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A Realization of Riemannian Symmetric Spaces
N

(

By Toshio OSHIMA¥

§0. Introduction

The purpose of this paper is to construct an imbedding of
every Riemannian symmetric space G/K of non-compact. type into
a compact real analytic manifold X. Here G is a semi-simple
Lie group and K a maximal compact subgroup. Our imbedding has
the following properties:

The action of G on X is analytic and the orbital decom-
position of X is of normal crossing type in the sense of Remark
6 in §2. Moreover, there appears the Martin boundary in X and
the system of invafiant differential equations on the symmetric
space has regular singularity along the Martin boundary in the
sense of Definition 5.1 in [9].

As for realizations of G/K there are several papers [1],
[21, [51, (7], [12], [13], [15] and [4], [10], [11], [24]. 1f
the rank of the symmetric space is higher than one, the Martin
boundary does not appear in the realizations given by (1], [2],
(51, (7], [12], [13], [15] and the orbital decompositions have
more complicated geometrical structures than ours. The reali-
zations given by [4], [10], [11], [14] are essentially the same
ones called Satake-Furstenberg compactifications. They are Only
different in the methods of c¢ostructions. There exists a realiza-
tion among Satake-Furstenberg compactifications where the Martin |

boundary appears. But it is a compactification of G/K as a

* This work was partially supported by Sakkokai Foundation.
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manifold with boundaries and the natural analytic structure
around the boundaries‘is not investigated. 1In [8] we construct
an imbedding X' of G/K to solve S. Helgason's conjecture by
using a result in [9]. But it is not sufficient for further
investigations because there is only a local action of G on‘f'.
This is a motivation to write this paper. The relation between
X' and X is shown‘in PrOposition 11, which says that X' is an

open dense submanifold of .
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§1. Notation and preliminaries concerning semi-—éimple
Lie groups

We will use the standard notation Z, R and € for the ring
of integers, the field of real numbers and the field of complex
numbers, respecfively. The set of non-negative infegera is

’ denoted by N and the set of positive real numbers by tR+. Lie

groups will be denoted by Latin capital letters and their Lie
algebras by corresponding small German letters. If C is a Lie
group and ¢t its Lie é.lgebra, the ad joint representation of ¢C
is denoted by Ad (or Adc) and the adjoint representation of ¢ ny
ad (or ad. ). '

We will now list some standa.rd notation'conceming semi-
simple Lie groups used in this paper and subsequent papers. Let -

G be a connected semi-simple Lie group with finite center 2, g |

the Lie amlgebra of G and < , > the Killing form of g. et 0

be a Cartan involution of 9 and q = k+ P the Cartan decomposi-

tion of q into the eigenspaces of 6. We also denote by 8 the
Cartan involution of G corresponding to the Cartan involution 9
of o - Let @ be a maximal abelian subspace of }>, o* its dual,

n§ the complexification of a*. If A,4 € m¥, let H, € ag

be determined by A (H) <H,,H> for He o and put < ,p> =

<H,, H/‘> . Let }’ be a Cartan subalgebra of q containing a.

Then §{ =o+t where t= Jn k. We denote by 9o the complexi-
fication of ¢ and for any subspace 4 of 0} we denote by 4’0

of ' '
the complex linear subspace]spanned by 4. For any root o of
( e }c), we fix a root vector X corrc_esponding to o .
Introducing compatible orders in the space of real valued linear

forms on o+ Jy-11 and 0L, we denote by P_"_ the set of non-zero



1

positive roots o such that c(ln # 0, by & the set of restrict-

ed roots, by s;+ the set of restricted positive roots and by F =

{ell,._.. ,0(1} ‘the set of restricted positive simple roots. Let

? denote half the sum of the positive restricted roots with
multiplicity, that is, 29 = ( & 4. p o()l For any root o in
2., we denote by ogd the root space in 9 corresponding to o .

—

We put 1’ )—'J\e:‘*‘ﬂd and n~ = @(n*), then m* = g N

—

24 de€ p+CX¢ and n- = 7 ders™ on, where 7~ denotes the set

of negatives of the members in 5_'.+. Let K, A:, N* and N~ denbte
the analytic subgroups of G corresponding to %k, m, nt and n, |
respectively. .Let M denote the centralizer of A in K, M* the
normalizer of A in K and W the factor group M*/M, the (little)
‘Weyl group. The Weyl group W acts as a group of linear trans-
formations of m and also on ¥ by (wa)(H) = 1(w'lH) for
He n, AE€ "7'5 and w € W. For ény element w in W, we fix its
representative m  in M*. We put at = {He a ; d(H) > 0 for

any o in ;:.*}, which is called the positive Weyl chamber. Let

AY = exp a*, A = Uy e yw Ad(m )A" and P = MAN. Then A' is
the totality of regular elements in A, P is & minimal parabolic

subgroup of G and there exist the decompositions

(1.1) G =KATK ’ | (Cartan decomposition),
- (1.2) G = KAN' (Iwasawa decomposition),
(1.3) G = Uw e w Pm P (Bruhat decomposition).

