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$IT ~ Macrocausality at u=0 points
In ref. [ 1 the singularity spectrum of the S-matrix
at u#C points was derived from the mecrocausality principle.
This principle states that morentum-energy is carried over
macroscopic distances“only by stable systems. More specifi-
cally, it states that the probability of a transfer of
momentumaenergjﬁhat is not attributable to a network of
stable particles (or objects) falls-off exponentially under
snace-time dilation. The aim of this section is to extract
from this principle a general condition on the singularity
svectrum of the S-matrix that covers both u#0 points and
u=0 rnoints, |
The mathematical formulation of macrocausality depends
on the well~known close correspondence between clasasical and
quantum phvsics. The usual quantum mechanical expression for
the scattering transition probabllity
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by introducing the expressions [ ]

(2.3) fi‘pi’ xi)
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where the upver sign is for initial particles and the lower
sign is for final particlés, pj= mjvj, and

- (.2 1 2,1/2
205 M. = o = Py -
(2.5) 3 (mJ 4 qJ)

The right hand side of (2.2) is identical to the expression
for the scattering transitiqn probability oceurring in
classical statistical mechanics. Classically the statistical
weight j’i(pi, x;) for an initial particle 1 1s interpreted
as the probability density that the associated statistical
ensemble has a particle that carries momentum-energy Dy and
moves on & svace-time trajectory passing through Xgo For
final particles the statistical weight 'Fi(pi’ xi) is
interpreted as the efficiency for detecting a particle that
cgrries morentum-energy Py and moves on a trajectory
vassing through Xi. ‘The function
S(pl} Xys™""" Pps X5 Priqs Xy s p#, Xn) represents
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probability that a system of m initial particles carrying
mbmentum-energies Pys~"" s Py, and moving on trajectories
vassing through the space-time points Xqs™ "7 5 Xps s respec t-
ively, will scatter into a svstem of n-m final ﬁarticles
carrving momentum-energies Prt1s "7 s Py and moving on
trajectories passing through the space-time points X1 ? s &
respectively. ' .

The quatum mechanical functions _?ifpi, xi) and S(p, x)
are not necessarily positive and are subject to uncertainly
princinle 1iﬁitations. Put they are otherwise verv similar
to their classical counterparts. (See ref. [ ] for a detailed
discussion) The formulas given above thus provide a very
close correspondence between classical and quantﬁm physics.

- Macrocausality furthers this correspondence by asserting
that the claésical idea that momentum;energy is transferred
by physical particles becomes valid asymptotically. The
asvmptotic 1imit T — o that we shall diccuss 1s essen-
tiallv the same as the classical 1imit Hh "*5 0, since Hh a
paraeme ter that fixes the svace-time scale.

The macrocausality principlé asserts that the probabllity
of transfer of momentum-energy not attributable to a network
of stable particles falls off exponentially under space-time
dilation. This condition is made quantitative with the aid
of a semi-classical model of the scattering process. In

this model the momentum-energy of the initial particles is

2-3



transferred to the final particles by some network of

mechanisms, as indicated in Fig. 1.

1~ J '

Fig. 1 A space-time diagram showing a typical network
of mechanisms that transfers the energy-morentum carried
by the initial particles 1, 2, and 3 a scattering

process to the final particles 4, 5, 6. Momentum-energy

is conserved at each vertex.

The straight lines in Fig. 1 represent transfers
attributable to stable particles, whereas the wiggly lines
represent transfers not attributable to physical particles.
A transfer attributsble to a stable particle of mass m is
characterized by the classical condition P = mv, where P
is the momentum-energy carried by the stsble particle, m is
its mass, and v = dx/d¥ 1is its covariant velocity.

A transfer represented by a wiggly line can occur only with
a probability that falls off exponentially under space-time
dilation.

