The n-invariant of the cone

on a nonsingular hypersurface in a complex projective space

Shiqeyuki MORITA

Atiyah, Patodi and Singer[1] defined an invariant η for oriented (4n-1)-dimensional Riemannian manifolds. The purpose of this note is to announce the determination of η of some particular manifolds. Namely, let $V^{2n}(d)$ be the cone on a nonsingular hypersurface of degree d in complex projective 2n-space CP^{2n} . Let $M^{4n-1}(d) = V^{2n}(d) \cap S^{4n+1}$, where S^{4n+1} is the unit sphere in C^{2n+1} . Then $M^{4n-1}(d)$ is an oriented (4n-1)-dimensional Riemannian manifold (the metric is the one induced from that of C^{2n+1}). The result is

Theorem

$$\eta(M^{4n-1}(d)) = d(d-1)^{2n} \frac{2^{2n+1}}{(2n+1)!} a_{2n+1} - sgn F$$

where F is the manifold defined by the equation; $z_0^d + \cdots + z_{2n}^d = 1$ in C^{2n+1} and a_{2n+1} is the (Euler) number defined by $\frac{2}{e^{t+1}} = \sum_{n=0}^{\infty} a_n \frac{t^n}{n!}.$

Example

Let $P^3=S^3/+1$ be the projective space with the standard

metrc. Then it is easy to see that $\eta(P^3)=0$. On the other hand, let $K^3=V_2\cap S^5$, where V_2 is the locus of $z_0^2+z_1^2+z_2^2=0$ in C^3 . Then it is known that K^3 is diffeomorphic to P^3 , but we have $\eta(K^3)=\frac{1}{3}$ by the Theorem.

Reference

[1] M.F.Atiyah, V.K.Patodi and I.M.Singer, Spectral asymmetry and Riemannian geometry, Math. Proc. Camb. Phil. Soc. (1975), 77, 1-6.

Department of Mathematics
Osaka City University