goooboooogn
0 2870 19770 10-41

On (sub)-holonomicity of

Some Modules and b-functions

By

YANO, Tamaki*

¢32ﬁ‘% = R0TID, E—Modw& a sectron W |2 34(T,

Tl= 808, 8% (xe ¢) EH L, THETRUAL

2 R % 8[“&,5%1‘400&1; Wﬁ&'&fﬁ) 13 \‘V\J‘ec_"',‘ue
T, 40147,

=7r>T 3. ) FU e b3 AR 1Y
r
Bu holonemic BT & B2ETFH, TQ ‘81@4& <

TU/(s-ayry = B) Bzt @mrw3, B (17,20, 2] 24
rEAV\.CQA L“Fumc‘h'oh fz ™2 %5@{1"1"’4{"3

~
~—

o BHETEHI R,

THADIT T =484, 2 ywno>3< t0m RE T w2

YANO, Tamaki, On the Theory of b-functions, to appear

in Publ. of RIMS, Kyoto Univ.
YANO, Tamaki, On the Theory of b-functions II, in preparation

Reserch Institute for Mathematical Sciences, Kyoto Univ.

*
(Faculty of Scienceg Kyoto Univ.)

Kyoto, 606, Japan.



11

Chapter I Genelarities

In this chapter, we study the basic features of general
%[t,s]—Modules and b-functions assoclated with them,
which are indispensable to later chapters. The author

develop the general theory of such b-functions and Modules

in [32].

%" . ,% [t,s] - Modules and b-functions.

Let €[t,s] be the associative algebra over € with

generators s and t and defining relation

(1)

]
ct

ts - st

Set %[t,s] ,%@C[t,s].
€

A %- Module WM is called a % [s] - Module (restectively

% [t,s] - Module), if N O s (respectively WxDswr, M>&M)

holds. In this chapter, all Modules are £[t,s] - Modules
unless otherwise stated. Since tYs = (s +v)tY in view of
(1), Ker t¥, Coker t¥ and Im t* are % [t,s]-Modules

a
along withLTéiven Qlt,s]-Module,
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Definition 1.1 Let Z be a .8 [s]-Module. If s € 8\,\;5(,’5)

has the non-zero minimal polynomial, we denote it by d-’C(s)’
" . . * :
and say dz(s) exists." "b-functions" for a J [t,s]-Module T
are defined b b . (s)= T
Y ﬂ)u( ) dR/t”T(.(S); b=1,2. |

Usually, bfb.is abbfibiated as bi‘( . As 1s easily seen, b“'U
‘exist if and only if bTL éxists.

It should be remarked that if Zis a holonomic X lt,s]-
Module d_ (s) exists, since &OLQCZ)l(xe X) is finite
dimensional and £, {(%) is coherent [I13].

Standard example of %[t,s] - Modulé is constructed as
follows. . Let f be a holomorphic function on uCx, let Z be a
coherent %—Module and let u be its section over U. We

denote the annihilator of u by &/ , that is; «§ ={ae& |qu=0}.

Define the ideal g(s) C %[s] by the condition that

P(s,x,D) € 3(5) if and only if

m - S~ .
£™p(s,x,D +——§.—gr’ad £y € tls]e ) , for some m

We denote by T{ the Module :8[53/3'(9 and by f°u the
class (1 mod %(s) y. YU = %[s]fsu is ag[t,s]—Module

with actions of t and s c&'\vem b/ ,

t: P(s) +—> P(s+l)f , s: P(s) m> P(s)s,

[v8)



The map &t __is_injective in ﬂ . In fact, if P(s+1)f € 8(3)

then

me(s+1,x,D+?.- grad f)f = ZQJSj

for some m and Qj etQ . The left-hand side equals to
£™1p (s41,x,0+ 2 grad £),

‘and the right-hand side can be rewritten ‘in the form

2Rj (s+1)9

for some Rj € to . Therefore,

fm+ 1 s

P(s,x,D+F grad f£) = ZRJ.S,j s

which implies P(s) € 3(5).

The % - Module S} £5u 1is coherent, and if u is a'

, . s
holonomic section, %f‘ u 1is subholonomic (Se, E}zj)

Definition 1.2 With a non-zero polynomial p(s), we
S ——— R 3

associate a number‘ w(p)< NO in the following manner

(w(p) is called the width of p.) ; !