The wiggly lines represent various mechanisms for
momentum-energy transfers other thaﬁ stable particles. It
is possible, however, that morentum-energy can be conveved
also by stable particles traveling slightly off their mass

shells. In this case macrocauselity demands that the

2-4
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wrohahility of such a transfer fall-off exponentiallv under
snace-time dilation.

The various possible networks are represented by voints
in a space of parameters & , and P(E€) is the probability
densitv that the momentum-energyvof the initial particles of
the network will be transferred by fhis network to the final
particles. Thus P(&) 1is related to the function

S0y, %y57" 77, py, X )= S(p, x} of (2.2) by the equation

(2.6 sto, m = [aPIEIT (8 0py- oy (61T xy- 2, (5))).

for any network E there are others obtalned from it
b¥ an overall space-time dilation. Let T be a dilation
parameter that increases linearly with the space-time sige
of the network. Let the network %_dilated by the amount
T be renresentéd bv iri. Then mécrocausality asserts that
there are a valr of nonnegative continnous functions C( &)

and o (&) such that
(2.7) P& )] < C(&)exnl(- x(§) T)

where C(&) 1is integrable when restricted to comvact sets
in p space, and ®(E) is strictly positive (X > 0)
unless each line of the network satisfiesvthe condition

p = rv associated with some stable physical particle. There
is a vpositive cohtfibution to () from each wiggly line
of & that has nongero lingth, and the continuity of oA (§)

means that for any sequence of networks 511 the quantity
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o (%h) tends to zero only if the sum of the lengths of
wiggly lines tends to zero, and all physical particle go to

their masses shells:

(e.8a) d(§)—> 0

imnlies
(o.80) 2o, = o,
iew B g
where ‘Aiﬁp1:is the (Euclidean) length of line 1 of Erf

and the sum is over all wiggly lines of the network g’n’

and also

(2.8¢) PN Ip? - mil —> 0
1€P

where the sum is over all physical particle (s0l1id) lines.
The set of variables (p, x)= (Pys==-5 Pps Xqs77" x,)
specifics the space-time trajectory lines of the set of
external particles. In particular, vy T pi/ "y defines
the direction of the trajectorv line of external varticle 1,
and Xy is a point lving on this trajectory line. Define
v=x/T . A& set (p, u) 1s said to be gausal if andionly‘if
the corresponding external trajectories can be joined by
o nontrivial network of trajectories corresponding to stable
particles. A trivial network is a network such that all of
the vertices lie at a single point.
The ordinarvy Landau equations define the set of causal

(ps u):

(2.9)  {causal (p, W} = {(p, u): (p, u) is a solution of

the Landau equations for some D+}

2«6
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If for a given p there is a causal set (p, u)=(p, 0)
then p ié called a u=0 point. For any such point one
can easily cohétruct a bounded sequence of causal sets
(pn, unF satigfying P,—P such that»the corresponding
sequence of causal space-time dilagrams is unbounded in thé
senge that no bounded space-time region Rw contains all
the vertices Wy of ali the diagrams of the sequence,
Conversely, if there i1s a bounded sequence of causal points
(pﬁ, un) satisfying pn——a-p' such that the corresponding
sequence of causal space-time diagrams is unbounded (in this
same sense) then P is a u=0 point. This follows from =
the fact that the sequence of growing diagrams can be scaled
down bv the minimum amount such that each vectﬁ?"lies inside
the closure Rw of some neighborhood of the origin. The
sequence of écale changes increases without bound. Hence
the rescaled U called ué, satisfy uﬁ*—*>0. Let WﬁEfﬁéﬁ'
be the collection of vectors that describes the positions of

the n' vertices 'of the n-th rescaled diagram. The L

lR4n'

lie in a compact subset of and hence have accurulasion

point w, which defdnes a causal space-time diagrm. If this
disgram is nontrivial then it defines a causal (p,w}=(p, 0).
Ir ft is trivial then the common vertex mst 11e on the
surface of Rw, and all of the external lines must pass
through it, and also the origin. Placing another vertex at

the origin one again gets a causal (p, u)=(p, O).

