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APPLICATION OF 3, TO DEFORMATION OF ISOLATED SINGULARITIES *)

‘Masatake Kuranishi

§1. Introduction

'The _purpose of‘the-present note is to give the outline of
‘derormatlon theory of lsolated szngularltles based on Tangentlal
Cauchy R;emann'Equatlons. The deformatlon theory of 51ngu1ar1t1es
is already developed by several mathematlclans. (For a historical
note see the article of 0. Forster in this volume [1].) However
the methods so far are algebraic. That is to say, deformatxons
are regarded as deformations of defining equatiohs of singulari—

ties. As for the analYtic approach, besides the one exposed
here, Rlchard Hamilton constructed a theory which relles on 3
operator on a tubular nelghborhood of the boundary. This

approach leads to a non-linear boundary wvalue (non coercive)

problem of Cauchy.Riemann equations‘[Z],
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§2. - Isolated singqularities and CR _structures

Let V be a Stéin analytic space (of complex dimension n )
: sm;oth‘gxcept'at'a,point P _such that there is a relatively
':compa?t?open ﬁeighbqrhood 3; §f 'ﬁ i#~ v Qith the pﬁopgffy"
__th;t:fhe b&updary’of ﬁ isrsmoéth andvégroﬁgly pseudo cohygx,i
V‘Denoté.by M the boundary of ﬁ : ﬁ‘ ;;ing 4 real submanifbléb
of coﬁimensiop 6ne~in the complex manifold V - {p} ,. the 7
: coﬁp}éx?ﬁangen???é@tor bundle gng'has avdistinguiéheélsﬁbf“
buhdieLVOT;M .‘ ﬁéﬁely, it consisté of all elements.in!‘ggmd
which are of type = (0,1) when we regard CT™M as a sub—bupdle 

of g?ViM . Setting E" = OTGM , the equation
(1) XE = 0 for all X ¢ E"

is called the tangential Cauchy Riemann equation on M induced
by the ambiant complex space V . By the construction it is
obvious that the sub-bundle E" = OTGM satisfies the following

‘conditions:
(2) If L and L' are sections of E" , so is [L,L'] .

We refer any sub-bundle E" of CT™ of fiber dimension n-1
with the property E' n E" = {0}, E =E" , as an almost CR

structure on M . If it further satisfies the condition (2), we




{2

~t
-}

call ‘E" a CR structure. The notion of pseudo convexity of a
hypefsurface in a complex manifold can be formulated solely in
terms of the.almost CR structure induced in the hypersurface.
Nam§l¥{ piégléectiqﬂs Yi,e.0¥ 4 of E" on an open set G
‘of M‘Aéuchvfhﬁf they generate E"[G _ana also a real vector
fiélé'>fvf§;”#é”‘c§ﬁplementar§ to E'’ +,EE.‘ Write

[Yj, Y] =% i | (mod Y,,...., n—l'Yi""'Yh—

l) °

' We.say éﬁat .E" is strongly pseudo convex when the hermitian
matrix (Cjk) obtained in this way is‘always non-singular ana

its eigenvalues are of the same sign. If M .is strongl& pseudo
convéx in VvV, oT{"M is strongly pseudo‘convex. Conversely,

for any strongly pseudo convex CR struéture E" on M and

for any point p in M , Boutet de Monvel [6] showed recently-
that there are ’fl,..,,fn € cT(M) Such that ij = 0 for any
section X of E" and the map’ X - (fl(x),...,fh(x)) € Q? is
aﬁ embeading on a neighborhood of p . This means in particular
that any étrongly pseudo convex CR%structure E" , when re;tricted
to sﬁall open sefs, is induced by an ambiant complex manifold.
Pick an open covering {G&} qf M tqggﬁher with an ambiant‘
complex manifola ‘Wu of Gq such that W& - Ga Eonsists of two
components and E"lGa is the induced QR—structuré on G, by W, -

