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Note on Regular Fundamental Solutions

and Some Other Topics

by Akira KANEKO

University of Tokyo, College of General Education

In course of the preparation of the book [ 1 ], I have
found some elementary but interesting results. Since I think
it is not known in the literature, I would like to announce

some of them.

§1.3ingular spectrum of regular fundamental solutions.

Let p(D) be a linear partial differential operator with

—

constant coefficients. Regular fundamental solution means the

following one defined by H6rmander:
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Here A 1s a finite subset of R™ such that R is decomposed

into closed subdomains Dy, ¢ A on each of which holds

(1.2) 2 D% p () <clnf_;p<g+rw)1 if  §eD,.

IEAh-9
The integral in § converges as a distribution of x.

Theorem 1.1 S.S.E(x) 1is contained in {(x,%)¢ R™ x Sn—lg

Xg = 03.

This means that outside the origin E(x) is analytic to
the directilion transversal to the sphere |xi = const.

Proof Fix a point x’. We divide the integral of (1.1)

into two parts. First consider the integral on the region
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\xogl'z S1%l. We show that this is analytic on a neighborhood
of XO. Note that there exists ¢ > 0 independent of & such

that

(.30 2, DRI < 20 tne (g,

lKiSm -

if 1ol <ec and ¢ Dy.
In fact, by Taylor's theorem we have

P(+28+79) - psrxn] = | T Dp(g+ v (o)

0<ixl<m
< et 2L 1D%p(9)|
12 {<m
Hence, taking c¢ = 1/2C' we obtain (1.3) due to (1.2). Thus
employing the Abelian limit we can modify the path of integration
from the real region + Xog > §1%1 into C= ¢ + ic§¥ 1in the
complex. We connect the modified path with the original one
by a linear way on &(%|/2 < lxog\ < Sizi. Consider, e.g.,

the integral

1im _._L___,g .
elo (2707 JDyaix% >8iEi}
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p(g+ Tv) T

, ‘eix(g+'r&)_cxg_s§2
27

If x Dbelongs to the 8/2—neighborhood of XO, we have
- ¢cx§ < - CXO§ + cdlgi /2 < - CS‘Z\/2.

Hence, even after letting ¢ = 0, the above integral converges
absolutely and can be continued analytically into the complex
neighborhood |Im z|< c&/2.
Next consider the original integral on the region \Xogl
< 81%1/2 and the modified one on XV < ]Xogl ng\g\. We
n-1,

claim that their singular spectrum is contained in" Rn><{§es H

\XO§\ <8 . Since $> 0 1is arbitrary, this will prove the
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theorem. Divide lxoi\-§~5l§‘/2 into a finite number of proper

o) . .
convex closed cones ', It suffices to consider, e.g.,

av G ul e
D§r\rj =g PUET T T

Replace x Dby the complex variable =z. If the imaginary part
is fixed in such a way as Im zé—F}, then we have Im z% > €13]
with some ¢ > 0 for § on this region of integration. There-
fore the integral converges absolutely and locally uniformly on
the wedge R™ + ir}, hence defines a holomorphic function there.
We can easily see that the 1limit of the holomorphic function to
the real domain agrees with the distribution (1.4). Thus we
conclude that the singular spectrum of (1.4) is contained in
Rnxiﬂg. The argument i1s similar as to the modified integral
on &1%]j/2 < 1x9% | < 8131, because the modification of the
path does not increase the real part of the exponent. g.e.d.

As a corollary we can prove the Ehrenpreis-Komatsu exis-
tence theorem without employing functional analysis.

Corollary 1.2 Let XK be a convex compact set in r!

Then p(D) : A(K) —> A(K) is surjective.
convex
Proof Take f € A(K). Take a panalytic hypersurface S sur-
rounding K in the region where f is defined. Let X(x) be

the characteristic function of the interior of the surface.