Here?47 is the closure of AY in G and in (1.2) each g € G can be

uniquely written

(1.4) g = k(g) exp H(g)n(g); "k(g) € K, H(g) € v, n(g) € N*.
Let U(tg) denote the universal enveloping algebra of 7@

which is naturaly identified with D(G), the totality of the left
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G-invariant differential operators on G. The number [ which

equals dim o is called the real rank of G and the rank of the

symmetric space G/K. Let D(G/K) denote the algebra of left G-
invariant differential Voperators on G/K and put }D(Gv)K = {D €
U(er )s Ad(k)D = D for any k € K}. Then D(G/K) is a polynomial
ring over € with ! algebraically independent generators and there
exists a natural homomorphism of fD((})K onto D(G/K).

For an element w in W, we define subalgebras n;, u; and

u;ofq by

+ _ _+ _+ + _ _+ 7 -

(1.5) Ny = TN Ad(mw)—n y Ug=T nAd(mw)'n
. - _ -1, + - -1, _+
uw_Ad(mw)u.ws'n nAd(mw)'n.

+

+ _ +
We put N = exp('nw), M

= exp('u.;,) and Uv-v = exp(u;), then they
are closed simply connected subgroups of G and

S S + ot
(1.6) , N -Nw.Uw— UwNw’ Nwr\ Uw-{l}.
The Killing form defines a Euclidian inner product on o * and
d; €% (1

2y <Ay oy /<c(i, 4> on o*. We can naturally identify W

l1,...,1) defines the reflection wdi= A > -

with the reflection group generated by wo(l,... ,wdl. Let w =

Wy W is the minimal expression for we W as a prbduct of

reflections with respect to the roots in ¥, then the length/.
L(w) of w is said to be n. Let ® be the subset of & and w®
be the subgroup of W generatéd by the reflections with respect
to the elements in () . We note here that the number. of the

subsets of % equals ol We put

+ -t <
<®> 5 0N Ldi&@ ‘Rdiv

(1.7)
w(ie)

Then every element w in W can be written in one and only one way

]

{we w; wlc@>t ¢ o*h.

in the form (cf. Proposition 1.1.2.13 in [16])



Let w* denote the unique element in W such that Ad(w*) it = m~.
Then L(w*) z L(w) for any w ¢ W and L(w*) = L(w) means w = w*, -

Let w@ and w*(®) denote the elements in Wy and W(®), respec-

tiirely, such that w¥* = w@ w*(® ). Put P® = \U meP. Then

we W
A ®
P® constitute the parabolic subgroups containing P when @ runs

through the subsets of ¥ . We define subalgebras o, a(@),

'n.:h 'n*(®), m_ and m@(K) of ‘g by

e’ ® .
m®={He ot 3 d(H) = 0 for every o in @},
‘n(@) ={Hea; <H,X> =0 for any X in ag},
+ _ = R 3 - _ +
(1.9) :n@ Biez <ot T Tem Te)
- - 2 - - + .
n@) = I g, T W@ = 8@,
mg = m+ n*@) + n@ + (@),
mg(K) = m®nﬁ.

Let Ag , Al®), Né , N¥(@), Mg, 0 and M®(K)O denote the connected
- analytic subgroups of G corresponding, respectively, to gs
(@), 'né, @), Mg and ‘m®(K). Then Ag N&; is a closed
solvable subgroups of G and we have the direct decomposition
(1.10) : - A = Aq A@®)

and the semi-~direct decomposition

(1.12) L Nt = Né (@), 7_

We put Mg = Mg , &nd Mg(K) = mm@(x)o;. then the group MgAg is
the centraliger of g in G, M®(K) =Kn M® and we have the
decompositions (cf. §1.2.4 in [16]) |
(1.12) M® = M®(K) A (@) N (@) | (Ilwasawa decomposition),
(1.13) Rg = My A® Ne (Langlands decomposition),
(1.14) Py = M®(K)AN+,
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(1.15) G = | N+me (disjoint union),

we W@ ®
(1.16) 6 = U *n P, (disjoint union).

[§)
w e w(@)-l wowe @
The decompositions (1.12}, (1.13) and (1.14) give analytic
~diffeomorphisms of the product manifolds M®(K)xA(®)xN*'(®),
M_xA xN' rOI@(lic)le*I+ onto M®, P® and P®, respectively, and if

® 0 0’
w is in w®,‘the map (u,p) > um p defines an analytic diffeo~
morphism of the product manifold U:xgm onto the submanifold
-+ )
N me® of G. Here we note
=1\ o+ - _ + T )
(1.17) Ad(m ") UL < N® = Ad(mw*(@)) Uw*(@)"l for we W(@).
Hence G is the union of the open submanifold N&P® ‘and submani-

folds v of lower dimensions.



§2. A realization of symmetric spaces in compact
manifolds

In this 'sec.tion we will construct a compact mar;ifold X such
that G acts analytica.lly on G and that the open G-orbits are
isomorphic to symmetric spaces. To investigate all the G-

orbits appeared in 'ff, we prepare the following lemma.

