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Homomorphism Theorems

in Local Dynamical Systems Theory

Taro URA (Kobe University)

Introduction: The pufpose of this lecture is to announce and
explain results recently obtained by myself to establish Homo-
morphism Theorems for continuous local dynamical systems. The
theorems depend on what we shall consider as homomorphisms.‘
I. Kimura and myself have introduced various categories of ‘local
dynamical systems. If a homomorphism theorem holds, the smaller
the category, the easier the problem. As we are going to see,
in the smallest category GH(-1), the problem is trivial and in
the- category GH(0), this is not too difficult. In other larger
categories, we need some additional conditions on homomorphisms.
To establish a homomorphism theorem in the topological
group theory, first we must stﬁdy this in the abstract group
theory. In the latter, we have a beautiful theoreh, i.e. with-
out any additional condition on homomorphisms, the theorem holds
(see [8]). However, if we refer to [8], the theorem holds for
topological groups, under an additional condition on homomorphisms.
(This is, of course, caused by the weak definition of a homomor-
phism. If we give a stronger definition to it, we need not any

additional condition, as done in [3]. In fact in [3], the



definition of a homomorphism is given in such a way thatvfor it,
the homomorphism theorem holds.) We shall keep the definitions
of various GH-categories and find a necessary and sufficient
(to some extent) condition on a homomorphism in these catégories,
in order that we have the homomorphism theorems.

We study the problem first for abstract local dynamical
systems, which were introduced by H&jek and studied by him and
by myselfj and then for continuous local dynamical systems, as

we do at the study of topological groups.

Standing Notation and Notational Conventions:
R: the set of real numbers, i.e. the unique totally ordered
field satisfying the continuity axiom, unique up to isomorph-
isms considering this structure. More exactly, R denotes
a representative of the class of sets having this structure. We
shall identify the members of this class, in other words, two
sets having this structure will not be considered as different.
Rj: R endowed with the usual topology.
X and Y: sets.

0 and 'g: the topologies or the
families of open sets defining the topologies on X and Y,
respectively. When X and Y are endowed with topologies ¢
and ¢, then (X, 0) and (Y, g) denote the topological spaces
of which the carrier sets are X and Y and the topologies are
0 and g, respectively.

For A ¢ X, if we write A(c (X, 0), then we understand



A is endowed with the subspace topology induced by (X, Q) i.e.
(A, OA)’ where 0, is the trace of @ in A.

Let DeXx R and x E,X' DX denotes the section of D
at x, i.e. D = {t|(x, t) ¢ D}. Let f: D> Y be a map and
% € X, then 'fX denotes the map: D~ Y defined by

= ’ t).
fx(t) fix

§1. Abstract and Continuous Local Dynamical Systems and their

Germs.
1. Definitions. (AG)(AS) Abstract Systems and their Germs.
Definition 1. Let D < X x R. D is said to be abstract-
dynamically admissible over X iff for every x e X, DX is
an open interval containing 0.
pefinition 2 ([51,[111). Let D e X x R, and u: D + X bea map.
(X, D, u) is called an elementary dynamical system on the
phase set X with domain D iff
(ES0) D 1is abstractly admissible
(ESI) TIdentity Axiom: for every x e X, p(x, 0) = x
(ESII)‘ Homomorphism Axiom: if (x, t), (x, t+s), (u(x,t), s) D,
then

u(x, t+s) = u(u(x, t), s).

Definition 3 ([111). An elementary system (X, D, m) is called
a germ of an abstract local dynamical system (abbreviated as an
abstract germ) on the phase set X with domain 0 iff
(AGN) No-interseciton Axiom: if (x; t), (Xi, t) ¢ D and

u(x, t) = u(x,, t), then x = x,.
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Definition 4 (151, [11], [12]). An elementary dynamical
system (X, D, W) 1is called an abstract local dynamical system
(abbreviated as an abstract system) on the phase set X with
domain D iff

(ASN) Nonextendability Axiom: for every (x, t) € D,

Drex,ty = Px ~ ¢
An abstract system is said to be global and called an abstract
global (dynamical) system. iff for every x e X, D, = R or

equivalently D = X x R (which implies (ASN)).

Proposition 1 ([111). An abstract system is an abstract germ.

Theorem 1 ([111). Let (X, D, u) be an elementary system, then

there exists a unique abstract system (X, D, w) with D > D
such that u = 7|D, iff (X, D, u) is an abstract‘germ.
Definition 5 ([11]). The uniquely determined abstract system
by an abstract germ (see Theorem 1) is called the abstract
system generated by the abstract germ.

Remark 1. Let (X, 0, W) and (X, D, w) be an abstract germ
and an abstract system. If there arises no ambiguity, we shall
omit some data, e.g. we shall express them by (an abstract germ)
u and (an abstract system) .