13



then

i) If p(s)é c¥ w(p) = 0,

ii) If p(s) = f’fu(s+<+j_)a.‘.’ X €€, &&#0 then w(p) = k+l,
| '\ .4
iii) If p(s) has the form

p(s) = i1§‘pj(s), where each pj(s) is of the form

in 11), p;(s) = T (s+x+0)F , and oL # &

mod Z (j#j'); then w(p) = max w(p.).
H j J |
‘ |

Theorem 1.3 Iif d;t(s) exists, then tw(Qi);t = 0. Furthermore

if we assume that t is injective or surjective, then ;Z = 0.

Proof) we have

0=a.(s)Z O d.(s)t¥z

z z Z >
and by virtue of (1),
d - dr) o

0 = " z)dzgs)ﬂf = qz(s+w(qz))tw( 1};{.
It follows from the definition of w(dz) that

g.c.d.(dz(s),d£s+w(dz)) = 1.

Hence the aésertion follows. When t is injecti ve or
surjective, 1t 1s obvious that 2= 0. Q.E.D.
A coherent & -Module Z is called holonomic (resp.

sub-holonomic) if ﬁxk:(11&}= 0 for i<n (resp. i<n-1).



This condition is equivalent to codim S\é(Z)Z n (resp.

codim SVS(.Z;); n-1). Z is called purely subholonemic

if 5,&3 (Z,%)= 0 for i # n-1. It is known that for any
coherent % -Module , 8,&2 (2, %) (resp. E’,,a;"(z‘,z-,)) is holonomic
(resp. sub-holonomic) and &dé(.f,b):o,bn. Let W be an

v
irreducible component of SS(Z2). Then the multiplicity of Z

v
at a generic point X of an irreducible component of 3S(Z)
can be defined (which is denoted by m_ ()), and has the

xo ]
additivity, that is, if |

0 <« ZI é‘zle‘z;éo,

is an exact sequence of coherent 8 -Modules, m. (;Zfl) =
o

m, (2,) +m, (22,).
xo \ xo 3
Corollary 1.4 Let T{ be a sub-holonomic & [t,s]-Module
such that t:J({—J{ 4is injective. Then, TU is
purely sub-holonomic. '
Proof) Consider the exact segquence
) t
0 « TU/tTL < TU < TU<0.
Set Z,= 54;:‘(71,8). ‘Then L 1s holonomic and the long

N :
exact sequence of &k gives ‘us the surjection L>ZL~>0

Therefore Z= 0 by virtue of Theorem 1.3. Q.E.D.

Proposition 1.5 Upon the conditions in Corollary 1.4, 6’-& exists.
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Proof) Consider an irreducible component W of SS(Jt).
Since t is injective, the multiplicity of TU/tT at
v
a generic point of W vanishes. Therefore codim SS(TM/tN)=n
which implies that TU/tVU is holonomic. Thus 4ry exists

(gnd S0 doafhiu, by the argument after Definition 1.1;>.Q.E.D.

The conditions in Corrollary 1.4 are satified for

Tl = Hisifu, 1if one of the following two conditions
holds.

i) f is arbitrary holomorphic function, u = 1.
ii) f is quasi-homogeneous, Eéu 1s holononic.

In the present paper, we restrict ouréelves to case 1).
We investigate case ii) in [32], where the detailed structure
of by ,D(S) and the relation between T[d and 9 fu (aeC)
are also discussed. The existence of b, (s) for T( =
Ss[s]fsu with generzl f and %beeing holonomic can
be derived from that of case ii), following the

tecnique in of [{41.(see [321 8. ).

l‘}\T* 13 314 %3’?}%’7/\‘1) £>t a7 YWk e @367 D5 %,
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A. General structure of ,8 [t,s]-Modules

In g] we study the structure of bT(,D(S) and define
reduced b-functions. The relation between reduced b-function
of T, and that of a sub-Module TR, 1s studied in 2.

The key theorem is the following.

Theorem 1.1 (Theorem (.3 in [Y])

Let Z be a Z; [t,s]-Module such that dz(s) exist.

w(dy) ..
Then t(z)l=0.

Here, w(d) 1s the width of d_ . We recall its meaning

and add some more definitiéns.

Definition 1.2 For a non-zero polynomial p(s), we associate

a number w(p), called the width of p, and polynomials

~N v
p(s) and p(s) in the following manner.