+
- Lemma 1. Put P®(K) = M®(K) A® Ng- Then P®(K) is a closed
subgroup of G and there exist the decompositions '

(2.1) G = Uwe W(@)'l m, wN “(®) A®) P®(K) (disjoint union),

(2.2) ~ G = UWGW WN A(@)P(K)

If we w(@)’l, the map (uw,n.,a,p) —> u_nap defines an analytic
diffeomorphism of the product manifold'U;xN'(®)xA(®)xP®(K) onto
the submanifold U, N (®) A(®) P®(K') in G. And G is a union of
the open dense submanifold N~ A(®) Pg(K) and submanifolds of
lower dimensions, _ | '

Proof. To show ?®(K) is a group we need only verify ma =

am, aN@a‘l

C Né and Ad(m)Né C Né for m ¢ M®(K) and a € A®. But

they clearly follow from (1.9) and the definition of M®(K).

The groups M®(K)v, A® and N@ are closed in K, A and N*, respec-

tively. Therefore P®(K) is closed in G because of the Iwasawa

decomposition (1.2). Next we note that M® NT(®) A(®) M®(K) (cf.

(1.12)). Then (1 5),' (1. 13) and (1.12) imply that in (1.16)
U;me@) =m, (N n oy 1yt m, N~ @) A(@) My (K)A N®

Uw NT(®) A(®) % (K)

for m € W(@) 1 and that ' . .

N®P® = NgN (®)A(®)M (K) A® ®
N A(@) Bg(K).

-8 -
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This proves the rest part of Lemma 1. q.e.d.

Remark 2.  Suppose @ = ¥. Then Wy = W, W@) = {131,
Mg = G, Mg(K) = GNK = K, Ag ={1}, A(®) = A, Ng =1, N*(®) =
Ni, P® = G, P®(K) = K and { 2.1) is reduced to G = N AK
(Iwasawa decompositionj. On the other hand, suppose @ = é .
Then Wg = {1}, w(@®) = w, Mg = M, M®(K) =M, Ag = A, A@®) = {1},
Ng = N, N3 (@) = {1}, P = Pg(K) = MAN* = P and (2.2) equals
6= Upyey BN B

'If C is a Lie group and ¢ is its Lie algebra, we identify
r with the totality of left invariant vector fields on C. Pix

a basis {Y;,... ,Ym} of T. Then any real analytic vector field
Y on‘c can be uniquely expressed as
Y= I;7 cq(pYy

with real analytic functicns ci(p) on C. This is clear because
for any point p in C, {(Yl)p,...,(Ym)p} is a basis of tf&e
tangent space TPC of C at p. Let {Hy,... ,Hp.} be the dual basis
of ¢z with respect to ¥ = {o(l,...,clp_} , that is, di(ﬂj) = 513
For 2 € 57, we fix a basis {X‘;\i; 1<is=m(1)} of (Hl, where m(1)
= dim g and put X. = =0(X, ).

* 4 =33 A

Lemma 3, - Let 'fg be the homogeneous space G/P®(K). Pix
an element g in G and identify N xA(®) with the open dense
submanifold of f@by the map (n,a) —> gnaP@(K) (cf. Lemma 1 ).
For an element Y in 4, let Y|i® be the vector field on i@
corresponding to the l-parameter group which is defihed by the
action exp(tY) on i@ (te®R). Then at any point p= (n,a) in



N xA(®), the vector field is expressed as

¥ _ = —m(2)
(YIX®)p - L 1€ Z+ Li - l c-li(g,n)(x-li)p
’ - —m(2) -21loga
(2-3 ) L@yt Pi=1 %y (g,n)e (X"‘i)P
* L4 e@ c;(g,n)(H;)
by the identification T N ®T A(@) I T (N xA(®)) =~ gnaP (K)X®

"Here the real analytic functions € (g,n) and c. (g,n) are
i -
determined by the equation

-1 L= 5 m(l) .
(203 Ad"(gn)Y = 2, . z* (e, (\g'n)xzi + C_li(s,n)
X,) ¢ £y cy(Bmiy + Mem), Mgm)em.

.

Proof., Assume |t| is sufficiently small. Then the direct

sum decompositions g = W + o + wtem= u+ a(@)+ m®(K) +
ng + 'né' and the relation [m,7 ] ¢ m~ show that we can put

exp(tY) gn = gn exp Ni(t) exp Al(t) exp NI(t) exp Ml(t),
(2.5) exle(t)a = aexpN, (%) exp A, (t)expP (%),

exle(t)eprl(t)aexpNz(t)a = expN3(t) exp A (t),
where Ni(t) € m~ (1i=1,2,3), Nj(t)e¢ n*, A (t) ea, A (t) €

o (®), Ml(t) em and Pa(t) € —m@(K) + Ng + ng. Hence we have

'( 2.6 ) exp(tY) gnaP®(K) = gn exp N;(t) a exp(Al(t) +A2(t)) P®(K).