Then S.S.Xf 4is contained in the conormal bundle of S. Put
u(x) = E(x) ¥ [X(x)f(x)] = gE(x—y)%(y)f(y)dy-

By the estimation rule for singular spectrum on the operation

of integration and product, we see that
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S.S.u € {(x+y,3) € R?xs™7Y; (x,%) €S.5.E, (y,§)¢ s.5.%r}.

Hence the direction of the singular spectrum of u at a point.
XOéEK comes from the point y &S where the line ;6; is
tangent to S. Since S '1is convex this is void. Thus u is
a real analytic solution of p(D)u = f on K. g.e.d.

| " Remark that the theory of (analytic) singular spectrum
for distributions can be developped in a very elementary way
employing the curved wave decompoéitiOh of the delta function.

This is an idea due to M.Kashiwara. Thensingular spectral

decomposition for f with compact support takes the form

@5) 1 = § e xods,

(n-1)! (1—ixw)n_l-(l—ixw)n;2(XZ-(XW)E)i.

W, (x,w) =
+0° % (—2’7ti)n ' (xu+i(x2—(xu»2)+10)n

This integral can be simply considered as the distribution limit

of the Riemann sum

N K K
2. W g(x,07) % £(x)Aw™.
k=1

Especially the coherence of the concept of the singular spectrum
for distributions and for hyperfunctions follows. In fact, the
components of the decomposition (1.5) taken in the hyperfunction
sense necessarily becomes distributions if f 1is a distribution.

For further details see [ 1 ].
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8§2.General boundary value theory for distribution solutions.

Let p(x,D) be an m-th order linear partial differential
operator with infinitely differentiable coefficients. Assume
that the hyperplane Xy = 0 is non-characteristic with re-
spect to p. Then for every distribution solution u of
p(x,D)u = 0 on Xy > 0 which is extensible as a distribution
across X; = 0, we can define its boundary values to Xy = 0.
More precisely, 1let U Ccr® be a domain.. Put

Ut = Unix>00, 00 = Uatx=0), U = uVul.

A neighborhood of Ut or UO means an open set in R® which

contains Ut
0

or UO as a closed subset. When we consider
U as an open subset of X, =0, we let it be denoted by

U', i.e., 00 = {oIxU'. Let {bj(x,D)}?;é be a normal system
of boundary operators, i.e., each bj(x,D) be a j-th order
linear partial differential operator with infinitely differen-
tiable coefficients with respect to which Xy = 0 1is nbn—

characteristic. Let {cj(x,D)}?:é be its dual system. It

is defined by the formula

_ m-1 £ )

(2:3) G, D)8 0xy Jul = 2 ep_s-1 (6D [60x) )b, (x,D)u]
+ Q(Xl)p(x,D)u, u € C™(R™).

If we assume that the coefficients of oj(x,D) do not contain
Xq the dual system is uniquely determined from p and bj
by this formula.

Lemma 2.1 Let u be a distribution solution of

p(x,D)u = 0 on U'. Assume that u is extensible as a
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distribution to a neighborhood of Ut. Then there exist a
unique extension [u]é € D'(U) of u saetisfying supp[ujg

c Ut and unique data uj(x')é.D'(U') satisfying

m-1
t A \
(2.2)  p(x,D)tul] = 3;% epogo1 (KD LoCr du (x1)T.

Proof By regularizing u lodally and employing Q(Xl)
and a partition of unity, we can anyway find an extension
v of u satisfying supp vtiﬁi. Then supp p(x,D)v(ﬁUO{
By the well known structure theorem, such a distribution is

locally uniquely expressed in the form
M
p(x,D)v = 2:, D%S(Xl)fk(x').

If M > m, employing the original equation we can write
£y (x')

£ (x)
D8 ey = o (e, YD (o) oy ()] EZ DES (3, Ve (x1),
where po(x) is t@g coefflclent of Dl in p. Thus replacing
v by v - Dl [8(X‘775;(X)], we can diminish M by one.
Repeating this we can finally let M = m-l. The coefficients
and the extension are thenuniquely determined. 1In fact,
assume that there are two such extensions gujg, [u]g'.