1) p(s)e ¢¥; w(p) = 0, P(s) = p(s) = 1
13 .
T\"(s+o(+i)e”, €€, £6= 0; w(p) = k+l,

11)  p(s) = 1
Bls) = (s+a)fe, Bls) = (s+ar) .
¥ ,
1ii) p(s) = E‘pj_(s), where each pJ.(s) is of the form

in 11), py(s) = W'(s+d;+i)£<t” » and oLy ¢ o/
mod Z (J#J'); w(p)= max w(p;), B(s) =Trio‘3(s>,

v !
P(s) = A} py(s).
&
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. Structure of (s).
31 b
We first note that '(Tn. (8) is of the significant
structure. Given a rational function p(vs), we use the notation

V=i
[p(S)]v = :\_Lp(s‘*i) L>o, [p(s)]o = 1.

Theorem 1.2 i) There are a rational function ?Tl(s),

polynomials E/n(s) and CTL(S)’ unique up to a constant

multiple, and Voe‘NO’ such that for uzUO,
b p(s) = (o (s)T cp (s+W) (2)
= (B (] | (3)
b ()0 (s%1) = ¢ ()8 (5). (1)

11)  If t  M->T is injective, ’b‘n(s) is also a
(s)

pclynomialland.for Vsuy, there are polynomials c

G, v

and c‘w W(s) such that
LA W

b?’-l;l’(S) = [BTI(S)]\JCTI,\)(S+U)
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by s) = [P () TpeqplsHy)

et (8B ()],

/
onﬁﬂsflcnyﬂs), c%up(s) CTLDKS) for ps<y.

A — v —-'
by (5 \ b (5 bn(s)l bl (8). (5)

Moreover, 1t is possible to take L6 = w(bfl) - 1, and

the following relations hold.

cqu(® | B (7)) S (=1, (6)
b | Eq)1), s B =07 40 (7)
.W(cn) < VY- (8)
Corollary 1.4 As easily seen, -Bﬂ(s) and By () cén be

so determii ~4 that

T).r‘.(s) = br(,v_'_l(s)/bn'\)(s"'l)’

B (3= By (59 /o (5= D2V

Q;Tt(s) is called the reduced b-function of Y{. The

" special case of the part of this thedrem is substantially

due to M.Sato [2].
o TEIT B8h T3

10
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Here after R, R, R', R), and C denote the set of the
roots of equations bYI (s) = 0, _gn(s) = 0, F'n (s) = 0

bhu (s) = 0 and CR(S) = (0 respectively, when t is injective.
4

Proposition 1.5 ~ RDR, R', C; RN(R+1) D C

® R _ k=1 k-t _
Rtk = U(R+i) = U(R+i)uc, R, = U(R-1) = U(R:) UC.
L= =i =0 w0

Proof 1is straightforward.

We end this section by adding the following remarks when

t < W(TL) is not necessarily injective.

WA

Definition 1..6 We define the ,%[t,s]-Module’ T by
v v ) Anane
T /U Ker t° . (Hence t 1is injective in n .)

vz

c(s) —
b

We can prove bn(s) = groiybr(s), where €(s) = cals)/cy(s)

is a polynomial, and nﬁ‘n(s) =T3'~ﬁ~(s). The proof is omitted.

Proposition 1.7 Let 0~ X 1 — 7'(./—> o

‘ ' /
be an exact sequence of %[t,s]—Modules, let t € &\Js( TU)
be injective, and let dZ(S) exist. Then ’nj;ﬁ,

For, since T[-»YL’ gnd t ITL' is injective, uUkev(U;SC,x

On the other hand, tw(dZ)Zf 0 by Theorem 1.!. Therefore;

= Ker £ | Uker ¥ and WS

J

11



§:)_, b-functions for a sub-Module

In terms of b-m(s), we can estimate the b-function of

a submodule of T{ .

Theorem 1. § Let T, be %[t,s]—Module and let ﬁ'l be its
submodule. Further assume 1 te twmd (Y7)) is injective,
2% 4a T /TG (s) exists and 3° b, (s) or bnl(s) exists.
Then, deg -ETL\ = deg ‘b-,n (= d) and there are polynomials

c¢(s) andc'(s), unique up to a constant multiple, such that
3 :

c(s) , c'(s) ldnl/'n,_g(s), (15)

CTE‘ (s)e'(s) = cnz (s)e(s), (16)

c'(s)

(81, D'y (3) = T e,

Corollary 1..:‘2

bnz(s)| (o ()3 405 bnl(s)[ (o gy (Vo)) vo+i’(l8)

-~

by, (3) | [b e, (Y B () | Top, (s=V0) Ty 41 (19
o gy, () | (0 e (97T 4> © e () | Toqp (=00 v, 41420)

| deg Cr. - deg crc2l < vod, (21)

1

where VO_= w(dul/n2), y' = min ( W(b‘ml)’ w(bn:2)).