Put (3N(£)/%)(0) = N} (1=1,2,3), (3Nj(£)/2t)(0) = N} and
(34 4(¢)/2t)(0) = A (j=1,2). Then (2.5) shows that

237 (gn)yY
(2.7)  Ad7Ma)w?
NI+Ad(a)N5 = N;.

NI+A1+NI mod M,

N2 +A2

+
mod (K) + JL® + 7'1.@,
If L € <®>+, we have

aal(a)x, = o~MoO88%
A C Ay

-1loga
= e (x, =X
- 10~

) + e—lloga X



s e~2210ga ,4-1(,)x mod me(K).

-

1
On the other hand, if 2 € ¥ - <®>*, we have

Ad—l(a)xx =e-llogax e nt

i @
Then A2 = 0 and
Nl +Ad (a)NZ = LZ. € z+ Li:l c"'li(g’n)x-zi .
- -m(2) -21loga
+ ca;(g,n)e X
1, re<@t 2i=1 7‘»1 g,n)¢ -3’
Ay +A, = Z“die® ci(g,n)H'i mod 01@. .
Thus we obtain (2.3 ) by (2;6) and (2.7). q.e.d.

Let X be the product manifold GxN"xR and let %= (g,n,t)
be a point in X (g€ G, neN™, t= (tl""’tl)e IR!). Then G acts
on X by the correspondence (g'l,(g,n,t)) —> (g'g,n,t) for g'e G.
Put sgn 2 = (agn t,,...,88n t;) € {-1,0,1}!, ®y ={die + ty £
0} and a(R) = exp(- z‘ti#O H; log |til) € A(®£)’ where sgn s
= 8/|8| for s¢ R- {0} and sgn 0 = 0. We will define an equiva-

lencerelation for points in z. ' .

Definition 4. Two points %= (g,n,t) and &' =(g',n",t')

in f{. are equivalent, which will be denoted by’2~£', if and only
if the following two conditions holad.

(2.8) : sgn £ = sgn R'.

(2.9)  eal)rg (K) = g'n'a(2)Rg (K) in Ty

Then we denote by X the quotient space of f( with the quotient
topology defined by the equivalence relation.

Since the action of G on X is compatible with the equiva-

- 11 -
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lence relafion, G also acts on X. Let % be the natural projec—

tion of X onto i; Put ﬁg = R({g}*N7ﬂRL) for ge G. Then the
map (n,t) —> ((g,n,t)) defines the bijection (cf. Lemma 1 )
| o e
(2.10) 508 t: N xR o Ug.
Theorem 5. - The quotient space X has the following
properties.

i) X is a simply connected, compact, real analytic manifold

without boundary.

~ ~

i) X=VU U = U

wew mw

~

get U

g
~ Here ﬁg is an open submanifold of X with the topology such that
the map (2.10) is a real analytic diffeomorphism. Moreover
i-—ﬁgbis a union of a finite number of submanifolds of X whose
codimensions in X are not lower than 2.
iii) The action of G on ¥ is real analytic and for a point X in
ﬁ, the G-orbit of n(%) is isomorphic to the homogeneous space
G/P®2(K) and for points £ and %' in X, the G-orbits of mn (%) and
n(%') are coincide if -and only if sgn £ = sgn ®'. Hence the
orbital decomposition of X with respect to the action of G is
of the form’

= U®Ci
where #@ 1is the number of the elements of ® and 2*® (6/2g(K))

2%® (6/Rg(K)) (disjoint wunion),

is the disjoint union of 2*® copies of G/P®(K).

i) Identify the open G-orbit wn({XeX; sgn £ = (1,...,1)}) with
the Riemannian symmetric space G/K and the orbit of the lowest
dimension ‘W({XE'i; sgn £ = 0}) with its Martin boundary G/P.

Let m(i) be thettoﬁality of G-invariant differential operatorscnli

whose coefficients are real analytic functions. Then the
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natural réstrictioh
| D(X) =% D(G/K)
is bijective. For any homomorphism X of D(i) to € as élgebras,
the system of differential equations on X
v qu% .
has regular singularity along the set of walls Xi=7£({(g,n,t)e

: (D- x(D))u =0 for De D(X)

ﬁ; ti==0}) with the edge G/P in the sense of Definition 5.1 in
(9]

Remark 6. Since '
(2.11) dim X - dim G/Ry(K) = 1 - +@,
the open G-orbits in X are isomorphic to G/K and the number of
them equals 2' and that of all the G-orbits equals 3!. The
decomposition of X into G-orbits is of "normal crossing type"
in the following sense:

For every point in i, there exists a locallcoordinate
system (xl,...,xk,yl,...;%') on a neighbourhood of the'point
such that if sgn ¥4 = sen y3 for j=1,...,L, two points (xl,,..,
xk,yl,,..,yi) and (xi,...,xﬁ,yi,...,yi) belong to the same G-
orbit.
For example, put G = SL(2,R), N~ = {{i ~1] {1 X€ R}, A =

l— —
{ i /J% JE} jt€R .} and z = x + J-1t. Then we can easily show

that X is isomorphic to the l-dimensional complex projective

space Pg = €. U{w} with the action of G

1 a b) c+dz 1
weg 3 ([, o)) = H e
and that |

wE g »-1/2

-13 -
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For the first step to prove Theorem 5, we prepare
Lemma 7.  The map
(2.12) gove 9t $RNE AT, — IINT AT, )
4 4 g8 & & g8 8 &

is an analytic diffeomorphism between the open subsets of N-xrRQ.