The conclusion is this:

2-7
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(2.10a) {p; p is not a u=0 wvoint}
= {p; every bounded causal sequence (p, u™)
with p°—> p corresponds to a bounded
sequence of diagrams (i.e., to a sequence
of diagrams whose vertices remain in a

- bounded R_)}.
w
This result entails that

(2.10b) {p:; p is not a u=0 point}
= {p; for any bounded set ‘U of vectors u of
P ahd some va such that for every causal‘
(p', w) with p'GNp and u in U the
corresponding causal diagrar has itsbvertices
in ﬁw},
A similar result is this:

(2.11)  {{p, u); (p, u) 4is not causal, p 1is not u=0 point}
> {(p, u); there is a neighborhood N = of D
: and a neighborhood N of wu such that
every network £ with its set (p', u')
in (N, N)) has x(E) > alw, N) >0}

Here the dilation parameter T 35 set to unity: u=x.
To prove (2.11) assume that the condition on the right-
hand side is false. Then there must be a sequence of networks
" {3 — 164 vy —>
Erl such that the (P, u ) (p, u) and V(EIJ ’ 0.
The condition O((gn)’—) 0 implies that the sum of the

2=8
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lengths ofﬁhe wigpgly lines goes to zero. Thus if all the end
points of all the stable lines of all the networks % n are
confined to a bounded region Rw and if one has to consider
only networks with a finite number of stable-particle lines, °
then the compactness of the space of variables describing

the end points of these stable particle lines’implies that

an accumulation point in thls space must exist. At this
accurmlation point the wiggly lines all have zero 1ength.

Thus the 1limit voint defines a causal space-time diagram
~aving a set (p', u') that equals (p, u). Put then (p, u)
is causal, contrary to the first assumption on the left-~hand
side of (2.11),

The remaining possibitieé are either that in the sequence
of networks E;n the end points of the stable-particle lines
do not remain in any compaet reglon R or that networks
with an unbounded number of stable-particle lines mist be
considered.

We shall not consider the possibility that an infinite
number of stable particles consvire together to giﬁe a point
in the singularity svectrum. We simply assume-thai the
singularity spectrum of the S-matrix union over all finite
T of the singularity spectrums obtained by considering
networks with only N stable particles. This assumption

snosed of one of the two remaining cases.

Lete

é

The final case 1s that in which the end points of the

2«9
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(finite set of) stahle varticle lines do wot remain in anv
corpact region iw. Fowever, the sum of the lengths of
the wiggly lines tend to zero. Consequently the construction
that was used to prove (2.10) works =2lso in tris case and
shows that p must be a u=0 voint.

The bound (2.11) on «(&'), inserted into tre hound
(2.7}, gives, with the aid of (2.8), a bound on S(p, ur):
for anv noncsusal set (v, u) such that p is not a u=0

noint there are neighborhoods N“, of » and Nu of

e
-

and numbers C > 0 and & > 0 such that for all =o' € I,

2ll u'eé Nﬁ, and all
(2.12) S(p', v'T) < Cexn(-aT)

This bound on S(p, x) 1s a quantitive exoression of
macrocausality in the semi classical framework. The quantita-
tive expression of macrocausallity in quantum theorey 1s the
set of bounds on transition probabilities obtained by
ihserting the semi-classical bounds on S(p!', u'?T) into (2.9).

To derlve conditions on the singularity spectrum of S
from this macrocausality propertv one can use in (2.2) wave

functions of the form

- 2 ~ :
Xi(pi)exﬁ-?i- pi) Yt + ipiuiTY

= @i(ni; Pys Uy, Y,<).