12
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Procf of Theorem 1. 7) It follows from Thm.l.{ and
condition 2 that T[‘)'tw712‘. Consider the following

diagram for V2V,
_tVo)"(l

2
T D, > 4N,
' N .ltu-l)o nzv

This immediately reads

1) bz,v_vo(s) \bl,v(s) - (22)
by oy, (5+V0) | oy () | (23)
i1) bz,v(S) Ibl’v(—s)d(sni), (24)
bl,U(S) ]d(s)bz’v(s). ' ’ (25)

Here, we have used the notations,bi’b(s) = bﬂ;,v(s)’ c;(s) = cq.(s),

d(s) = d (s). (22) and (23) tell us that the existence of
e, /ey _

bl and that of b2

V= V,+1, we have (\§).

are equivalent. In particular, setting

i) gives also,

(V - Y, )deg b, + deg c, < deg b, + deg cl,‘

2 1

(V- poldeg b, + deg c; g deg b, + deg c,,

13
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5-6
and letting V tend to infinity, we have deg by = deg b,.

This implies (21).

_ - d _
Because of (22) and (23), we can assume, bi(s) =_ﬂ(s+n.(l)),

. . =1 J
and ngl)Sngii for n§i>ez. Setting V ®0 in formula

J ;
(22), we have s+n§.2)‘[‘51(s)], hence _niz)a ngl). Similarly

by (23), nil)*'VDB ﬂ:(LZ}Therefore ry v(s) = [S+n§1)]v/[S+n§2>]V_Vo

is a polynomial. Then the relation

d d
[~T-_Tl(s+na('2))]v—v,, c,(s+v-Vp) \ r‘l,\,(s)[ m (s+n§l))]vcl(s+v) ,

i }=2

(2)
2

for Y 0 yields n > ngl), and similarly, ng_l) +\)O)né2).

Proceeding in this way,we have
a(® 3 oD

r’d

3 3 j=1,..,4d. (26)

Sgt c(s) = -%[S+n§1)]n(2)—n (1), Then clearly c(s) is a poly-
. . ¢= J J
nomial and the first of (17) holds. Uniqueness of c(s) 1is

obvious. We apply (17) to (25) and have, after cancellation,
c(s) cq(s+V) l d(S)CZ(S+V)c(s+v),

taking V> 0 , c(s) [d(s).
State ments about c'(s) can be proved analogously, and
equation (17) applied to (2) and (3) gives (16). From

equation (17), we have

e(s)[B,()]y = [5)(s)yels+V). (27)
‘ (With v = v + 1)
The definition of c(s), together with (26).and (27ﬂgives

14
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gl

(19). Analogously, (18), (26) and (27) (withU=p+ ") prove (20)

Q.E.D.
. (28)
Remark 1 b ﬂz(s)] (o, ()3, 4
holds even when t 1s not injective.
2. (27), (16) and (2) give
c(s)bg)v(s) = bl,D(S)C'(S+D>' | (29)

3. Let h and k be the minimum and the maximum of the indices

which satisfy n§1)< n§2) respectively. Then by (15)
n£2) - nél)g Vo- It should be noted that this inequality

improves (26).

Treorem | .10 Let ¥' and X be complex analytic
and let T: X' =X Dbe projective holomorphic mabp.
For an f(x) € 0., we set f' = f:xr. We assume

- et o)) 2 x - £70). Then, Yr = D,(s1f° isa

, ,S
s .o-Module of "t = j n . ' = égx,[s]f , and

LA X(S) [bf',-,t_l(X)(S)]VO""l, [bf',I_l(X)(S)]VO"'W(bf,)' (3¢

-9

Ezre vo = w(d rw/n_k

S, TEBD 1T FEBR TS,

15



B. Structure of 25[5](fsu)

In the following sections, we investigate the structure
of special ,g)[t,s]—Module T = 2;[3](fsu). It is to be
proved that if u 1is a holonomic section, lgfsu is
subholonomic and ,grfiu is holonomic. Thebcharacterization
of reduced b-function \s also given.

In the segquel, ‘Tt always denote a 55 [t,s]-Module
Ej[s](fsu) which is defined in § ' [Y]. Recall that the
operation t: P(s)(fsu) —> P(s+1)f(fsu) is injective in T(

We denote Dby &Q the annihilator of u. Basic concept

and notations are same with S-X-K and [ 3 ]. Especlally, a

coherent ,}9 -Module is called a System.