Definition 6. Let (X, D1’ u,), (X, D,, u,) be two abstract
germs on thé same phase set X. @i, 1is called an abstract sub-
germ of u, iff D, c?

, and u, =vu2|Dx.

The abstract germs u, and u, are said to be equivalent

iff u, and u, have a common abstract subgerm. (Actually



this defines an equivalence relation.)

Proposition ‘2. Equivalent abstract germs generate the same
.abstract system.

(CG)(CS) Continuous Systems and their Germs.

pefinition 1. Let D < X x R. - D is said to be continuous-
dynamically admissible over (X, @) iff D is abstractly
admissiblé over X and D is a neighborhood of X x {0} in
(X, 0) x ‘Ro.'

pefinition 2 ([11, [5]1, [91). Let (X, D, u) be an elementary
system. ((X, 0), D, u) 1is called a germ of a continuous local
dynamical system (abbreviated as a continuous germ) on the phase
space X with domain 0 iff

(CGl) P is continuous-dynamically admissible over (X, 0)
(CG2) wu: D( e (X, 0) x R) » (X, 0) 1is continuous.

Proposition 1 ([111). If ((X, 0), D, w) is a continuous
germ, then (X, D, p) 1is an abstract germ. |

Definition 3. Let (X, D, mw) be an abstract system.

((X, 0), D, ) is called a continuous local dynamical system
(abbreviated as a continuous system) on the phase space X with
domain D iff ((X, 90), D, w) 1is a‘continuous germ. A con-
tinuous system is said to be global and called a continuous
global (dynamical) system iff D = X X R.

Proposition 2 ([11, [51], [11]; [12]). Let D e X x R be
abstract-dynamically admissible over X and w: D+ R a map.
((X, 0), D, ) is a continuous system iff

(CSI) Openness Axiom: D is open in (X, Q) x R,.
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(CSII) Continuity Axiom: m: D( < (X x ) x R ) » (X, d) is
continuous
(ESI) for every x e X, w(x, 0) = x
(ESII) if (x, t), (x, t+s), (ﬂ(X; t), s) € D, then
m(x, t+s) = w(uw(x, t), s)

D - t.

N )
(ASN) for every (x, t) e D, Dn(x,t) X

Remark 1 ({51, [93, [111, [12]). Put D = (ax, bX). (ASN) is
equivalenf to

(CSN) if~ a, (or bx) is finite, then the cluster set of

Wx(t) as t ¥ a (or ¢ bx) is empty. .

(CSI) is equivalent to (ﬁo denoting the usual compactification of R)
(CSI_) the maps a and b: (X, Q) » ﬁg defined by x > a

and x - bx are upper and lower semicontinuous, respectively.

Theorem 1. Let ((X, 0), U, u) be a continuous germ, then

there exists a unique continuous system ((X, g), D, w) with
D > D such that u = ﬂ}v.

Definttion 4. The uniquely determined continuous system by
a continuous germ (see Theorem 1) is called the continuous
system generated by the continuous germ.

Remark 2. The similar abbreviation will be applied to a
céntinuous germ and a continuous system as explained for an
abstract germ and an abstract system in (AG)(AS) Remark 1. Thus
a continuous germ ((X, 0), P, ) and a continuous system

((X, 0), D, m) are expressed {(a continuous germ) u and (5
continuous system) m and then (X, D, u) and (X, D, ©) are
expressed by the abstract germ B and the abstract system

respectively.



pefinition 5. Let ((X, 0), D;5 uy) and ((X, 0), D,, u,)
b; two continuous germs on the same phase space (X, Q). U, is
calledva continuous subgerm of u, iff lec D2 and
Hy :‘“zlvl‘

Two continuous germs u, and u, are said to be equivalent
iff u, and H, haye a common continuous subgerm. (Actually,

this defines an equivalence relation.)

Proposition 8. Equivalent continuous germs generate the same

continuous system.

2. Some Fundamental Concepts, Restrictions of Systems.
(AS) Abstract Systems.

In the following, (X, D, m) is an abstract system.
Definition 1. TFor every x € X, HX(DX) is called the orbit
through (or of) x (w. r. to w) and denoted by Cﬂ(x).
Definition 2. A subset Y of X is said to be quasi-invariant
(w. r. to m) iff for every x e Y, Cﬁ(x) c Y.

A quasi-inQariant set Y is said to be invariant iff for
every x € Y, Dx = R. (If we aésume further Y # ¢, this
definition reduces to the classical notion of invariance.)
Definition 3. A subset Y of X is said to be abstractly
admissible w. r. to w 1iff there exists E < ¥ x R such that
(Y, E, HIE) igs an abstract system. Then ﬂlE is

denoted by |, and (Y, E, wIY) is called the restriction

Y
of ™ to Y.
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Proposition 1. If Y 1is abstractly admissible w. r. to the
abstract system w, the abstract system ﬂlY is uniquely
determined.

