ (3.6)

for Fe R(D*™) and f ¢ Q(Dhn).

= h
Next for g(ggn) = fl(xl) ---fn(xn), fjx,e @&,

and ¢ ¢ D we define an H-valued functional o&(g) =
A(fl) cee A(fn)¢ and extend this definition to ® @ (Dh) by
n

linearity. By Proposition 3.5, for any f ¢ Q(Dhn)

there
: exists a net {gV; g, € ib Q(Db’)} such that g + f as

v + ». Therefore l]@n(gv) - <I>ﬁ(gu)||2 +0 as Vv, u >,
Thus @n(gv) converges and tends to a vector @n(f) and
evidently @n(f) is a continuous linear mapping from
Q(Dhn) to H, 1i.e., <I>n(f) € L(Q-(Dhn), H). By Theoren
3.8 <I>n(f) is an H-valued Fourier hyperfunction. We
denote it symbolically by A(xl) see A(xn)Q. Or;x the other

hand, <I>n(f) defines a linear operator on D which maps

® to <I>n(f). That operator will be denoted by <An, £>

- 28 =~
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and written formally as
n - L N 3
<AP, £ = J A(x)) »es A(xDE(x ddx . (3.7)

. The axiom éf local commutativity then is formulated

as follows:

Fourth axiom. If Xy and X, are spacelike separated,

then A(x )A(x,)¢ = A(x,)A(x,)¢ for every ¢ e D.
By Theorem 3.8' we can restate this axiom by saying
that A(xl)A(x2)<I> - A(xz)A(xl)Q e L(G (X), H) for every

¢ ¢ D, where K 1is the closure of {(xl, x2) £ RB;

(xl--x2)2 > 0} in D8. More precisely we should formulate
the locality axiom by means of the support concept of

H-valued Fourier hyperfunctions. Thus, let Ul and U2

be arbitrary open sets in Rh which are spacelike sepa-
rated to each other, namely let (xl--xz)2 < 0 for
every X, € U1 and X, € U2. Consider ée(f) =

ACE )A(F,)0 e-L(Q‘(DB), H). The locality axiom should read

Py, (K(22)) = oy, (K(e,)), (3.8)

where U = U, x U2 and U2l = U2 x U the mapping «

12 1 13
and the restriction p are defined in the previous section.

Fifth axiom. Let P(A) be an algebra of polynomials
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in the operators A(f), f € §2(Du), then P(A)Q is

dense in H.

§ 5. Properties of Vacuum Expectation Values

Let @ Dbe the vacuum vector. The vacuum expectation
value (@, A(xy) +-- A(x )Q) 1is a Fourier hyperfunction
which we denote by ufh(zn), where x, = (xl, Xpsenes xn)
as before. The notation  x will also be used to denote

(xn, X 15005 xl).

Proposition 5.1. (Positive definiteness) For any
sequence {¢k} of test functions ¢, € g?(th) with
¢k = 0 except for a finite number of k's, the vacuum

expectation values satisfy the inequality

D[ B W, G 1,00, (y)ax,ay, 2 0. (5.1)
k,2=0

n

Proof. Let @ (¢ ) = <A", ¢ >Q. The inequality (5.1)

is equivalent to ”Z:=0‘Qn(¢n)”2 > 0, which follows from

the zeroth axiom.

Proposition 5.2. (Hermiticity)

- 30 -



W (x) = W (x). (5.2)
Proposition 5.3. (Relativistic invariance)
W (ax, +a) = W (x), | (5.3)

= + ceey .
where Ax + a (Axl a , s Axn-ba)

These two propositions are direct consequences of

the first and the second axioms, respectively.

Propoéition 5.4. (Spectral condition) There are
| Fourier hyperfunctions Wn_l(gn_l) depending on the

relative coordinates 53 = xJ+1 - xJ, J=1, 2, ... , n=1,

which are related W, by Wi(x) =w (g ,). The

Fourler transforms of'uf;- and Wn_ are Fourier hyper-

1
functions defined by
W (p. ) = (2rr)‘l”t‘fexp{-1121 p,*x, W (x )dx (5.4)
n 1!1 J J n'=n’"=n

J=1

and

~

P (@) = em ™) (e lo T g e (e )a
n-1'3n-17 % 147 P e En-1 én-12 )
. : : 5.5

These are related by

~ n ~
W, (p,) =,6(jzlpj)wn—l(p2+..+pn’p3+°'+pn""’ p,) (5.6)
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; -1
n-1(9,_1) 1s contained in V. 7.

and the support of ﬁ
Prodf. We make a linear transformation X, +

(E,> &, 1) with & = x, and define

W _(x )

n ' —n

W B s B ¥ By seees E¥etE 1)

]

W (g, & ;).

~Since vﬂ; is translation-invariant it obeys the equation
(3/0E5)W (E ., E. ;) =0, w=0,1,2, 3. By Sato's

fundamental principle on the singularity spectrum of

khyperfunctions (Proposition 3.20), yV‘;(go, E

n_l) is real

analytic in Eo [(14]. Let us define a Fouriler hyperfunction

with n-1 arguments

wn-l(—g-n'-l) =Wx'1(0’ -g-n-l) = W;(go! én-l)’ (5.7)

then W (x) =W _,(f ;) as required.