%3. Preliminary results on Systems

We define some general concepts and collect propositions

which we shall need.

Definition |- {1\ For a system ., we define

hol(Z) = i dim X - codim svs<:£) , Z#0,

- 0o 9'x=0'

Note that 84-81(1,%) 0 for i< dim X - hol(Z).



2b

Definition |.12 1. Let ®:Y—=>X be a holomorphic

mar and let > be a system on X. We define the induced
Medule of = ¥ on Y by

Ko _ L el
-3, 2

r>X &,

2. Le izfl and ng be systems on X1 and X2 , respectively.

The product Module of :il and ;f,g on Xlx X2 is defined by:

ot

VAN
L9, - jjxlx X, \L:)D
DXL

0 &
1 X2

R
(Z, 73‘“2)'

~

S

:541 and :ng be systems on X. The product Module

of them con X 1is defined to be

3. Le

t

(L

~ A
B L, = AZ v,

where A : X—> Xx X 1is a diagonal embedding.

For the Definition (.2, 1. and 2. and the following

e R
Theorem, we refer the reader 'S-K-K and M.Kashiwara [ 3 1,[ 1.

Theorem |.13 1. Assume that for  VC P*¥Y, the map

induced from the canonical projection is proper.
c-1, , -1
f (M)A (ss(L)) — V.

Then, %éj@ is a system on Y and the following isomorphism hold$§

—

17



1)
-1

¢ R Momg (2,%00d1n X1 25 R Memg (¢*2, % )dim ¥1.
X

‘Y

> e ~ —~ g
2. Z19 Z, is always a system and (xl,z2) =% ~ 5

is an exact functor.

Vv v
3. If ss(:’ﬁl) NSS(Z,) < X, 2 18 Z, 1s a system.
Statement 3 1s derived from 1 and 2 easily.

Proposition 1.14 Upon the conditions in Theorem 1.13 s

1. hol (.\r*:&) =< hol ()
2. hol (Z,§ Z,) = hol (Z)) + hol (Z,),
3. hol (,Zlm z 2)& hol (Zl) + hol (12).

Since this is an easy Corrollary of Theorem k- 13 ,

we omlit the proof.

We note that Pr-of.ﬁBer'nstein considered above theorems
under a little different situation in  of [4]. The

notation B 1is barrowed from it.

4. Holonomicity and subholonomicity of some Modules

In this section, we study the structure of ,<S [s]f%u and

Coat
b f 'u when S’u is holonomic.

18§



Wt
We define the M:.dules YI* and 3f u for xe¢ € as follows.

Definition \.\S .

Y‘{_( = TU /(s-0)T
We sue the notation
3(%) = { Péf;‘P=Q(I) for some Q(s)¢ J(s)}

Then [{, is isomorphic to b/a({). Let v € I{. Then,
v mod (s=4)fU is denoted by (v), . Especially, (f°u),
is the class 1 mod 3(1).

We define

} = {Pé \‘j l me(x,D+%df‘)é‘) for some m.}
AR

Consider the Module :f//%i and denote 1 mod &d by

fu. Thus S fu = 5/ 3*.

We z21so define

8‘0’ - 3(5)/\9.

The following inclusions hold.

g(o)C 8(0()C ﬁd.

19



Proposition |[.lb Ideals 3‘0), and aé(are

coherent.

Proof. The proof relies on the following theoremof M.Kashi-

wara.
"Let tQ be an ideal of ,% with filtration:

- (h)
\Q = \m/w,om, % . \,D mC\;Q —_— In order to be coherent

for ‘J_ over 55 , it is necessary and sufficient that

each t:in is coherent over (9’."

From this, the coherency of }(0) and &a follows.

Q.E.D.

Thus we have three systems with canonical surjections.
S 2.8
Deu - My — o, 'Y\[d——agfu—-eo.

We study (sub-)holonomicity of these Modules in the

following.

2N
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Theorem | V77 = & v

holonomic.

Prcof. Since

in. [ 5§ Jsays that -

stratification X =

Lerma |-13

Proof.