Proposition 2. A subset Y of X is abstractly admissible

w. r. to iff for every y e Y, there exists an open interval

Jy containing 0 and contained in Dy such that ﬂy(Jy) c Y.

S i AT

Corollary 1. Every quasi-invariant set is abstractly admissible.

Corollary 2. Every quasi-invariant set w. r. to a global system

is invariant.

Definition 4. Let =x ¢ X. x and the orbit C"(x) are said
to be

global if Dx = R

strictly local if DX £ R.

Definition 5. Let x ¢ X. x and the orbit Cﬂ(x) are said
to be singular iff C“(x):={x}. S, denotes the set of singular points
Proposition 3. A singular point (or orbit) is global.
(CS) Continuous Systems.

In the following, ((X, 0), D, m) 1is a continuous system,
expressed by (the continuous system) .
Definition 1. TFor every x € X, the orbit Cﬂ(x) w. r. to the
abstract system 7w 1is also called the orbit through (or of) x
w. r. to the continuous system 7 and denoted by the same symbol
Cﬂ(x).A
Definition 2. A quasi-invariant set w. r. to the abstract
system ® 1s said to be quasi-invariant w. r. to the continuous
system Tm. An invariant set w. r. to the continuous system is

defined in the same way.
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pefinition 3. A subset Y of X is said to be continuouéiy
admissible Ww. T. to (the continuous system) iff there
exists E « ¥ x R such ((Y, oY), E, ﬂIE) is a continuous
system. Then, n]E is denoted by ﬂ|Y, and ((Y, oY), E, ﬂIY)
is called the restriction of the continuous system 7w to Y.
Proposition 1. If Y is continuously admissible w. r. to T,
then the continuous system ﬂIY is uniquely determined.
Propositién 2. If Y 1is an open set of X, or Y is quasi-
invarianf w. r. to w, then Y is continuously admissible.

To the author's knowledge, "only if" in the following
is new.
Theorem 1. A subset Y of X 1is continuously admissible
w. r. to ® 1iff there exists an open set O of X such that
Y is quasi-invariant w. r. to m|,.
Definition 4, 5. Globality of x (e X) and C_(x) w. r. to
the continuous system 7 is defined as that w. r. to the
abstract system w. The same for singularness.
Proposition 3. (AG)(AS) Proposition 3 holds for continuous

systems.

Standing Notation:
In the sequel throughout the paper, in (AS) of each section,
(X, D, m) and (Y, E, p) denote abstract systems, and ® and
P are their abbreviations, and in (CS) of each section,
(X, 0), D, ) and ((Y, g), E, p) denote continuous systems,

and m and p are their abbreviations, unless otherwise stated.



Ens: the category of sets and maps.
ens: -the category of sets and inclusions.
Top: the category of topological spaces and continuous
maps. |
‘top: the category of topological spaces and continuous
inclusions.
Let C Dbe a category.
obj C: the class of objects in C.
mor C: the class of morphisms in C.
Let a, b e obj C.
[a, b]c: the set of morphisms: a = b in C.
n (or n') runs over -1, 0, 1, 2, 4, and
? runs over 6, B, I, BI, unless otherwise stated.
(n-8 means n.)
m (or m’) runs over 0, 25, 5, unless otherwise stated.

(n means n-<0 ~and ne°m-8 means nem.)

§2. Categories of Abstract.and Continuous Local Dynamical
Systems and those of their Germs.

1. Morphisms of Loeal Dynamical Systems.

(AS) Abstract Systems.

Definition 1 (Cf.[111). Let h: X > Y be a map and

¢: D > R a map such that for every x ¢ X, ¢X: Dx(c Ro) + R,
is continuous.and ¢(x, 0) = 0.  (h, ¢) 1is called a GH-

morphism: 7w =+ p iff for every (x,t) e D, hom(x,t) = p(h(x),d(x,t)).

- 10 -
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A GH-morphism (h, ¢) 1is said to be of type 2 iff for 
every X € X, ¢x: DX + R is a linear map.

A type 2 GH-morphism (h, ¢) is said to be of type 1 iff
for every X € X, the linear map ¢x: Dx + R is independent of
x, or equi&alently there exists ¢ ¢ R such that for every
(x, t) € D, ¢(x, t) = ct. |

A type 1 GH-morphism <(h, ¢) is said to be of type 0 iff
for every x € X, ¢x: Dx > EX’(C R) is the identity. (If so,
¢ will be denoted by id.)

A type 0 GH-morphism (h, id) is said to be of type -1 iff
Xc¥Y énd h is the inclusion.

For convenience of exposition, a GH-morphism (h, ¢) 1is
said to be of type 4.