Then by the theorem of H. Lewy [3] there is unique component w'
] o
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of W&?.Gu sucn that any solution of the‘equation (l)‘on Wd
 extends uniQuely-to aaholomorphic function on W; . proyided ye,-
chose W sufflclently thln. Thls w111 allow you to plece
together iw (shr;nk;ng G a 11ttle lf necessary) and
construct a complex manlfold N w1th boundary M (regarding
ythe pseudo concave part of the~boundary of N as open), even
though the complex structure may not extend.beyond M.. We may
say that E" 1s 1nduced bv the amblant complex manifold N ..
'Slnce fl"“'f “in the theorem of Boutet de Monvel are defined
everywhere in M ’ Qe may conclude that.we can construct N as
above such that the holomorphic functions on N separate points.
Then it is'a theorem of H. Rossi [Sj that we can fill in the :
hole on N . He showed that the set of.the maximal ideals of the
“algebra ofntﬁe holomorphic functions on N . say‘ S ., hae thei
natural structure of normal Stein analytxc space. The obvious
'1n3ectlon N - S is holomorphic and the image is open. In this
way we can replace the deformations of normal isolated singulari—

ties by the deformations of CR-structures.

Deformatlons of lsolated szngularltles may be v1ewed 1n tpo\.
steps. Namely, the flrst is the deformatlons of the smooth part
of the analytlc set and the second 1s'the way szngular points are_}
‘added to complete it. Now the eecond step is not unique. VBecause'

of the blowing up and its inverse, this step is very complicated.
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Our contention is that the CR-structure induced on the boundary
completely controls the first step and also gives one definite

way of doing the second step.

§3. - Integrability conditions

. We develop the deformation theory of CR—stfucturesv
‘following thejﬁattéfh established in the deforﬁation théorfrof'
comélex structures. Let us recall the first step of the latter.
We fix a reference complex strﬁcttfe on a manifold, say N ,
whicﬁ is considered as a sub-bundle T" of the complex tangent
vector bundle CTN . T" consists of complex tangent vectors of

type (0,1) . We note the direct sum deéomposition

—

(3) CrN = T +7° , q' = T,

Then any almost complex structure sufficiently close toc T" is

considered as a sub-bundle which is a graph of a bundle map
(4) (1)) : 'T“ - 'T. 'S

We denote this almost complex structure by T" . Thus almost
T e

complex structures sufficiently close to T" are parameterized

by T'- valued differential forms of type (0,1) . T" has

parameter 0 . If TE is a complex structure, it follows that
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(5)  Pw- 3lww] = O

where,_[w,w] is the type j0;2) .fofm constructed by means of
o o (ord sxbiicev preduct

the brackgtvofivectorjfields It is the famous theorem of

Newlander and Nirenberg that the converse is true. ‘These

considerationéware the goﬁnd on which we can apply the theory of

elliptic differential operators to construct the versal family of

deformations of compact complex structures.

As for the reference CR-structure ©T" , there is no
canonical decomPOSition like (3).' We are forced to choose one.
We pick a sub-bundle F of CTM of fiber dimension 1 "such

that

(6) cM = °t" +°' +F , O = Op F = F

-

Then any almost CR-structure sufficiently close to ©T" is the

graph of a bundle map
(7) » cp_' : O oL Op 4+ @ I.

It is a little awkward to use a bundle like ©T" + F to

) parameterize almost CR-structures. ,Wé.avoid this Ey observing
that the restriction to CTM of the canonical projection map
CTV| M - T'V|M has the kernei ©F" and hence this map induces

an isomorphism of ©T' + F to T'V|M . Denote by
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(8) , r: T'VIM - ©7' +F

the inverse of the isomorphism. Then we can write

(9) . » . v' = 'r:o v
.whére 
(10) - 2 o - T'VIM

T"
is a bundle map. :Thus almost CR-structures on M 'Sufficientlyr
close to 9T" are parameterized by T'V|M valued differential

forms of type (O,l)b . Namely, °T¢ is the graph of the

T'VIM - OT'+ F . Therefore

bundle map T . ¢

(11) o OT;' S e(X); X € °T") .

In other words we have the isomorphism:

(11)* OT" 53X X - 1. o(X) € OT; .

The next problem is to decide which of the almost CR-structures
OT; are CR-structures. This will lead to an equation like

(5) for b¢ - Now we can rewrite the integrability condition (2)

in terms of differential forms as follows:

(2)°' If ¢ is a differential form of degree 1 such that
" 9(X) =0 for all X ¢ E" , then a8(X,X') =0 for all

[} n
X, X €E .