) -1
ou-side f ~(0) by
stratification,
£77(0)

in

ined

ot
3y}

Cons

there exists

[

-

£ & £(0),

some X,
7

J

and
such that
1im E(t)

£=0
x(t)

e - -

and

is

EBfSE Qﬁu

It is sufficient
3. of Theorem |-1%.

if necessary,

there 1z an analytic path

is subholonomic. when igu is

Sﬁu.is holonomic, M.Kashiwara's theorem

v
SS(EBu)vCl\JT§ X for some Whitney

k)Xj. We first prove

“L0).

is subholonomic'outside b

v ‘S v A
to show  SS(Hf7) N SS(HJu) X

We refine the

such that each Xj is

or disjoint to it. Assume that

(xO,Eo) which has the following properties:

x{(t) in
x(0) = x, , (x(£), §(t)) € w for
= EO' Since the tangeht of the
(kl(t),..,in(t)), we have

- a% F(x(t))

r = the definition of W. Therefore, the patﬁ x = x(t)

1
ts included in £ (0), amd so is X:

o g.e.d.

Owing to the canonical surjection and injection

Hetw fu o 8(1‘S@u)——>%fsu — o,

-1 We use the

(0).

-5 . - . .
jé f7u is subholonomic outside f

21



31
argument in of [3]. Take the subholonomic part of
,%fsu and denote 1t by z . Lemma‘ |-1§ shows that the
support of the Module 4 fsu/z -5 ?s: is contained in
f—l(o). Therefore, considering the coherent O—Module
Gf;g: , we have ap natural numbef k such that »
£X- £S5y 6;73 . Since ,%fk-fsu and @fsu areviso-mror'phic,
the subholonomicity of ‘8fsu is derived from that of
B ekortu . Q.E.D.

We note thatthe holonomicity of 5{)1‘%/,8 f‘k-f‘su is
an easy consequence of the above theorem and injectivity of
t, considering multiplicity of each Module in the

following exact sequence along irreducible components of

ss( B e3u).

0o — gfsu —ti ,gfsu - g'fsu/,gfk-fsu;—) 0.

22



‘When f is quasi-homogeneous, JU 25/ (0)  ana
herice subholonomic. Thus bfl(s) exists, by Proposition |.§
in [Y] . In the general cases, we use the
tecnique of adding a parameter. Define f'(t,x) =

tf(x). Then YU = %cxx/ %ﬁf,ﬂ and hence there exists

b'{s) and Q(t,x,Dt,Dx) such that
Q(t,x,Dt,Dx)f's+lu= b'(s)f'Su.

Let Qo(tDt,x,Dx)Dt = Z: aj(x,Dx)(tDt)J-D be the homogeneous

t
4
part of degree -1 in t of Q. Then, defining P by

P(S,X,D) = QO<S,X:D)9

we have
s+l _ b'(s) _.s
P(s,x,D)f us — 3 f7u

Thus b-function always exists. We denote by R the set of

roots of the equation b(s)=0.

x
Theorem .20 2} f u is holonomic, when ‘81118 holonomic.

Proof) As in the proof of Theorem \|.l7, one can see that
15 fk(fdu) is holonomic for sufficiently large k. Then

the following dilagram proves the holonomicity of §5f”u.

0 — ks oy A5 5 Iy @ RSy > o

! ! !
0 — ,8 fk-tdu s 8 fa(u — ,8 f“u/,@ fk-fdu — 0.
} o \/
b 0 0
23
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—y

Theorem |. 2) Y‘(’L’\' 1‘{(\,& if and only if o(¢ R + IN.

Proof. Let P ¢ 84, ord P = m. Then, there is @Q(s)¢€ g)[s] such that
Pf™ = (s+m-4)Q(s,x,D) mod 3(3). (4w

To prove (40) , we prepare

Lemma ‘\-22 For any R.eé3 ord R = m, the following equality

T
holds for some S(s,x,D)Q 2;[8] with ord S<m.
s Y m s .
{R(x,D+F af) - R(x,D+f ar)r £ = (s—Y)S(s,x,D+F ar).

Proof. The proof is carried out by induction on m. When
m=0, the result is trivial. Let m>1l. For the simplicity
of the notation, we explain the case of one variable.. General
case is similar.

By the hypothesis of induction,

f'

m-1
F)o -

J(D+s @£ LY ™ = (s-¥da o (s,x,DesE ).
Then,
L R R R
1 m-1

{(D+s§')m_? - (D+X§')m’1} (D+sf,-7)fm + (s-%)(D+ Y%’)m' £1F

(s—K)Qm_Q(S,X,Dﬂ‘S'f:' ) (f(D+s%' Y+mf') + (s-Y)Qr;l_l(s,x,ms? W

24



Q! l(s,x,D) = (fD+(¥—s+1)f')(fD+(¥—s+2)f')..(fD+(X—s+m-l)f').
This yields the case m. , g.e.d.