Remark 1. In [11], we introduced the notions of a type n GH-iso-
morphism and a type n-C GH-isomorphism. "Type n GH" in this
paper corresponds to "type n-C GH" in [11]. We do not consider
"type 3" in contrast to [11]. This is done because, in the
sequel, ifwe treat type n GH-morphisms in general, and type 3-C GH-
morphisms in the sense of [11], it would make our arguments
confusing and would not give any interesting result (cf. [11]
Remark 11).

Definition 2 ([11]). Let <(h, ¢): =m > p be a type n GH-
morphism. (h, ¢) is said to be of type n-B iff for (x, t),

(x, t+s), (w(x, t), s) € D, we have ¢(x, t+s) = ¢(mw(x, t), s).

(h, ¢) is said to be of type n-I iff for every x e X,
¢x= Dx + R 1is either strictly increasing or strictly decreasing.

If (h, ¢) is of type n-B and of type n—I; then we shall say

(h, ¢) is of type n-BI.

- 11 -
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Prdpoéition 1. A type n GH-morphism (h, ¢): T > p is of

type n-B iff for every x e h—f(Sp), ¢.: D_ -+ R is a linear

X X

-1
map, remaining the same along every orbit in h (Sp). If (h, ¢)

is of type n-BI, then for every xc¢ n’ (Sp) s ¢X: D, >R is toplinear.

Remark 2. A type 0 GH-morphism is always of type 0-BI. A type
1 GH-morphism (h, ¢) is always of type 1-B, and is of type 1-BI
iff ¢(x, t) = ¢t with nonzero c. A type 2 GH-morphism (h, ¢)
is of typé 2-B iff when we write ¢(x, t) = c(x)t, c(x) .is
constant'along every orbit in h_l(Sp), and is of type 2-I iff
c(x) £ 0 for every x € X. (One 6bserves, if (h, ¢) 1is of
type 2, then c¢(x) 1is constant along every orbit outside
h~(s ).

p
(CS) Continuous Systems.
Definition 1 ([61, [10]1). Let <(h, ¢) Dbe a type n GH-mbrphism:
(X, D, ) » (Y, E, p). (h, ¢) is called a type n+*5 GH-morphism:
(X, 0), D, m) » ((Y, g)s E, p) iff h: (X, o) = (Y, g) is
continuous.

A type n*5 GH-morphism: ® =+ p is said to be of type n-0
or of type n+25 iff ¢: D(c (X, g)) ~+ R, is continuous in D

-1
or in D - h (Sp) x R , respectively.

Definition 2. The notions of type B and type I for a GH-morphisr
are defined as those for a GH-morphism.
Proposition 1. (AS) Proposition 1 holds for type n-m Gﬁ—morphisms
(AG)(CG) Abstract and Continuous Germs.

Omitted.

- 12 -



2 Categories of Local Dynamical Systems.
(AS) Abstract Systems.

Theorem 1 (f111). Put

t

obj GH(n - ?) the class of abstract systems

]

mor GH(n - ?) the class of type n-? GH-morphisms.

For ¢(h, ¢) ¢ [m, p] (k, ¥) € [p, oj

GH(n-?)°? GH(n-?)’

(2, A) = (k, P)o(h, ¢) 1is defined as follows:
L = koh (composition in Ens)
A: D —> R  is defined by

(x, t) ———> V(h(x), ¢(x, t)).
Then GH(n - ?) = {obj GH(n - ?), mor GH(n - ?), o} is a
category.
Proposition 1. The category GH(-1) is an ordered class.
Remark 1. GH(-1) = GH(-1 - B) = GH(-1 - I) = GH(-1 - BI)

GH(0) = GH(O0 - B) = GH(O - I) = GH(O - BI)

35

GH(L - I) = GH(1 - BI) 4is a subcategory of GH(1) = GH(1 - B).

In general, GH(n - BI) is a subcategory of GH(n - B) and of

GH(n - I), both of which are subcategories of GH(n). If
n<n', then GH(n - ?) is a subcategory of GH(n' - ?).
Theorem 2. (h, ¢) ¢ [, p]GH(n4—?) is an isomorphism in
GH(n - ?) if (h, ¢) € mor GH(n - BI) and h: X;; Y is an
isomorphism in ens for n = -1 and in Ens for n # -1, and iff

$ :+ R -+ R is an iso-

(h, ¢) € mor GH(n), for every x e Soo x . o

morphism in Top and h: X -+ Y is an isomorphism in ens for
n = -1 and in Ens for n # -1 (? = 8, I).

