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On Regular Surfaces of General Type II.

by Yoichi MIYAOKA

1. Introduction. In this paper a surface shall mean
‘s compact complex manifold of dimension 2. We denote

by thS] ( me N ) a pluricanonical system on a surface

S and by gﬁmK the associated rational map (the pluri-
S

canonical map), assuming that LmKS\ is..not empty. A

surface S is called of general type if §nm€(s) in
the projective space pl (N = dim mK ) for a large
number m 1is a variety of dimension 2. If S 1is &a
surface of general type the following results are well-

known.

Theorem 1 (Mumford [ ]). If m 1is sufficiently large,

mK

& ] is a birational morphism and.?@mKs(S) T X =
ProngHO(S,Q(rKS)). X 1is & normal variety with only

a finite number of rational double points as singularities.
If S 1is a minimal surface, then S is the minimal

resolution of X.

Theorem 2 (Mumford [ ]). Assume that S is minimal.

Then we have Hl(S,g(mKS)) = 0, for n # 0,1, me Z.

Theorem 3 (Riemann-Roch Theorem fox pluricanonical
systems). Letting 312 be the self intersection

number for the canonical divisor of the minimal model

of S, we have
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dim HO(S,_O_(mKS)) =X (0) + (5'12/2) m(m-1),

where ’X(Q) denotes the Euler chéracteristic of the
structure sheaf 98 of 8.

Theorem 4 (Iitaka [ 1). The m-genus Pm(S) =
dim HO(S,QS(mKS)) is deformation-invariant.

As an immediate corollarf to Theorems 3 and L4, we
obtain the following

Theorem 5 (Deformation Invariance of the Minimality).
If S is minimal, then any deformation of S is also
e minimal surface of genersal type.

From now on, we denote by S a minimal surface of

general type with the following numerical conditions:

p (5) = dim HO(s,0(k ) = o,
* % q(s) = aim HY(S,0) = O,
2 _
KS = 2.

A surface of this type shall be called & numerical

Campedelli surface.

In section 2, we study the property of the tricano-
nical system IBKSK on & numerical Campédelli surface.
In spite of Bombieri's comprehensive work [ ] on pluri-
canonical maps, the tricanonical system on S was not
completely surveyed. éﬁi there remains still an open
problem: Is the tricanonical map of S 1is a birational

morphism?

It is an interesting but, in general, a very difficult
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pfoblem to determine the complex structures on a given
underlying differentiable manifold. In our case the
problem is rather easy under some conditions. In
section 3, we shall determine the structure of S under
the condition that the fundamental group of S 1is a

direct sum of three copies of the cyclic group of order 2.
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2. Regularity of the tricanonical maps.

Let S be a numerical Ceampedelli surface. Then
we have the following

Theorem 5 (Regularity of tricanonical maps). The
tricanonical system [3KS‘ on S 1is free from base
points and fixed components.

For the proof we need some results .

Definition. An effective divisor D on a surface
F 1is called l-connected if

Dl'D2 > o0,

for any non-trivial decomposition D = Dl + D2, Di > 0.

Theorem 6 (Ramanujam vanishing theorem [ ]). If an
effective divisor D on a regular surface (i.e.
q(F) = 0 ) is l-connected , then Hl(F,Q_(-D)) = 0.

Theorem 7 (Bombieri [ ]). Let F ©be a minimal
surface of general type and P a point on F. Let
p: §:€>F denote a quadric transformation at P and
E +the exceptional curve over P. If an effective
divisor D 1is numerically equivalent to 2p*K - 2E,

F

then D 1is l-connected except in the case where
2
KF = 1.
Now we proceed to the proof of Theorem 1. Let
p: %L?S be the quadric transformation at a point P

and E the associated exceptional curve. Let us

consider the following natural exact sequence of sheaves:
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' * ; *
0—>9§(3p Kg - E)——>Q§(3p KS)“—’Q_EW—-?O.
Then it is obvious that \3KS\ is free from base point