Proof. Let Y be an element of 03 . By the ’identification

-1
b
“ ot - - & ~
G/K & N xA e N xIRi C— N MRQ = Ug’
W
w v -dl loga '-dl'loga
gnak «<— (n,a) (n,e 900048 ) = (n,t)

the vector field YlN'le& corresponding to the l-parameter group
defined by the action exp(sY) on G/K for se¢ R is expressed as

S - m(1) 2A _
YINTxR, = 2ot Lioq (cli(g,n)t +c_1i(g,n)) X_li
(2.13) 2
2 2A(H,)  2A(H)p)
Here we denote by t°" the function tl tg_ and the

functions ¢ . (g,n) and ci(g,n) are those which are determined
i

+

by (2.4 ) (aée, Lemma 3 ).. Since ,Z(Hi) are non-negative

integers for 2 e ', the vector field YlN‘le! is analytically
e

extended to a vector field YINxR! on Nxm!.
For every point % = (g,A,f) in %X, put By = {(ti,... ,tQ)e r} :

sgn t; = sgn 'Ei for 1<i <)} and define the identification
e

/By & N*A@y) o4 NxBy s N® o~ T,
v v . -9 loga . =% loga
gm‘a.P@ﬁ « (n,a) »(n,sgntle yee9880 ) @ )

since (2.13) shows (YIN*RY) € T_(N"xBg) for qeNxBy, we can

q
restrict the vector field YlN"xIR! on N"xBﬁ. Then, using the

above identification and comparing ( 2.3 ) and (2.13), we see
that its restriction on N"x'Bﬁ is the same one defined by (2.3).

-1l4 -
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Hence by Definition 4 we have the following claim: _
Suppose %= (g,A,t) in X and Y in o satisfying that gha(R) e
exp(sY)gN “A@, )P® (K) for 0<8g=<1l. Then there exists an open
subset V of N x!l’t’Z containing (A,%) such that (Jo(exp Y)g S"
defines an analytic diffeomorphism of V to an open subset of
nxrL. n
For any %= (g,A,t), there exist Yypeeo Yy € n o+ az(@i) such
that fa(f) = ‘exp Y expY, ;.-+expY;. Put y(s) = exp{(s-[s]) |
Ad(g)Y[SJ+1} exp(Ad(g)Y[s]) exp(Ad(g)Yl) for 0<s <k, where
[s] is the largest integer satisfying [s] £ s. Then y(s)gN‘A(@i)

P®‘(K) = gN.A@f&)P@.(K) and y(k)g = gﬁa(ﬁ).‘ Applying the above

b’y b4 . :

. -1

claim to y(s) in place of exp(sY), we see that Sogﬁa(i)oso ,

. -1 -1 -1
which equals (y (g fy(k-1))" + *Fy(2)e* Fy (116 y(1)e T
defines an analytic diffeomorphism of a suitable neighbourhood
of (A,t) to a neighbourhood of (1,sgn %). |

~

Let q be an arbitraly point in ffgn ﬁg.. Then there exist

%=(g,A,t) and %' = (g',A',$') satisfying n(R) = =(%') = §.

We denote by P®“(K)0 the connected component of P®2(K) containing
1. Then P (K) = P® (K) oM. Since gna(ﬁ) (K) = g'ﬁ'a("ﬁ')P@ﬁ(K)
we have (gna(ﬂ)) g'ﬁ'a(ﬁ ) = pA with Ae ¥ and ﬁeP®i(K)o.

; +
Since we can choose Yi,... WY, in 'm.®(K) + 0Z® + 'n® so that § =
exp Yl'(, exp Yl'c' -1°°" exp Y]'_, we see by the same argument as in the
gna(x) (f that 5ogna(x)p sPgna.(x
diffeomorphism between suitable neighbourhoods of (1, sgn":’i).'

case of ¥~ ) defines an analytic

A=l
Moreover, since Sogna(x)pm Sogna(i)“((n t)) = (A nfi,t),
?;]'-ﬁ'a(i' ) ‘fgna(i)ﬁ is an analytic diffeomorphism of N'leR.

Thus we have proved that ‘f;lo Zhn(R)' ‘f;]"o ?g'ﬁ'a(i')’

- 15 -
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-1 .
I gfia(2)5" gha (2

‘diffeomorphisms of suitable open neighbourhoods of (1,sgn %) to

) and ?;}ﬁ'a(i')" ‘fgna(ﬁ)f: define analytic

open subsets of N x lRl. Combining these maps and their inverse,
we see that ‘f;].'o ‘fg defines an analytic diffeomorphism of an
open set containing (A,f) to an open set containing (d',%'),

X -1 -1 - ol
which implies ‘j’g (Ugn Ug.) and ‘fg,(Ug/rj Ug,) are open in N *R and
that the map (2.12) is an analytic local diffeomorphism. But

the map is bijective, so we have the claim of Lemma 7. g.e.d.