282

Thus we can write down the condition for ©T" being a

CR~-strucute when we can find a generator for differential forms

of degree 1 which annihilate ©T" . To do this we use local

- chart and introduce several notations. Before proceeding, we
pause here to note that the condition (2)'

can be reformulated

in the following more Suggeétive way: Consider the diagram

Bt o - A2, e
(x2) - I o

Co(M, (EM)*) -y (M, A3 (&)%)

where the vertical arrows are induced by the injection

E" -~ CTM . Then the condition (2)' is equivalent with the
following:
(2)" There is a unique dotted arrow which makes the

diagram (11) commutative.

When E" is a CR-structure, we denote by §é“ the dotted
arrow obtained in (2)". It follows easily that once this can be

done, we can construct similarly the differential operator

(13)  Fge ¢ CTOLAPEMH > TP s
-Since we always have the differential operator
§ﬁ" : Cw(M, c) +,Cw(M.(E")*) as the composition of the

exterior derivative and the restriction map, we conclude that



[p%]
or.
B %]

E" is a CR-structure if and only if we. have the 3

B complex

. - @ ) 1 n N
(14) c®(M, C) = C™(M, A (E")*) = (M, A2(E")*) = ... .
When E" §A°T“ , this is the ‘§£- complex.

.- Now we come back to the problem of writing down the
generator mentioned above. Let our reference CR-structure ©°r"
be induced locally by a real submanifold G in an open ball'in

E? . Denote by z = (zl....,zn) the generél elements in the

ball, and let
(15) . ~h = o0

be the equation of G , where h is a real valued c® function
in z . The choice of h is not unigque. But we pick one and
preserve){t throughout. By the injection i of G into the
ball in 5_:_“ we identify CIG as a sub-bundle of crcle .

Since F in (6) is preserved under conjugation, we can write

(16) F=c('-2), » erce, P = F .

We normalize the choice of P' by the requirement

(17) £ '@, P D> = 1.
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Set
A R =

(18) d¢'h = [ hdz , hi'—hk’
(19) p' = }:k'pka/azk . p°= pF.
By (17),
(17)' ‘ kalﬁr\k = ‘1 .
Set
(20) z* = i*(dig - bpi{- a"n) ,
p —k ”
(21) Z- = 3/3z - h_P" .

X ‘ k

By (17) we see easily that ZE e°r . 2Z¥ generates all
differential forms of degree one which annihilate ©T' + F .

gE_ generates ©T" . They have the relations:

(22) zkhﬁzi= o, 's:kpsz’_°'

‘Now a T'V|M valued differential form of typé (O.l)b‘, say

can be expressed on G as

- % - k A
(23) e =I o9 @'SSE r 9 =I, QI-Z with

[T

TP

/0



Because of (11), the diffential forms on G of degree 1 which

annihilate 'OT; are generated by
(24) eF = i*az"+ o (k=1,....m) .
Slnce °T"

is a CR-structure (assuming that ¢ is suff1c1ent1y
small) if and only'lf E" = OT; satisfies the condition (2)°',

it follows that OT; is a CR-structure if and only if (since

de" = dg")
._(25) - | -évk? 0 (mod el.....,en) .
Set
‘(26) . aT/azk = ‘T(B/azk) = a/azk - hp" .

We. calculate the condltlon (25) more expllc;tly using the
expressxon (23). Then we arrive at the following conclusion:
For a sufficiently small T'VIM valued differential form ¢ of
type (0,1, . © "IG is a CR-structure if and only if

: o= r'k i i 7 Xk
(2_7) o P(‘:p) 3,0 zj'k (2 :p_Z/ 3z )cp AAZ ® a/az

—

_ z .
vanishes identically.

P(g) 1is constrﬁcted depending on the chart z of the

ambiant complex manifold inducing ©7" and of the function h_
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in (15)..'H0wever one can show that P(g) is independent of
‘such choice. This can be dohe'by explicitly calcﬁlating the
right.hand side of (27) Qhén we make changes in the choice.
Recently D.C. Spencer and H. Goldshmidt found an intrinsic

defining formula of P(¢) .

§4. Heuristic arqument for the construction of versal families

‘Let us recall the basic idea in the construction of the .

versal families of deformations of compact complex manifolds.