(2.12) oy (pi7

Fere f& and -?Z are the vector parts of two mass-shell

varisbles p, and P,, and 7(i(pi) is an infinitely

2-10
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differentiab_le function of compact supvort that satisfies
I'Xi(pi” <1 and is analytic at p,= Py. The ﬁrodﬁct oi.;‘
functions l ‘fi (pi, xiﬂ corresponderig to these f‘unctivbnﬂs
Py enjoys a strong exponential fail of f property: Leﬁ NP
and Nu be any open neighborhoods of the points P and wu,

resnectively, and let (NP x NuT}' be the complement of

N"P* Ni: R wherg N{fa{x; x=u't, u’e Nu}. Then there are
strictly positive numbers ¢ > 0, « > O, and ?/o > 0, which
depend only on Np and N, , such that for all O <Y s 3/0
T
R . - 1
and all (pi, xy) in- (Np x N7 )

(2.13) lei(pi, xi)l < Cexp(=atd T)

Moreover, this function lTrfif has compact support in p
space. Thus the integrability property of the function C(&!
of (2.7) entails that a bound of the form (2.13) holds also
for the part of the integral (2.2) coming from the region

(Np x Nu’:)'. Ir . (P, u) 'is a noncausal set, and P is not
a u=0 point, then the condition (2.12) ensures that the
contribution to (2.2) from the remaining set NP;( Nu is
also exponentially bounded. In particular, there are three
strictly positive numbers ¢ > 0, > 0, and )’o > 0 such

that the function
= (5) (P: v, Y;,;, T)

as defined in (2.1) and calculated by (2.2), satisfies

2-11
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(2.15) P (P, u, ¥,T) < Cexpl- xd't)

The continuity properties of all the functions involved in
the derivation of (2.15) entall that this bound hold uniformly
in some neighborhood of the original point (P, u}.

| ~The conditlon (2.15), holding uniformly in a neighborhood
ofi (P, u), is, by definitibn, the statemént that (P, u)
lies outside the essential support of S. But the concepts
of essential support and singularity spectrum have been
shown to be equivélent [ ], at least for distributions, and
hence for S. Thuévmacrocausality implies that all noncausal
(p, u) with >p not & u=0 point lie outside the singularity
gpectrum of S'. | |
| Consider now the u=0 points. The new feature at these
points 1s that the condition that the u remain in a Eounded
region Ru does not entail thaf the vertices remain in a

bounded region Rw. Thus there may, for u € Ru, be
sequences of networks E.ﬁ such thgt the sum of the lengths
of the wiggly lines tend to zero and all physical particle
momenta tend to thelr mass éhells but no causal diagram exists.

Because of this fact the macrocausality condition fails

to yield at u=0 points the conclusion that the singularity
spectrum of S' is confined to the solutions of the positive- X
Landau equations. It leads rather to the conclution that
the singuiarity spectrum of S is confined to the set of
points (p, u) for which there is a sequence of ne tworks

g(m) satisfying

2-12
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(2.16) (p(m), u(m))-——§ (p, w)
and

x (£ —s o

If such a sequence exists then the oroof that (p, u) 1lies
outside the singularity spectrum fails. On the other hand,
if no such sequence exists then there must be some neigh-
borhoods Np and Nu of p and u and an associated
number a(Np, nu) > 0 such that ¥(E&) > a(Np, Nﬁ) for
all & svuch that (p(&), u(€)) 1lies in 'NpXNu.

OCver this informstion the proof proceeds exactly as before,
aﬁd one can conclude that (p, u} is not in the singularity .

spectrum of S.

In view of (2.8) the final conclusion is this:

(2.17) S.S. S(p} < {(p, u)‘; g (m)_ such that
(ol £, w(g™y —>(p, w),

> (m)
iGw“Ai(g M —> o, and

In S-matrix theory the external particles of one scatter-
ing process are internal particles of some larger process.
It is thus unnatural to treat them differently, and doing so
would be expected to lead to inconsiétencies. Thus the
natural, and cons%&ative, course iz Lo 21low in (2.17) both
the internal and external solid lines of the networks gn

to be off-mass srell.
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