Next it 1s easy to see (5.6): we have

3,
.
~\
e
B
N’
u

n
'(Zﬂ)-hn J exD{' ij-z-lpj 'XJ }Wn(?-{-n)dzc-n

(2w)'h“‘{exp{—i[(p2+'°+pn)'€l toeee + pn'sn_lj}

n
x exp{-1( } pj)'Eé}w

3=l )dgodén-zl

n-l(én-l
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n ~
= 60 § pyIW__y(ppte#p, sPote 4D yoeey P).
3=1

The last statement of Proposition 5.4 can be proved
as follows: Qn(¢) = <An,¢> Q 1is an H-valued Fourier
hyperfunction. When the translation U(a, 1) is applied

to @ (¢) we have by-the second axiom

Ula, 1)2,(¢) = 2 (67, 13)

~ ~ n
‘Qn(¢ eXp{i(Jlej)~a}),

where 5 is the Fourier transform of ¢. Consider the
speétral resolution
Ua, 1) = f el?*® 4E(p)

and the integral

[ X1 (8) = &, Clpyt oo )8 (5.8)

for any x(p) ¢ G (D*). The mapping x - Q_(x(py* «++p )9)
defined by the integral (5.8) is an element of '
L( Q{Dh), H), but since supp(dE) = ﬁ+ by the third
axiom it really belongs to L(Q’(V+), H). Let S, Dbe the

closure of {Bn; p, t-s+tp ¢ V+} in Dhn, then what
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we have just ascertained shows that ﬁn(pn) € L((9(SO), H).

Tt is readily seen that <A%y> ?zn_k(é) = (¥ ®9) and
C<n® v [x(aEmE, L (3) = & () @ x(p,, +eret p)E)

~for 1 < k < n-1. Let us defiﬁe 1ikeWisé S as the ciosure

; k
. cee v : 5 n-1
of ,{P-n’fpki'l.*- +pn ;V+ }. Then Qn(&l) € L(Q'(ﬂk=0 Sk), H).
To put this in another way we let 9 = pk+1‘+"' + P>

0 <k < n-1 and Write

2.(py) = 8,05 -3, 93 = Qpse-e 5 Q)

[$3F]

)s

(qa , aq

n ‘o’ Zn-1

(e

g ¢ § .
then we obtain £ (q_, g, ;) € L(Q(V+), H). Since

it

i (p) = (2, & (p)) = (2,  (a,, q,_;))

n o’ Zn-1

S(QO)wn—l(gn—l)’
%n—l(gn;l) is a Fourier hyperfunction whose éuppoft is

contained in. ya-i

+ This‘completes the proof of Propo-

sition 5.4.
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§ 6. Reconstruction

Theorem 6.1. To a gilven set of Fourier hyperfunctions
satisfying the conditions expressed in Propositions 5.1 -
5.4 in § 5, there corresponds uniquely a neutral scalar
field A(f) which obeys all the axiome of hyperfunction
fields and has the Fourler hyperfunctions as vacuum

expectation values.

Proof. We can construct a Hilbert space H, the field
operator A(f) and the unitary representation U(a, A)
of the restricted Poincaré group in the same way as tempered
fields. Therefore we discuss only causality and spectral

condition.

(a) Causality
(A(xl)A(xz)A(ul)~-- Au )a - A(xz)A(xl)A(ul)o-- A(un)n,

A IA(YAY)) +o+ AV ) = AWT,)AWY, IA(Y,) =+v AV, )0)

)q;n+2(ng’x2’xl’yl’y2’!n) - v“én+2<n3’x1’xz’yl’ye’zn)

t W, a8 XX 5¥p5¥17,) - Wonea (s Xy 5%,5555915¥,)

2 2
if (xl-xe) < 0 or (yl-y2) <0, 1i.e., if (xl,xe,yl,ya)
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e (K¢ x p*) y (D% «x K®), where K 1s the closure of

8

{(x;, x,)3 (xl--xz)2 >0} in D° and K% 1s its

complement. Thus the support of the Fourier hyperfunction

U D% xK®)® = K x K. There-

above is contained in (X® xD
fore, if ¢ 1s a linear combination of vectors of the
form A(¢l)--- A(¢n)n, then A(xl)A(x2)¢ - A(xz)A(xl)¢
€ L(Q—(K), H), that is -A(xl)A(x2)¢ = A(xe)A(le if

X, “and X, are spacelike separated.

(b) Spectral condition

Once H-valued Fourier hyperfunctions ﬁn(pn) have

been constructed, it follows from the relations

Y, & (p.))

(8,005 8,20 = (_(a), b (o,

ng’ gn) = Wzn(ng’ gn)

and the support property of Wightman Fourier hyperfunctions
that the support of vVén(ng, Sn) -1s contained in SQ x S
kn

‘

where So is the closed subset of D defined in the
preceding section. Therefore ﬁn(gn) is an element of

L(Q(So), H). For any x(p) ¢ Q-(\7+) n xf we have

fx(p)dE(p)ﬁn(a) = ﬁn(x(pl +oeoe + pn)gi,? where E(p) 1is
the resolution of unity associated with the energy-momentum

operator P and if supp(x) n V, = # the right hand side
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of this equality vanishes. This fggt shows that the spectrum
of the eﬁérgy—m§mentum 0peratbr P is contained in V;{V

Lastly we want to make mention of the cluster decom-

position. If we add to the third axiom the statement that

{p = 0} 1s an 1solated elgenvalue of the energy-momentum
operator and the corresponding eigenspacé is one-dimensional,
then the cluster property holds: For a spacelike vector a

we have
[ Wy 2, +20)0(x v, )ax ay, » W, (0) W, (9)

as A > é. The proof is carried out in the same way as in
Jost [17]. The converse proposition that the cluster
property implies the'uniqunéss of the vacuum is also

proved in a way exactly similar to tempered fields [1].
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