A difféomorphism‘of N transforms an almost complex>
structure to an almost complex structure. Thus the aiffeomorphiém
group of ’N acts on the set of almost complex structureé bn N .
fhis actioﬁmsends complex structures to complex structures. Two
structures on the same orbitAare isomorphic structures. Sinée we
are interested in defbrﬁations &e consider.oﬁly élmost compléx
structu?es sufficiently close to the reference complex structure
" and acfions of diffeomorphisms sufficiently close to the
identity map. Hence we may describe our situation roughiy as
follows: A suffic;ently'small open neighborhood of O in
A(O’l)(N,T') is fibéred into orbits by the action of small opén
neighborhoods of the identity in the diffeomorphism group of N -/

We consider the subset of this fiber space'consisting>0f all o

such that °T; is a complex structure. This is a fiber subspace

_/_2



say B . If we can find a cross-section passing through 0 ,

say C , of fibers of B, {T; ?‘w € C will be considered as
a universal f;mily of deformations of N . However; it can happen
(for some N ’ that it is impossible to £ind a decent such C .
This is due to the fact that the dimension of the complex
automorphism gﬁoup of TL which acﬁs as the isotopy group at
may change with y . To avoid tﬁis difficﬁltyAwe'fiber B
instead'into orbits by action of diffeomorpﬁisms which are
complemeniary t§ the automorphism group-of T" .. To 5e more
precise, we parameterize first a small neighborhood of the
identity in the‘diffeomorphisﬁ group of N by a small néighbor—
hbod of 0 in C%(N,T') by an exponential map. For a small

g € CcO(N,T") denote by >g the diffeomorphism'parameterized

5 .
by & . Written in a complex chart z of N

(28) qtg(z)k = 2+t  (moatd) , g= £ " /a2 .

Denotékby 4c®(N,T') the subspace of c®(N,T') orthogonal to

the subspace 6f’holomofphic sections of T; (with réspecﬁ to a
hérmitian meffic in. N ). Let éLN 5é the set 6f'diffeomorphisms
of N paraméﬁerized by elements in a small neighborhood of O

in 'Lcm(N;T')_.- Now, instead of fibering B into orbits by

small neighborhoods of the identity in the diffeomorphism group

of ,ﬁ‘, we fiber B into orbits by small néighborhoods of the

3



288

identity in GLN . Then it is possible to find a cross-section,
A family of defomrations of N conétructéd in this way is the

versal familyiof“defoﬁmations'of N . Befdre we procéed further,
we insert here a notation. For a small wié A(o'l)(N,T') and a
diffeomorphism Vé sufficiently close to identity mapthN ’ t;év
transfor@ of T;' by £ is equal to T; . We set g = weg.

Then we find that
(29) we gy T wF R/ ...

where ...: includes all terms which are not linearvin' (w,8) .
This formula blaysiah'important role in the construction of the 
fvefs;l family. | | |

Now we start to éarry over the above ccnsideration to
defofmations of isolated Singularities viéwed as deformations‘of
CR—structur;s. Then we hotice a new phenomenoﬁ due to the facEA
that we can wiggle the boundary. Let °$; be a CR-strﬁcture on
M indﬁced»by an ambiant complex’manifold Nll" Sinde N, is
diffeomorphic to the ambiant complex manifold N of O .’w37
may write Nl.é Nw . Let i: M <N be a c°'-ipj§ctive map
sufficiently ¢;6se to the injection ‘i: MaN. The domplex
manifold Nm induces a CR-strﬁcture on f£(M) , which we '
transplant to a CR-structure on M via £ . We call it the
transform of OT; by £ . Since the above érogess ig nothiné

but a wiggling of the boundary it is obvious that. OTQ and its

transform give rise to isomorphic singularities. Thus we find



that in the deformation theory of isolated singularities the set
of injections M - N sufficiently close to i plays the role
of diffeomorphism group in the deformation theory of complex

- structures. This is the only modification we have to make.
Let us go over the fibering we consider more explicitly.

We first parameterize injections of M into N sufficiently

close to i by a small open neighborhood of cm(M,T'N[M) , say

g
. analytic chart z of N it means that

£ for g ¢ c®(M,T'NM) , by an exponentiai map. In a complex

(30) £z = &+ @)+ .., g = @yt

~ for ‘z €M . Denote by ‘I the set of ail f§ where € are

' sufficiently small and orthogonal to the vector space of. 3£
closed secfioﬁs of T'N|M . Consider the set B of ¢ such
that ¢ isvsufficiently small and 'OT; is induced by a complex
structure‘.Nw . The eiements in I act on the elements in - B.
Consider the fibering of B into orbits of the action by small
heighborhoods’of- i in I . We shall»try‘to fiﬁd a cross-
séction of the fiber space B 'and Shéw'that a cross—section
reéfesents a vgrsal family of deformations of the isolated

singularity out of which we obtained 9T“ .