We apply this lemma for R = P, §= 4A-m. Then, we have

n M o
P(x,D+% afr) -2 P(x,D+5 af) = (s4m-w)Q(s,x,Dg df),
whizh proves (42).
Lemma |.23 tmT(/\(s+m—X)YT ‘el (s+m—k)tm7T

Beczuse of the condition on ¢, (s+m-+¥) 1is not a factor of

X
b (s). Hence we have an isomorphism

Y(,“ m

s+m- ¢

T~ TL/E7 1. i (+])

Now take an element v = (s+m=a)w < tTTU ;"\ (s+m=-2)TT .
1f we consider w mod t"Yl in the left-hand side of (4l1),
it turns out to be 0 in the right-hand side. Hence wé-tmTI R

that is Vv ¢ (s+m—x)tmTI . ‘ g.e.d.

Owing to this lemma and (4(), we obtain

prm = (s+m-A)Q'(s,x,D)fm mod a(s),

Note that R +IN = (R+wW)UcC. 5
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and hence

P = (s-4)Q'(s-m,x,D) mod a(s),

which proves the "if part".

("only if" part) Suppose K € R+ iN. Then, *p>0, such

that b . (x-V) = 0. It follows trom the definition of b (s)
1814 B n,v
that there exists P (s) & )& [s], such that

' v . A

P (s+p)f = by (s) e 4 a(S)A
A <

Therfore PU(‘O € jd' If Tliﬁﬁgf were valid, we should have

PL(x) = 0(s) + (s-0R(s), 70(s) ¢ J(s).

Then, 1f we set R)(s) = (P,(s) - P,(())/(s=1) + R(s),

R,(s+n Y = by w (8 (s+v=) . vz A 5\33'
This contradicts the minimality of b.r(’v(s)". Q.E.D.
There 1s a canonoical map
t: N P vvi.x | | ,({ﬁ¢)%?}

) 2 _‘f“' ({\;A‘L)\ .
As a map between & [s]-Modules, this is Q(s)1 > Q(s+1)r-1.
Since (3(s+1) + FIs1G-0)E C () + Flsl(s-2),

o LA e
this map is well-defined. There 1is also a map % f +a—9 33fLA)

26
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ol
defined by fxti_9 f.fu. These maps are compatible with

the surjection @%).

Theorem |. 2+ 1) Tlx+1 ~ T4 if and only if o~ & R .

ii) When X &R, Gl 3R

le

Proof) We first prove "if part" of i) and ii). If $~Rf,
we can define the map f :72i-9714H, by 1 h»b(%)_lP(d)I. ;
As a map between {[s]-Modules, P is R(s)1e () TR(s-1)P(x)1.

Then this is a well-defined homomorphism, since if
R(s) € 3(5) + B Is1(s=%), R(s-1)P@fU= 0 mod (s=x-1)%[s] £%
Similarly,

0(s) £P() €= 0(s)£{P(s-1) + (P()-P(s-1)} £

L

Q(s)b(s-1)f5u

1]

b(#)Q(s)f°W  mod (s-4-1)&[s]fS.

Therefore, [2Q(s)1)= £(Q(s+1)£-1) = b(x) 1Q(s)FP(T= QAW 1.
Analogously, 2 f(R(s)i) = R(s)i. Thus, f 1is the inverse
of T . The proof of ii) can be given in the same manner.

(only if"part) Tld+‘::’rtx implies
(5(“” + @ [s1(s-20)f = j(s) + 30s1(s=-x).
Jence, if R(s)fsu= (s-x)Q(s)f%, then there is Q'(s) such

shat R(s)fu= (s=)Q'(s)f-+u. Therefore, if ¥ & R were
valid, the relation

27
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P(s)f-fu= (s-)28 ey (s- 907 (s) 4%

o
~

‘ ‘
shows Q'(s)f:-fu s_i)fsq.

This contradicts the minimality
of b(s).

Q.E.D.

Corollary }. 2§

i) When = & R + N, the following
commutative diagram exists for any ké(NO.

When %« &R + Z, it holds for k< g.

. . o~ K xX=k
ii) %ipT(¥_k 1&3 SIPow
is holonomic for ¥.cC.

Proof)

)
i) iéTairect consequence of Theorems | .24 and |.2\.
11) follows from ),

28
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§5. Reduced b-functions

We can realize a reduced b-function as a b-function of

some é}[t,s]—Modulesl . The characterization of these Modules

are also given. We are indebted to M.Sato[ 2 ] for basic

ideas in this section.