Proof of Theorem 5., . Pirst we remark that the proof of

Lemina T shows that

(2.14)  Hgt wH(T) 2 (gron' 1) > $gh , ((n,8)) € NHR

[

- defines a real analytic map of the open subset TL_l(/I\I/g) of % to
NxR!. Therefore for any open subset V of N'lel, TL"lo f?g(V) =
"{'gl(V) is open in X. On the other hand, for any open subset v
of f(, ‘f;lo’l‘t(v) is clearly open in N'xtRQ. Hence the map (2.10)
is a homeomorphism.

| For points x and x' in '}‘f, there exists g in G such that
ﬁg contains x and x' because Lemma 1 shows that {8eG ;'U\'ga X
and { g e G ; ﬁga x'} are open dense in G. Since s"g is homeomor-

“phic and Nr! is Hausdorff, X is also Hausdorff.

Thus we see that X is a connected _real analytic manifold.
The claims ii) and i) are clear from what we have proved. The

.eclaim concerningf-ﬁg immediately follows from Iwasawa decom-
position (1.2) and Lemma 1.

Whitney's transversality theorem says that for any submani-
fold ¥ of ¥ satiéfying codimifz.? and for any differentiable

map ¥ Sl (= the unit circle) — ff, there exists a differenti—

1

able map ¥': S —X-Y c X such that 7 is ‘homotopic to 7'.

- 16 -
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Therefore the fundamental group of X equals that of 'I\I/g. Since

the fundaméntal group of 'ffg is trivial, ¥ is simply connected.

Consider the éompact subset B=Kx{l’§x[-l,1]Q of X. Then
7(B) is also compact because it is the image of a compact set
under the continious map. Since {exp(- ng-l H:j log ti); 0 < tj <1
for 1< j<{} equals 1:, Cartan decomposition (1.1) shows that
7(B) contains all the open G-orbits of X. Therefore the com-.
pact set T(B) is open dense in f, which implies (B) = ¥ and
that i’ is compact. '

To prove the claim in iv), we prepare the following:

Lemma 8. Let Y be an element of the Lie algebra o+ 7 .
Then by the identification

NA L N'xmf s Nxr?,

v —_ ,Q w

na =n exp(- Lj:lﬂj logtj) <« (n,t)

the left invariant vector field YIN'%:R& on the Lie group N A

corresponding to Y is expressed as

-l - o -m(d) . A,  _ =1
Y|N*IR, = 2 oo Py c_lit x_xi 2i5y °3"‘33/3t3’
where :
Y = S Hi. o
| Lo egt Zial S-a%-ay v ngar %3
Therefore Y|Nx Bf_ can be analytically extended to a vector field
on Nx lRR.
Proof. For a=exp(- z‘jgl H;i logtj), we have
‘ - o—Aloga _ A
Ad(a)x_li, e J('__21 1 X,_)_i, |
which proves the claim (cf. the proof of Lemma 7). g.e.d.

Now we will prove i). PFor a Lie subalgebra 4{r of 9, we
denote by U(f) the universal enveloping algebra of 4rc and
naturally identify U({) with a subalgebra of U(g). Let

-17 -
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Mt lD(G)K--;- D(G/K) be the natural surjective map with the kernel
ID(G)Kn U(oa)fz. Then for De‘YD(G)K; there exists & unique element
D'e U( ot+ 1) such that D' = D mod U(g)E because of the Iwasawa’
décomposition g = R+o0L+ 7 . Since D'-D ¢ U(g)E v Lema 8

~ proves that }L(AD)A can be analytically extended to a differential

operator on U_ for every g€ G. Therefore we have the analytic

extension D o: /u-(D) on X because X is simply connected. Let
’bg be the transformation on X corresponding to the action of
g€ G. Since 't;f)'—"l\)l vanishes on the open subset G/K of )AC', wé
have ’t;ﬁ:ﬁ on X, which shows 'f)éﬂ)(f)\f). , Hence the map D(X) —>
D(G/K) is surjective and the injectivity of the map ‘is clear
because G/K is open in X. .

Now we remember the concept of regular singularity in [ 9]
and the structure of D(G/K) (cf. Chapter X in [ 6]). Let

(X700 X oty ’tl) be a local coordinate system of X such

that AX’J. is defined by tj-—.o for every j=1,...,l. Put '\93 =

tjb/ata-, = 1}1,. ces 1}1) and ﬂ._)x = (tlb/axl,tla/axz, ‘oo ,tﬁa/an).
Let Pj be differential operators of order r‘,i (3=1l,0e. ,ﬂ).on ?C’
whose coefficients are real analytic functions., Then the system
of differential equations |
‘fﬂ,:Pju:O for j=1,0e., 4 |

is said to have regular singularity alqng the set of walls {3\{1’
coe .3{’1} if the following conditions hold: '
[RS-0] There are differential opérators Q%,k of order< Ty +T Ty

such that | |

(7P, ]= z‘_’,iﬂ___l Q§’kPi for j,k=1,...,1.