~ *
at P if and only if Hl(S,Q(Bp (K, - E)) = 0. By

S

the Serre duality we have

dim Hl(g,gf3p*Ks - E)) = dim HY(5,0(2E - 2p*KS)).
Hence Theorem T yields the Qanishing of the cohomology
group under the condition that ‘ZP*KS - 2E| # ¢.
Now assume that \2p*KS - 2El= ¢. Since dim HO(S,Q(QKS))

= 3, this inplies that the rational map 4?2K assoc-
S

leted with the bicanonical system |2Ks& is a local
isomorphism at ©P. Therefore there exists an effective
divisor D¢ 2p*KS - El such that D is irreducible in
a neighbourhood of E and that the unigue irreducible
component D0 which simply intersects E satisfies
D022 0. Now we shall take the following exact sequence
of cohomology groups:

0,~ * 0
0-—> H (S,0(2E - 2p KS))~—9 H

1(S,00E)).

(5,0(2))—1"(p, 0, (E))
—ut(§,0(2E - 2p*KS))—~+ H
Note that HO(§19(2E - 2p*KS)) = 0 and that
dim HY(S,0(E)) = dim Hl(g,g(p*Ks)) = aim B (5,0(K,))
= q(S) = 0. Hence, for the proof of Theorem 5,
it is sufficient to show the equality
aim H2(D,0(E)) = aim 8°(8,0(E)) = 1.
On the other hand we have the following natural commutative

diagram
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0-—#%(D,0) > HO(D,Q(E))—£~>HO(D’E,Q)
i l l identity
0 f—>HO(DO,g)m—>HO(DO,Q(E))>E+HO(D.E,9)

of which the rows aré exact. But it is obvious that
the virtual genus of D0 is not O. Since the
degree of the divisor E:- on DO is 1, the restriction

map r 1is the zero-map. This implies that

aim #2(D,0(E)) = aim 8%(D,0).
Moreover we have dim HO(D,Q) = 1. In fact, there exists
the following natural exact sequence

0, * 0,% 0
0 —H (5,0(E - -2p K ))—> H'(S,0)— H (D,0)
o~ *

——?Hl(S,Q(E - 2p KS)),

1
(

-~ * ~ *
where dim K (5,0(E - 2p K)) = aim H'(8,0(3p K ))

dim‘Hl(s,g(3KS)) = 0. Thus dim HO(D,g) = dim Ho(s,g)

1 and the assertion is proved.



69

3. The structure of Campedelli surfaces.

In this section we shall study numerical Campedelli
surfaces of special tybe.

Definition (cf. Campedelli [ 1). A numerical
Campedelli surface is called a Campedelli surface if
its fundamental group is isémorphic to Z/(2) + 2/(2)
+ z/(2).

If S 1is a Campedelli surface, the universal
covering S of S has the following numerical char-

acters:

A(8,05) = 8X(s,05) = 8,

Q(g) = 0,

P (8) = X (8,05} - a(8) -1 =1,
2 _ 2 _

Kg© = 8 K, = 16.

The fundamental group G of S acts on § as the

covering transformation group of the unramified covering

[62]]

e:

O

—>85, and G naturally operates on the vector space

,Q(Kg)) as linear transformations. Hence we obtain

a canonical representation k: G—>GL(7,C) and the

[6]]

H.

induced representation k': G—>PGL(6,C).
Lemma 1. k' 1is a faithful representation.
Proof. Let g€& G be an element of ker k'. Since

2 _ .
g- = id, k(g)

+ id. Hence pg(§/(g>) = 7 or O.

But pg(§/<g>) 3, if g 1is of order 2. Hence
g = 1id.
Let V denotes the image of § by the canonical

map éK— associated with the canonical system {Két.
S
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Then k'(g) (gé& G) induces an automorphism of V.
Thus we obtain a natural homomorphism a: G—> Aut(V),
where Aut(V) denotes the automorphism group of V.