Corollary 1. (h, ¢) € [m, p] or [m, p] is an

GH(0) GH(n-I)

isomorphism in GH(0) or in GH(n - I)(n = 1, 2) iff h: X->Y

- 13 -



is a bijection.
Theorem 3 (First Decomposition Theorem). (h, ¢)

e [m, p]GH(n-BI) is decomposed in a way that the diagram

(h, ¢)

(id, ¢)
(h, id)

4< ————— =3

commutes, where T is the abbreviation of (X, 5, ) with

b = U {x} x ¢X(Dx), (id, ¢): T + p is an isomorphism in
xeX

GH(n - BI), and (h, id): T - p 1is a morphism in GH(O0).
(CS) Continuous Systems.
Theorem 1. Put

obj GH(n+m - ?)

the class of continuous systems

mor GH(nem -~ ?) = the class of type n*m - ? GH-morphisms.

Define the composition of two morphisms in mor GH(nem - ?)
as in GH(n - ?) ((AS)‘Definition 1).

Then GH(n-m - ?) = {obj GH(nem - ?), mor GH(nem - ?), ©}
is a category. |
Proposition 1. The category GH(-1) is an ordered class.

Remark 1.

GH(-1) = GH(-1 - B) = GH(-1 - I) = GH(-1 - BI)
- GH(~-1+25) = .......;..
= GH(=1+5) = eseescesces

GH (0) = GH(O - B) = GH(0 - I) = GH(0O - BI)
= GH(0*25) = seecccnces

- 14 -



= GH(Q+5) = ecosececccsne

In general, GH(nem - BI) 1is a subcategory of GH(n-m - B)
and of GH(n-em - I), both of which are subcategories of GH(n-m).

If n <n’',m<m’, then GH(n*m - ?) 1is a subcategory of
GH(n'em' - ?2).
pheorem 2. (h, ¢) e [m, p]GH(nom—?) is an isomorphism in
GH(nem - ?) if (h, ¢) e mor GH(ri*m - BI) and h: (X, 0)~> (Y, G)
is an isomorphism in top for n = -1 and in Top for n # -1,
and iff V(h, $) € mor GH(n+m), for every x ¢ Sﬂ, ¢.: Ry > R

X 0

is an isomrophism in Top and h: (X, 0) » (Y, G) is an iso-

morphism in top for n = -1 and in Top for n # -1 (2 = 6, I).
corollary 1. (h, ¢) ¢ [m, p]GH(O) or [m, p]GH(n-m—I) is an
isomorphism in GH(0) or in GH(n*m - I) (n = 1, 2) iff

h: (X, 0) » (Y, G) is a homeomorphism.

Theorem 3 (First Decomposition Theorem).

(h, ¢) ¢ [m, pl

GH(n-0-BI) 1S decomposed in a way that the

diagram

(h, ¢)

Y
©

(id, ¢)
(h, id)

H4< é—— 3

commutes, where T is the abbreviation of (x, 0, 5, 1) with

B - U {x} x ¢_(D_.), (id, ¢): = = T is an isomorphism in
xeX X X

GH(n+0 - BI), and (h, id): T > op is a morphism in GH(O0).

(AG)(CG) Abstract and Continuous Germs. Omitted.

- 15 -
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3. Some Functors.
Theorem 1. G{(n-m - ?): GH(njm - ?) —— GH(n - ?)
(X, 0), D, m) pb—> (X, D, m)
(h’ ¢)( € [ﬂ3 p]GH(n'm"?))l—-_———-_% (h,d))[ € [ﬂ,p]GH(n_?Q

is a functor (forgetful functor).

Theorem 2 (To prove, one uses results in [12]).

(1) Every functor G(n*m - ?) is surjective but not injective
as a map of the objects to the objects.

(2) Every functor G{(nem - ?) is surjective but not injective
as a map of the morphisms to the morphisms.

(3) Every functor GH(nem - ?) 1is faithful but not full, (n # -1).
Remark 1. By (3) above, every functor in Theorem 1 may not
reflect limits and colimits of diagrams in the origin category,
however the image by the functor of a diagram in the origin
category gives necessary conditions for existence of the limit

and the colimit of the diagram.

§3. Quotients of Local Dynamical Systems.
1. Monomorphisms and Epimorphisms.
Omitted.
2. Coproducts.
Theorem 1 (Cf. [5] II, 3*4 and IV, 3¢6). GH(n-?) and GH(n.m>?)
have coproducts, except n = -1, 1.
Details are omitted.