[(RS-1] For any j, P;j is of the form
Py = Pj(t,x,ﬂ,tnx).
[RS-2] Put aj(x,s) =Pj(0,x,s,0) and let aj(x,t)

- 18 -
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be its homogeneous part of degree r‘,j with respect to s.
Then the solution of the system of equations
-]
al(x,s) = e =al(x,s) =0
"is only the origin s=0c¢ ¢} for any x.
For De ID(G)K, let D; be a unique element of U(ez) defined by

the equation

(2.15) | D-D} € nU(g) +U(g)%
and put ‘ | _ |
(2.16) | Dy = e¥eD! o e7?

$loga for aceA.

where e? is the function on A defined by e’ (a)=e
Then denofing by U'(a1,)W the subalgebi‘a i{D eU(oL) ;Ad(mw)Dap for
we W3 of U(oe), the map !
| T 0 — U@
: v v
D +— D,
defines a surjective homomorphism of ID(G)K onto U(cm)w with the
kernel ID(G)Kn U(q)ﬁ. Therefore it induces the isomorphism
(2.17) T+ D(6/K) =0(&)X/m(e)Enu(gt 2> vV,
Here the order of ¥(D) equals that of D for De D(G/K) and 'U(ot)w
is ¥nown to be a polynomial ring over € with |} algebrqically
independent homogeneous elements pl(Hl,. o ’Hl)" .o ,pl(ﬁl,. .o ’Hl)‘
Now we will verify the conditions [RS-0], [RS-1] and [RS-2]
for the system (mx, which is expressed as A |
Ty, (DJ—'X(Dj))u =0 for j=1,...,{,
where D:i = r"l(pj). Since lD(‘G/K) is a commutative ring, [RS-0]
is clear. Moreover Lemma 8 shows [RS-1] and that in [RS-2]
(2.18) aJ(x,s'l,... '8y )= pj(?(Hl) —Byseces ?,(Hg_)"« 8 ) .- ’X(DJ).
- Therefore the .system of equations aj(x,s) Epj(-s)=0 for j=1,...,
{ implies s = 0.

Thus we complete the proof of Theorem 5.
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The following proposition will be used in a subsequent
paper. |

Proposition 9. " We denote by ’t® the involutive automor-

phism of X induced by.the map of X : (g,n,t) > (g,n,s), where
s;=t; if d;¢@® and 8y=-%y if olie ®. Then Tg and the action
of G are commutative mutually and I@D = D for any Deﬂ)(i’).

Proof. The commutativity is clear seeing Definition 4.

~ For 'ﬁGU(ag), we denote by P* the unique element in U(m+ 7 )
satisfying D-Dr e U(«?)T&. This correspondence induces the
identification

(%) % D(6/K) > U(9)/U(9)k B U(a+n ).

Consider in the open submenifold ﬁl of X. The totality of left
N A-invariant differential operators on ffl is naturally identi-
fied with U(xa+7) (ef. Lemma 8).  Since 'L~®('ﬁl) =7,, g
induces an involutive automorphism ’ré of U(q+m ), which

satisfies

t*(H;)=H -
T?( J) > 2‘“0{36@ ;\.(HJ)
®(X_1i) = (-1) | x_li.

(2.19) | {

Using the identifications, D in [D(’)\(’) can be expressed as
D = (D-D}) +DY,

where D-D} € n U(m+n ) and e?oDa;_oe—y‘é U(a)w. Since T@D‘;z, =

D! and %@Dem(i), we have ¥D-D ¢ 2" U(m+n") n D(G/K).

Therefore the isomorphism (2.17) proves %@D-D=0. q.e.d.

Put io = GxIR! and _identify ﬁo with the closed submanifold

GxilixR! of X. Then X. has the analytic action of G and the

0
equivalence relation ~ induced by those on z. We remark here

i

that the analytic map TL]XO : %o — X, which will be denoted by

- 20 -
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g induces & homeomorphism of the quotient space %O/N with the
quotient topology onto X because the map T s X 2(g,n,t) > (gn,t)

€ Xo satisfies r(®) =% for Re¢ e (cf. Bourbaki [ 3]). Let %= (g,

t) be a point of ’ﬁo " Then by the natural identifications 'l‘iio'l'
. .

o + 1R and 10T ¥ nT4 TR, the differential (any)g is

expressed as

(d’n’-o)g(’b/at )' = B/atj, i=1l,...,14,

(2.20) - m(2) 22
(dmgle(¥) = 2y 2 5 (ea(@)8°7+ ?_li(g),)X_l
-4 .
- z_ng cj(g)tj'b/atj, Yeo,
where
(2.21) aa(g™h)Y = 2:16 o+ imi(jl) (eay(8)Xyy +.°_li(g)x..1i)

- 4 .
* L4 cj(g)HJ mod M,
(cf. (2.13)). Therefore Ty is smooth, that is, (d’n:o)ﬁ is

surjective for any % eﬁo.- Moreover X has the following univer-

sal property.