/8
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We might feel that our picture is a little blurred because

we considered only ¢ such that ©

T; is induéed by é complex
manifold Nw which 1ies on both sides of M R whefeas in §2 we
constucted for any integrable ¢ a coﬁplex manifold which
induces OT; 5ut iies only in oﬁe éide-;f ﬁ . waeveflﬁhis
does not stop us from constructing the versal'familf by the
following reason: To construct a faﬁily which we wish to be the
versal.family we do-not need u's ; and in order to show that

. the familé we constructed is versal we a%e offered to consider

~only e¢'s such thét-the ambiant complex manifolds lie on both
side; of M . The last is due to the fact thaé.we staft'from an

OT.. is

analytic set V with an isolated singularity so that
induced by an ambiant complex manifold which lies on both sides
of M"and that ény small deformation of  V induces a CR-structure

with the.saﬁe_property.
As before we define g £ so that the transform of ©1"
by £ is Orpe . Then we find after a little calculation by

P £

(31) 9 £, = ¢.+3b§‘+ -

" where ... includes all terms not linear in (u,g) .

76
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§5. The construction of versal families

he recal; first how the versal family of deformations of a
compabt:complex manifold, say N, wés constructed. As was
explained in the preceding section,vwe are to find a decent set
C of owe A‘O;l)(N,T’N) satisfying the céndition:

(5) ' Bw - 2w ol = 0

such that it contains 0 and it cuts'transversally the set

(32) . {‘”.°9g : §£ € C(N,T') , £ small} .

When we linearize the'prdblem, we see‘by (29) that we are asked
to find»é complete set of representatives of the cohomology
classes in the T'N valued differential forms of type (0,1) .

The standard way is to solve the equation
(33) 3w = 0 , 3y = 0.

This observation suggests that a good candidate for our C is

the set of sufficiently small solutions of the equation
(34) B - #lwwl = 0, Ty = 0.

Actually it can be shown that such C forms the versal family.
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The equation (34) is solved as follows:’ Since solutions of (34)

satisfy the condition

(35) Go* (3w - #lw,w]) + G33*w + H(w) is harmonic,

whére_ G nis the Green's operator and lH is the hgrmonic
projection; we first'églve the equation (35) and decide which of
the solutions of (35) are solutionsrof (34). ‘Sincé the
éufficiently small éblufions of (35) form a finite.éihensiénéL
cbmplex manifold, it caﬁ be shown that solutions of (34) in thié-
manifold form an analytic set. Now we can solve the'equatich

(35)'wheh we can invert the map

(36) @ » H(w) + G3* (3w - %[w,w}) + GIo*w = o -

Vs

*[w,w].

Because of the eilipticity of the laplacian A = 3*3 + 25* ; 
-the map (36) inﬁuces an analytic map of the Banach manifold
obtéined by completing with respeét to Sobolov norm; Therefore
to find the inverse of (36), we check that the differential ét

0 is the indentity map theorem and apply Banach inverse mapping A

- theorem.

To find CR analog of the above construction we merely

have to replace the equation (5) by the equation (cf. (27))

(37) PP = 0

(¥
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and the formula (29) by (31). Thus our problem is to invert the
map
(38)  $ > H(9) " NIEP(9) + NI TEE

where N. is the Neuménn operator. (For subellipticity and
Neumann operators, see the Kbhﬁ‘s article f4] in this volume. )
However, the analogy fails here because the laplacian
Ab abab abab is not elliptic and hence the map (38) does
not induce the map of a Sobolev Banach manlfold into ltself. ' The
- way to get around the dlfflculty is to note that' Ab is
subelliptic and use Nash-Moser inverse mapping theorem.. Tﬁe
theoreﬁ‘sayﬁ that, when we,have a map like (33), if the
aifferentials at péints near 0 are subelliptic with uniform
. estimate and invertible then the map is invertible. However, the.
differentials of the map (38) at non zero points do not appear to
be subelliptic. Thus we are forced fo modify our construction:
'Ih’orde:'to obtain the:subhellipficity of differentials we have
to bring the boundafy Cauchy'Riemann operators of each OT"
into 6ur ﬁicture. Noﬁ it is necesséry to introduce a number of
operators. Before prdceeding fﬁrther we note that the inverse in
Nash Morse théorem is constructéd by ingenibusly combinihg ﬁewton'é

algorithm and the smoothing operators (cf. [7]).