Then we have

y + +, m-1 kg '
p(XaD)<Lu]O - Lu]O ) = KZ::O Dl <Xl)hk(x )

[ujg - [uig' = ;gg D%S(xl)wj(X'>, wy(x') % 0.
Substituting the latter into the former, we come to a
contradiction. Reformulation to the case of general boundary
system (2.2) is easy. q.e.d.
We define [ujg to be the canonical extension of u

and uj(x') in (2.2) to be the boundary values of u with-
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respect to the boundary system {bj(X,D)} and write

(2.3) bj(X’D)u‘xl—>+O = uj(x'), J=0,0..,m=1.

If u 1is extensible as a function of class Cm or as a
distribution solution of p(x,D)u = O to a neighborhood of

U+, then the product ve(xl)u is regitimate and by (2.1)

we have

bj(X’D)ule——> +0 ° bj(X’D)u|xl=O*

Note that the~right«hahd side of this equality does not have
a meaning in generél. The following lemma Jjustifies the iimit
symbol of the boundary values. |

Lemma 2.2 Let U = {IxI<8}xU'. TLet u be a distri-
bution éolution,of p(x,D)u = 0 in UV which is extensible
as a distribution to a neighborhood of U'. Then as & ¢ O
we have | |

bj(x,D)ulX1=2'———> bj(X’D)uIXl—>+O in D'(UY).

Proof It only suffices to consider the case {bj(x,D)}
= {Dg}. Since the convergence in D' 1is local we canmreplace
'U' Dby a smaller set and assume that u = q(D)v, where v

1 van N-th order/
is a function of class C and q(D) is Y linear partial

differential operator with constant coefficients with respect

to which X, = 0 is non—characteri?tig. v 1is a solution of
vi.(x')=.

p(x,D)q(D)v = O. The boundary valﬁes,\ng‘Xl_>+o of v
with respect to this operator are given by
m+N-1 :
p(x,D)a(D)[6(xy)v] = };O L oan-5-1 (D) [6Cx v (x )],
o= m+N-1

where {er is the dual system of {D%}jzo with respect
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to this operator. 1In fact, the left hand side is obviously
of order at most m+N-1 as a distribution, hence the higher
order terms do not appear. Letting &V O, we have QCXl-E)v

—_— 9(xl)v in D'(U). Hence

m+N-1 R . \ meN-1
P T in- -1 (D) [8(x - £)DYv x =8> jZ:o -1 (D) [0 Gy v s (x' .

Multiplying by (ixl)a/ji, J = m+N-1,...,0 and taking the
definite integral with respect to X;, We see that the asser-

tion of the lemma is true for the solution v. Now we have

6(xy-8)a(D)v

1]

9(x1-8)u

1]

q(D)[Q(X -£)v] + 2: Uy j- 1(D)L8(X1)Dav’xl

due
Each term of the right hand side converges in D' (U)f\to the

above argument. Thus setting (ul-= 1%3 G(Xl—s)u we have
¢l

1l

p(x,D)Lul lim p(x,D)(@(X -¢)u)

- 1515% Zz"_ Py -1 (%, D)[b(xl)DJu‘Xl_L}

Employing (ixl)a/g, as above, we conclude that ([ul is

the canonical extension of u and each D%u!x _; converges
1=
to the corresponding boundary value. g.e.d.

In the same way, for a distribution solution u on U

= U,\{X1<O} which is extensible as a distribution to a nei-

0

ghborhood of U = uTVy , we can define the canonical exten-

tion (uly and the boundary values uj(X') = bj(X,D)ulX1_> -0

by the formula
m-1

(2:4) = pGe,DYG = I Fop sy (DB Cxuy ')
J=

As for the uniqueness of the boundary value problem we
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have

Theorem 2.3% Let u* be distribution solutions of
, resp.
p(x,0)u = 0O definedAon UX  and extensible as distributions

to a neighborhood of vt Assume that

, i + .
bj(X’.‘J)u!X J=O,coo,m"l.