3. Quotient Local Dynamical Systems.

- 16 -
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(AS) ‘Abstract Systems.
pefinition 17 ([5] II, 3+5). An equivalence relation v in X
is said to be compatible with = iff for every pair (x,, x2)~eX:<x,
with X, v X5, we have w(x,;, t) ~ m(x,, t) for all t e Dxln,sz.
As far as the author knows, the following is new. '
rheorem 1. For every equivalence relation & in X, we have
the smallest equivalence relation in X compatible with 7 and
including‘ .
In fhe following theorem, as far as the author knows, "if"
was proved by H&jek in [5] II, 3¢5, but "only if" is new.
Theorem 2. Let n be an equivalence relation in X. There
exists a unique abstract system T on ¥ = X/v such that
(pr, id): m » T is a morphism in GH(0), where pr denotes
the canonical projection: X - %, iff v is compatible with .
Then, (pr, id): = - T is an epimorphism in GH(0).
This theorem is proved by establishing the following four
lemmas.
Lemma 1. Let ~ be an arbitrary equivalence relation in X,

then

B e ooy = U{B) « Byl¥ < ¥

with
N
a; = U{DX!X € X})
n - L ) .

where X denotes an equivalence class in X w. r. to ~ and

' n, ' . Y ' '
also an element  x = pr(x) in X, and ('\»X=)D denotes the
restriction to D of . wx=.

Lemma 2. Let ~ be as in Lemma 1. The map w®: D + X is

¢

- 17 -
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compatible with the equivalence relations (’\'X=)D and n (in
terms of [2] II, 6,5) iff ~ is compatible with the abstract
system .

Lemma 3. Let ~ be as in Lemma 1, then there exists -a map

ﬁ: ¥ = D/(’h%=)D + X such that the diagram

D —>

=

X
(pr, id) pr
X

0] >

commutes, iff ~ is compatible with the abstract system .
Lemma 4. Let ~ be as in Lemma 1. If ~ 1is compatible with
the abstract system w, (X, %, t) is an abstract germ, where
¥ and t' are as defined in Lemmas 1 and 3.

(CS) Continuous Systems.

In the following throughout this section, ~ is an equivalence
relation in (X, Q) and pr: X - X = X/v is the canonical
projection. If ~ is compatible with the abstract system
m(= (X, D, m)), then. (%, %, ﬁ) and (%, B, ) denote the

abstract germ and the abstract system defined by (X, D, ™) and

~ in (AS), and (%, 8) denotes the topological space (X, Q)/v.

Theorem 1. ((%, 8), %, M) is a continuous system such that
(pr, id): w ~» T is an epimorphism in GH(0) iff
(I) ~ 1is compatible with the abstract system =

(X, 0) x R,

(Ix) B is open in

Xz

- 18 -



and

' n, . .
) » (%, 0) 1s continuous.

(X, 0) xR
(]I.l) r1\r': B(C S ——

Xz

To prove this theorem, we use Proposition 10 in»[S] I, 3,6
and the following Proposition A which is a direct consequence of
a known>theorem (first proved by the author, as far as he knows,
t12] 5, Theorem A).
Propositién A. Let ~ be an equivalence relation in a topolo-
gical Spéce (X, 0), then the quotient topology Tq of
(X x R)/vx=  coincides with the product topology (X/v) x R,

or in short

(X, 0) X RO i (X, O) < R
N 0°

X =

Theorem 2. ((%, 8), B, %) is a continuous system such that
(pr, id): w » T is an epimorphism in GH(O0), iff
(I) ~ 1is compatible with the abstract system =
(fio’a) D contains an open neighborhood of X x {0} in
(X, 0) x Ro saturated w. r. to (NX=)D and |
(fil,a) every open subset of D(< (X, g) X R;) saturated w. r.
to (’\:X=)D is the intersection of D and an open subset of
(X, o) x R, saturated w. r. to  ax=.

To prove Theorem 2, we establish the following Lemmas 1 and
2.

Lemma 1. (II,) and (IIl) in Theorem 1 are equivalent to

(f&O) ¥ = D/(NX=)D is a neighborhood of ¥ x {0} in
(X x R)/nux=

and

- 19 -
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9
(f&l) The quotient topology of Y = D/(’\fX=)D (De (X, 0) *xR))
coincides with the subspace topology of it induced by the
quotient topology of ((X, o) X Ro)/NX=.

Lemma 2. (fil) in Lemma 1 is equivalent to (f&l’a) in Theorem 2,
Corollary 1. If ~ 1is compatible with the abstract system
and 1s open, then ((%, 8), B, %) is a continuous system such
that (pr, id): m > T is an epimorphism in GH(O0). e
Definition 1 ([5] II, 3+5). An equivalence relation ~ in X
is said to be strongly compatible with the abstract system w

iff ~ 1is compatible with the abstract system ®m and x, v X

1 2

implies DX = DX .
1 2

Corollary 2 (Cf. [5] IV, 3+8). If ~ 1is strongly compatible

. NN N . .
with @, then ((X, Q), D, w) 1is a continuous system such that

E N

(pr, id): 7 > is an epimorphism in GH(0).
Remark 1. Even for an equivalence relation in X compatible
with 1w, its openness and strong compatibility are independent.