Lemma 2. a is injective. :
A trinal CchLtu.znu c/[‘ Levmama 1.
Proof. Assume—that——pg—6G——induces—the—identity—on

V+—Then—V—is——eonteined—inen—eigenspace—of —k'{g).
Since—V—is—not conteined—in-sany- proper-linesr-subspace
—e—f——«?—é—,-%h—i-s«i&pla}e-s-irhwm k' {g)=->id+—Lemmo—1l yields
the egqueality —g = id-

Lemma 3. The canonicel system Kg of § 1is not
 composed of a pencil.

Proof. _Assume that V is a curve. Since q(S§) = 0,
V must be a (possibly singular) rational curve. An
automorphism of V induces a unique automorphism of the
non-singular model Pl of V. Hence,in virtue of
the above lemma, we infer that there exists a faithful
representation a': G—>PGL(1,C). Oun the other hand,
it is ob&ious that PGL(1,C) does not contain a subgroup
isomorphic to (Z/(2))3. 'This is a contradiction.

Since G 1is a commutative group, we may assume

that k(G) is contained in the diagonal subgroup of

GL(T7,C). Let Wyse oWy be a basis of HO(§,Q(KS))

* +
such that g (WJ) = - WJ' for any g ¢G.
Lemma L. The linear subspace W of HO(§,Q(2K§))
2 2 2 . X .
spanned by vy w2 3 ey w7 is 3-dimensionsal.
, :



Proof. Lemma 3 implies that the transcendental

degree over C  of the field C(we/wl,...,w7/w ) is 2.

2 2
7/wl)

1

Hence the transcendental degree of C(wee/w ye e s W

1
is also 2. This yields the inequality

dim W = 3.
On the other hand, since sz is G-invariant, W can
be regarded as a subspéce of HO(S,Q(QKS)). But fhe

Riemann-Roch theorem geves an equality dim HO(S,Q(QK

))

s
= 3. This completes the proof.
Lemma 5. Let K De an éxtensiop of tre rational
function field C(xl,...,xn) defined by
K= C(xl,...,xn,Ja-,...,f@;),
where Qj is a quadric polynomial in xi. Assume that
KY: C(xl,...,xn) = 2r. Then the integral closure of

Clx;sevesx 1 in Ky is Rp= Clxgse.inx 5 Qrheney Q10

Proof. Triviel.

Corollary. Let K be as above. Let Qr+l be

another quadric polynomial in xi. Assume that Kr+l

= Kr' Then J@;:l is a linear combination cf x
R
2 2 2

l,ooo,

Let Vs Wy, W be a basis of W. From Lemma L,
we infer that there are quadric relations
2 2 2 2
w = w + b.w + W
J J 1 s 2 j3°

J = L4, 5,6, T.
The above corollary asserts that, if the complete

intersection defined by the above quadrics is reducible



then its any irreducible component is contained in a
hyperplane in P6. Since the image V of S 1is contained
in the complete intersection V! defined by the above

4L equations and V is not coﬂtained in any hyperplane,

V' =V is a irreducible surface. Thus we obtain the

following

Corollary. V is a complete intersection of type
(2,2,2,2) in p®.
As an immediate consequence of this corollary, we have
Theorem 8. Thercanonical homomorphism
® "8 (5,0(K5)) —> 8°(5,0(mKz))

is surjective.

Proof. Let gv(m) denote the sheaf of the hyper-
surface section of degree m. Since V is a complete
intersection of type (2,2,2,2), we have
aim B9(v,0,(n)) = 8 + 8 m(n-1) = aim HO(5, 05(nk;))

Moreover HO(V,QV(I)) generates HO(V,Q&(m)). This
proves the theoren.

Now the following theorem is trivial;

Theorem 9. The canonical model X of § is iso-
morphic to a complete intersection of type (2,2,2,2) in
P6. The cenonical model X of S 1is the quotient of

X 1ty the action of following subgroup G of PGL(6,C).

-10-



The following theorem is & corollary of Theorem 9 and
the forms of the defining equations.
Theorem 10. The moduli space of Campedelli surfaces

is a nesma:r unirational variety of dimension 6.

-11-
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