Definition |.2%

T, = U ke, €,

9233

{

(v e Ui )®n By e T, f

ze

nt -

Proposition .27

. g . v~ # - s )
i) Cog and I are X [t,s]-Modules. If YI is

corerent, 'f(# is also coherent.

Proof) 1) r(# and 'r(# are easily seen to be

C ' ~
Dy [t,s]-Mocdules. To see the coherency of TZ 4 , We use the

operators Pv(s) which 270"y
S

Pv(s+u)f¥ E.bn’”(s) Yot ,8(5)‘

-

Since 2)[3] is a noetherian ring, there is me¢N such that

P (s) + Aj(s)P__ (s) b +A_(s)Po(s) = 0.

29
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for some Au(s)e,gj[s]. Since

P (s)P (s*n) = c(s)Py, (s+n) mod 3(s+n‘;,

multiplylng Pn(s+n) from the right, cancelling c¢(s) and

rewriting s to s-n, we have
Pm+n(s) + Al(s-n)pm+n_1(5) R Am(s-n)P n(s) = 0 mod 3(3),

m~| ) _
Therefore, [ = U [b(s-1)], ¥'1T < % M+Wi
# V=9 v
11) Obviously, [E(s)]»h# - t“)‘(# . Set
Sv(s) = sz# jwis). If E})(s) # [g(s)]b for some V , there
1s k'< k = deg b(s), such that deg b,(s) < Uk' fory»0.
But the following diagram shows Vk £ (+m-1)k'. This is

a contradiction. Thus we proved b’Y =.B
#

o)
¢ /
A, = T e

v
T, '/tbm-‘Y\(# '

-

It follows from the definition of Y{'  that Tt 1Y ,

and‘B(s)Tl# C th# . Set ;(s) = brl#((s)and assume # b(s). Then
or V(S)én# , B(s)(s) € tn# yields [E(S)]mg(s-l)v(s-l)e t‘“ﬂ# .

This relation is equivalent to qics)[b(5+*)]mv(s)é tm+1YZ# )

Since Tl# is finitely generated over Sj[s], we see that

b (s) is a strict divisor of [E(s)] for sufficiently large
n#:m m

m. That is a contradiction. Hence le#(S) = b(s). Q.E.D.

30
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It is not for certain whether 71# is coherent or not
when TI 1s coherent. We have, however, the following

characterization.

Theorem |. 2% Let YZ/ be a Ej[t,s]—Module satisfying,

x.h‘\jf\( )H/D T for some k. Then ch/(s) = b(s)

if and only if
# /
k¢ > T D I,

Proof) (only if'"part) Since b'R/(S) = b(s),

we have relations

Y' > bes-1t Ypsb(s-Db(s-n TN [b(s-h)1,t P

Trerefore,

S NURCICE b M YT CIEE S TS ol (A T AP

hzo

Then the following diagram
M./
wWon, >t'wW >ttT, (46)

shows that d 1.(//tm,-(#(s) : dividas both d'(s)[b(s)]

and [b(s)]md'(s+m) (where we set d'(s) = d ’W?TI# ),e

and hence one of _[E(s)]m for m> 0. But [E(s)]m igTﬁest
' m

possible for the pair T g D TI# . Theﬁ%ore,

4 n’/t“ﬂ#(s) = [-}S(s.)]m. Thus the definition of Y7

proves Wl# D Tz’ .
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(if"part) Consider the following diagram for m> 0.
# / Mo~/
W SN DTN, Dt >tnm,

Then the definition of Y{# . implies [bn/(S)]an'(S“‘m) [b(s) ],
On the other hand, equation (|{f) of Theorem [. § shows
Fn/(s) = (c'(s)/c'(s+1))b(s). From these formulae,

we have ¢' = cn/ = 1, and then bn,(s) =-‘5(s). Q.E.D.

Corollary |.29 Assume that w(b) = 1 in addition to the

4
condition on T in Theorem |.2f. Then,

b TV =D, if and only if n/= Y\(#

Proof) The "if" part is trivial. Consider the diagram
@b) when by =b. d T(.’/t""ﬂ#(s) = [b(s)]m is shown in
the proof of Theorem |.2¥ . Therefore, d'(s) = d n//TZ {s)
‘ - #
and d'(s+m) are divisors of [b(s)]m for large m. Since
w(g) = 1, this is actually possible only when d'(s) = 1,

that 1s, Y= T(# X Q.E.D.
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