Further, compatibility with w of an equivalence relation

in X implies neither openness nor strong compatibility with .

4. Coequalizers.

(AS) Abstract Systems.

Theorem 1. GH(-1) and GH(0) have coequalizers, but other
GH(n - ?) does not, ? = BI, I.

Theorem 2. GH(0) 1is cocomplete, but other GH(n - ?) 1is not
cocomplete, ? = BI, I.

Details are omitted.
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(cs) Continuous Systems.

pefinition 1. Let GH(O)Op be the subcategory of GH(0) such

that mor GH(O)op consists of type 0 GH-morphisms (h, id): w -+ p
with open map h: (X, 0) - (Y, 0).

Theorem 1. GH(—l)' and GH(O)OP' have coequalizers.

Pheorem 2. GH(O)op is cocomplete.

Details are omitted.

§4. Homomorphism Theorems.
pefinition and Standing Notation: Let X and Y be sets, and
h: X+ Y a map. The equivalence relation ~ in X ‘defined by

x, v x, 1iff h(x ) = h(x,) 4is called the equivalence relation

in X associa h. In the canonical decomposition of

h: X+ Y into

h
X > Y
N
h/ . Y
1
PP// * e h(X)
R
X/~ > h(X)

the uniquely determined bijective map: X/v + h(X), called the
map induced by h on passing to the quotient space ([2] II,

6,5, C57), is denoted by R, where incl Y is the inclusion:

h(X)

h(X) » Y. For simplicify, inclh%X)oﬁ is also denoted by B.
1. Second Decomposition Theorems.
(AS) Abstract Systems.

Definition 1. A morphism (h, ¢): 7 > p in GH(n - ?) is
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said to be of type n-?- II® iff
(II*) for every pair (x,, x,)(eX x X) such that h(x,) =h(x,), w
have ¢X1(t) = 9, (t) for all t eD nD

2 1
The class of type n - ? -II* GH-morphisms is denoted by mor

X,

GH(n - ? - II*)( cmor GH(n - ?)).

Remark 1. TFor n = -1, 0, 1, mor GH(n - ? - II*) = mor GH(n - ?).
However for n = 2, 4, mor GH(n - ? - II*) does not define a
subcategory of GH(n - ?). On the other hand

mor GH(O0) = mor GH(O0 - ? - II%*) c mor GH(1 - ?)

= mor GH(L - ? - II*) c mor GH(2 - ? - II*) < mor GH(4 - ? - II%#*).
Theorem 1 (Second Decomposition Theorem). Let (h, ¢): > p

be in mor GH(n - ? - II*). Then the equivalence relation ~ in

X associated to h is compatible with 7, so that a unique
abstract system (%, B, ™ exists such that X = X/v and (pr, id):
m > 7 is an epimorphism in GH(0). Further, there exists a unique:

monomorphism (%, %): T > p 1in GH(n - ?) such that

(h, ¢)
T 7 P
—7
(pr, id)
&,

M v

T
commutes (the second decomposition).
(CS) Continuous Systems.
Definition 1. mor GH(nem - ? - II*) is understood without any
further explanation.
Theorem 1 (Second Decomposition Theorem). Let (h, ¢): wm > p
be in mor GH(n*m - ? - II*) and ~ the equivalence relation in

X associated to h: X » Y. There exists a continuous system

- 22 -



% on (%, 8) = (X, 0)/~ such that (pr, id): w -+ T is an
epimorphism in GH(O) iff
(f&o,a) D contains an open neighborhood of X x {0} in
(X, 0) *x R, saturated w. r. to ('\:X=)D and
(fﬁl,a) every open saturated subset of D (< (X, Q) X Ro) W. T.
to  (vx=), is the intersection of D and an open subset of
(X, 0) X R, saturated w. r. to ~x= (in X x R).
If sﬁch T ‘exists, then it is unique and there exists
$= B -+ R such thét (ﬁ, $): T - p 1s a monomorphism in

GH(nem’ - ?) and the diagram
(h, ¢)

™ -
(pr, id)
R,
")
™

commutes (the second decomposition). Here in general m' = 5

and if h(X)(c (Y, g)) is Hausdorff, then m' = 25.

Remark 1. 1In general, (fﬁo,a) and (ft1,a) may not be Satisfied,
and are independent.

Corollary 1. Let (h, ¢): w + p be as in Theorem 1. If h:
(X, 0)‘+ (Y, g) is open, then we have the second decomposition

of (h,  ¢). (This corollary will be improved later, see Corbllary
1 to Theorem 1 in no. 2, (CS) below.)

Corollary 2. Let (h, ¢): m > p be as in Theorem 1. If for

every pair -(xl, x,) (eX x X), with h(x,) = h(x,), we have

DX = Dx > then we have the second decomposition of (h, ¢).
1 2

e
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2. Homomorphism Theorems.