¢7
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We recall that 9. complex was constructed in (14) by

Eu"

means of the diagram (12) in the case E" = OT; . However,
we need suchvah operator for all sufficiently small ¢ (not
merely for @ for which OT; is a CR-structure). We obtain

this‘by picking cross-sections of the vertical arrows in (12).
| ' v ' K
Sudh;cross-sections which are natural from our stand-point are

‘induced by the decomposition (cf. (6) )

CT™M = B +E' +F, E' = Op _
c B et

We denote by - Eg the sequence of differential operators thus

obtained:

' (39) .g;f: A(bo’p)(M,C) - A (M,C) .b

~

(0,p+1)
b

. They form a complex if and only if °T¢ is a CR-structure. In

1

terms of a complex analytic chart 2z = (z ,...,zn)i of N

(and using the notations introduced near the end of §3),

’ <o - (0} -Z © a
(40} ¥E = i(zzf)z » £ eci(G,0Q)

(a) 3zt = 5 A ¥meh .

The formulae (40) and (41) determine uniquely the operator 3§
because of the linearity and the rule‘»Sﬁ(e AYg) =

(Sgé) A+ (-1) %5 A 3§¢ where 4 is the degree of ¢ .




It is interesting to note here the formula
- k k
3« E. = -5 (3"E/3z )P(y) .

This could be used to show that é((p) is well-defined independent
of choices in the defining formula (27). Since . in our conétruction
of ve.rsal families we work on T'N | M .valued differential forms

of type '(0'p)b_‘ we have to definé -a_g for such forms. We do

this by explicitly writing dowr.1 the definition in teﬁns of

_complex analytic chart z in N and showiﬁg'that it is well-

defined globally. For y € A}g +P) (M, T'N|M) write

k k .
b o= gt e ez, e A(O P (q,0) .
Then we define Sgu, on G by
..CP ' _ —w k k ) . k
T T (3gu +‘2£I‘L(cp) A u) @33z

where

£ (37T / 22827 - & () .
J j 5 4T

. k
.I‘L(r.p)

k j.r .k, .8

+ :
al(cp) Labp - Zh J3Tp/az? .
By means of a hermitian metric we introduce (—a—g)* . The
laplacian Ag = ('g;f) *‘5;? + 31‘3(3;’)* is still subelliptic. The
dimension of the kernel of Ag may depend on ¢ . However, we-

- can show that, for ¢ sufficiently small, the dimension of the

2/
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sum of the eigen spaces of eigen values sufficientiy small, say
H; » is independent of ¢ . Denote by p¢ the orthogonal
projection (iﬁ -Lz nérﬁ) to H;‘;  Denote by N¥ the
composition of I - pQ‘ with Neumann opgrator of gg where I

is the identity map. We have the formula:
p¢ + ngg = the identity map .

We use p® and N? _inste;d of thé harmonic projection and
Neumann operator qf Ag because the latters do not depend
smoothly on ¢ . When we write dowg (Eg)* in terms of.§ local
chart, we find that partiai‘dérivativeé of é; appear in the
coefficients of the zero-th order terms of the expression. By a
technical reason these coefficients cause some trouble in the
construction of the universal family. Therefore we just take out
the terms which contain partial derivatives of QE and piece
them together by means of a partition of unity. In this way we
construcf _(Sg)# . It is a differential operato? having the

e ¢

same principal part as 3 -

We are ready to state what we will do instead of trying to
find the inverse of the map (38). For each sufficiently small
harmonic (with respect to 45 ) T'N|M valued differential form

of type (0,1) solve the equation

b 14

pP +NP((FD) *R(g) + TL(ED) *g) = %t .

22



It can be shown by means of Nash Mosef theorem that the equation
has a uﬁique solution, say o(t) , which is sufficiently small.

" Then we write d6wn thé'equation for t so that OT;(t) is a
CR-structuré;‘ In this way weAconstruct a family of CR-structures.
By anélyzing fg closely we can show that the family induces thev

versal family of deformation of the isolated singularity we

started with.
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