’ A
Proposition 10, Given an analytic map f of X() to 2 real

analytic manifold ¥ such that f(2) = £(&' ) if 2~ %' in X 9 then

0
there is a unique enelytic map f of ¥ to ¥ such that the follow-

ing diagram is commutative:

f ~s
XO———vY

"y

Land

Proof. We have only to prove the analyticity of f. Let 8

be the analytic map of ﬁg to X, defined by (n,t) —>(g,n,t).

Since f|U_ = Fo “o°sglU U for g€G, £ is also analytic.

fong|Uy
q.e.d.
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In [ 8 ] another realization of G/K and G/P is given. The

following proposition shows the relation between the realiza-

tion in [ 8] and .

Proposition 11. - The natural map

1 Mo ¥

Kx(-1, s mrt 2> ¥

induces an analytic diffeomorphism
13 (K/M)x(-1, l)ﬁ — X
onto an open dense submanifold of X which contains G/P.
g:_'_qg_f;; Let £=(k,t) be a point of Kx(~1, 1) Then the
following |
amy) 4(23/2%4) = ofaty, = s Y 8 .
(amg) g (A2(k) (X3 =X, )= (t2*-1)x PIER AR NI

shows that )the map 4m,s Tﬁ(Kx(-l 1)1)—-%*T (i)x is surjective

because Ad xxi-x""i) €k and 2 22 -1#0. Moreover, since
(k,t) ~ (km,t) for any m€ M, which is clear because hna(i)P@A(K)
= ka(i)P@i(K) , we obtain the smooth analytic map 1: (K/M)x(-1, l)ﬂ
— %, Comparing the dimentions of the manifolds, we see that
1 1is analytic local diffeomorphism.

Here we note that Cartan decoxfnposition (1.1) induces the
analytic diffeomorphism "

K/M:AY — G/K
i\ W
(kM,a) —> kaK

onto an open dense submanifold of G/K. Therefore putting ’i’ =
K/Mx{(-1,1) - {0}}9', v-ie see that the restriction 1,\’Z° is injective
and 1(Z) is open dense in X. Since 7 is. open dense in (K/M)
x(-1, l)n and ’LIZ is in;jective and 1 is an analytic local diffeo«-

morphism, we can con¢lude that 2 is injective., Thus we can
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'identify_(K/M)&(el,l)Qvwith an open dense submanifold of .
Moreover, since K acts transitively on G/P, we have K/MX{O}!2§

G/P by Definition 4 and Theorem 5. o q.e.d.

| References

(1] aA. Borei, Les féndtions automorphes de plusieurs variables
complexes, Bull; Soc. Math. France, §0(1952), 167-182.

[2] A. Borel, Les espaces hermitiens symmétriques, Séminaire
Bourbaki, 1952,

[3] N. Bourbaki, Eléments de Mathématique, Topologie Générale,
Chapter 1, Herman, Paris, 1965. ‘

[4] H. Furstenberg, A Poisson formula for semi-simple Lie
groups, Ann. of Math., 77(1963), 335-386. |

[5] Harish-Chandra, Representations of semi-simple Lie groups,
V, @, Amer. J. Math., 78(1956), 1-41, 564-628.

[6] s. Helgason, DifferentiallGeometry and Symmetric Spaces,
Academic Press, New York, 1962. \

[7] M. Ise, On canonical realizations of bounded symmetric
domains as matrix-spaces, Nagoya Math. J., ﬁgﬂ;é?l), 115-
133. |

(8] M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima
and M. Tanaka, Eigenfunctionévof invariant differential
operators on a symmetric space, to appear.

[9] M. Kashiwara and T. Oshima, Systems of differential equa-
tions with regular singularity and their boundary value

problem, to appear.

- 23 -



1K1
[10] A. Korédnyi, Poisson 1ntégrals and boundary components of
symmetric spaces, Inventiones Math., 3&51976), 19-35.
(11] c. c. Moore,»Compéctifications of symmetric spaces, Amer.
J. Math., 86(1964), 201-218.
[12] ¢. C. Moore, Compactifications of symmetric spaces, II,

Amer. J. Math., 86(1964), 358-378.

{13] T. Nagano, Transformation groups on compact symmetric
spaces,'Trans. Amer. MNath. ch.,,&l§(196$), 428-453.

[(14] I. Satake, On representations and compactificatidhs
of symmetric Riemannian spaces, Ann. of Math., 71(1960),
77-110. | |

[15] M. Takeuchi, On orbits in a compact hermitian symmetric
~space, Amer. J. Math. 22}1968), 657-680. |

.,{16J G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, I,

Springer-Verlag, Berlin»Héidelberg_New York, 1972.

Toshio OSHIMA

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Bunkyo-ku

Tokyo, Japan