(AS) Abstract Systems.

Proposition 1. If (h, ¢): m > p 1is a morphism in GH(n - I),
then h(X) 1is an abstract-dynamically admissible subset of Y

w. r. to p.

Theorem 1 {(Homomorphism Theorem I). Let (h, ¢): m - p be in
mor GH(n - BI - II*), then p‘h(X) is an abstract system and there
exists a ﬁnique abstract system T on X = X/~ and an abstract
system 6 on ¥ = h(X) such that the diagram

(D I) (h, ¢)

. . Y ~ . Y .
(pr, id) (lnClh(X)’ ¢ ) (1nclh(X),1d)
! (R,id) P
A" N
(h, ¢)
¥ ? — elnx)
commutes, where (%, id): T - p is an isomorphism in GH(O0),
. Y .oy . . ' . . _
(lnClh(X)’ id): plh(X) »- p 1is a morphism in GH(-1) and

(h, $: T - plh(X) is an isomorphism in GH(n - BI).
If further, (h, ¢) 1is an epimorphism in GH(n - BI - II¥%),
then (ﬁ, %): T+ p 1is a bimorphism in GH(n - BI) and if
. . . NNy N .
further, h: X » Y 1is surjective, then (h, ¢): T > p is an
isomorphism in GH(n - BI).

Theorem 2 (Homomorphism Theorem II). Let <(h, ¢): 7 + p be

in mor GH(n - BI), then plh(X) is an abstract system and
there exists an abstract system g on X = X/v such that the
i

iagram (h, 6)

(D II) m > P




.y
/

{

commutes, where (%, id): 7w ~» p‘h(X) is an isomorphism in
GH(0), (inClh¥X)’ id): plh(X) + Y is a morphism in GH(-1) and
(pr, ¢$): T > ¥ is in mor GH(n - BI).

If, further, (h, ¢) is an epimorphism in GH(n - BI), then
(ﬁ, id): g + p 1is an epimorphism in GH(0), and if, further,
h: X + Y is surjective, (ﬁ, id): ¥ » p 1s an isomorphism in
GH(O).
Remark 1. If n = -1, these theorems are superfluous. If
n = 0, mor GH(n - BI - II*) equals to mor GH(0) and if n =1,
mor GH(n - BI). equals to mor GH(1 - I).
(CS) Cbntinuous Systems.
Theorem 1 {(Homomorphism Theorem I). Let (h, ¢): m = p be
in mor GH(nem'- BI -II%*) and ~ the equivalence relation in X
associated to h: X + Y. There exist a unique continuous system
T on (%, 8) = (X, Q)/~, a unique continuous system § on
h(X)( < (Y, g)), and a unique isomorphism (%, id): W - B in
GH(0) and a unique isomorphism (h, $): 7 - p]

h(x) D

GH(nem' - BI) such that the diagram (D I) in (AS) commutes,

regarded as a diagram in GH(nem'), (inC1h%X)’ $): p > p being in

mor GH(n*m' - BI) and (incl id): plh(X) > p being in mor

Y
h(X)’
GH(-1) , iff (f&o,a) and (f&l,a) in Theorem 1 of no. 1 (CS) and
the following conditions (S) and (fﬁh) are satisfied:

(8) h(X) is a quasi-invariant set of p[v for some V € G.
(iﬁh) For every 0 € 9 saturated w. r. to ~, h(0) is open
in h(x)( < (Y, G)).

Here in general m’ = 5, and if h(X)( e (Y, g)) or

equivalently (X, @)/~ is Hausdorff, then m’ = 25.

o~ 25 -
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Corollary 1. Let (h, ¢): m™ > p and "~ be as in the
preceeding theorem. If h: (X, o) = (Y, g) is open, then we
have the same decomposition of (h, ¢) as in theorem 1.
Theorem 2 (Homomorphism Theorem II). Let <(h, ¢): mw > p be
in ' mor GH(n<0 - BI) and . '~ the equivalence relation in
X associated to h: X » Y. There exist a continuous system

n,
¥ on (%, 8) = (X, 0)/~v, and an isomorphism (%, id):

’\.\z

> Pl

h(X) being continuously admissible w. r. to p such that the

diagram (D II) in (AS) commutes, regarded as a diagram in GH(n-0),
N

where (pr, ¢): 7 » T is an epimorphism in GH(n-0 - BI) and

(lnClh(X)’ id): p!h(X) + p 1is a morphism in GH(-1) iff the

same conditions as in Theorem 1 are satisfied.

Corollary 1. Let <(h, ¢): @w > p and ~ be as in the

preceeding theorem. If h: (X, 0) » (Y, g) 1is open, then we

have the same decomposition of (h, ¢) as in Theorem 2.
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