T C DL MR
- 1 1
Then there exists a unique distribution solution u on U

satiéfying ulUi = uf ana
) + -
bj(X’D)u lxl—> +0 bj(X’D)u ‘Xl—> -0 ~ bj<x’D>u‘X1;O'
Proof Let Euﬂg be the canonical extensions of us.
Then u =’[u+}gl% Eu_la satisfies p(x,D)u =0 on U. The
uniqueness is deduced in the same way as in the proof of

Lemma 2.1. ' , g.e.d.

Corollary 2.4  Assume that p(x,D) is obtained from an

operator with analytic coefficients by an infinitely differen-
tiable coordinate transformation. Then the boundary values
(2.%) determines the solution u on ut locally uniquely on

a neighborhood of x, = 0.

1
Proof Consider the difference v of two solutions with
the same boundary data (2.%). Then we have p(x,D)Lv]g = 0.
Therefore by the Holmgren theorem we conclude that [V]B = 0,
hence v z O on a neighborhood of X = C. qg.e.d.
As fdr the solvability of the boundary value problem

we have

Theorem 2.5 Let E(x,y) Dbe a fundamental solution of

p(x,D), i.e., p(x,D)E(x,y) = g(x-y). Then we have Jer Yyed{x=ef
Fixed,
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oy o (xuD)E ibg_l(o,xv,v) Sexry:
b (x a ] - 1 (x ) A= x'-y').
m-1" le—> +0 m-1-"7 IX1—> 0 pO(O,X',V> 9 »
bj<X’D)E|Xl +0 bj<X’D)Elxl 0= 0, 0<J <m2.

Here pO or bg_l denctes the principal part of p or

b, and Y= (1,0,...,0).

. p \ _ oty N
Proof  Setting bj\X’D>ElX1—> 10 = uj(x'), 3 Oyeney

m-1, we have
+ = t o +
p<X’D)(E]5 =1 Cm—j—l(X’D>t°(Xl> uj(X'Dﬁg

1
J=0
Hence

. -y b5l t - Y rotr o =ty 1
p(X1D>([h]O + [EJO) = ggb Cm_j_l(an)Lo<Xl>\uj(X )—uj(x ))j‘
On the other hand, we know that

., 0 X ;
ib (0,x'",0) .
ml o(x'=y"))

C. t {2
p(x,D)E =20(X-y) = "cy(x,D)} 0(xy)
0 L pO(va'$V)

Make the difference of these two equalities. Then due to the
uniqueness we conclude that I = [E}X + {Elg and the theorem
follows. g.e.d.

Employing the fundamental solution in a standard way,

we can locally solve the bilateral boundary value problem.

Corollary 2.6 Let uj(x'), j=0,...,m=1 De distribu-
tions whose supports are contained in the region where the
fundamental solution of p(x,D) is defined. Then we can

locally find solutions wt of p(x,D)u =0 on + %X, >0

1
satisfying

) - + - -— .
bj(X,D)u !Xl_> 40 " bj(X,D)u 'Xl_> 0 = uj(x'), J=04...,m-1.
The pair uf is locally uniquely determined up to those which

can be connected as a solution on a neighborhood of Xy = 0.

- 10 -
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Proof Taking a suitable derivative p, (y,D )E(X,y)\ _
R k9 y y1=0
by an operator of order k, we can find a solution Ek(x,y')

of p(x,D)u =0 on R™\ (0,y') satisfying

1 — ! .
bj(X’D)Ek(X’y')\Xl%>+O bj(X,D)Ek(x,y )lx19 -

-5

0 j,m-k-1°

Then
+ m-1 '
- = ! 1 1 :
u-(x) f:':o Bk (X>yu (y")dy', on +x, >0,
is the desired solution. g.e.d.

Since the calculatlion of this section is purely algebraic,

we can perform the same argument to the operator of the type

m—-1
- n Y
p(x,D) Dy + = pm_k(x,D )Dl_

where the order of pk(X,D') may be greater than k. Thus,
for the distribution solution we can give a local definition of

the boundary value, hence the restriction to a kind of charac-

teristic hypersurface.
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