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Razumikhin type theorems for

differential equations with infinite delay

Junji KATO

Tohoku University

Our concern is on the stability problem for functional

differential equations with infinite delay
(1) x(t) = £(t,x,) .

For functional differential equations with infinite
delay, there are several ways to specify the phase space.

A typical one is the Hale's space}ig(see [1]) consisting of

B

functions defined on (-=,0], which is provided a norm
and the conditions;
(i) if x(t) is defined on (-w,a), a > 0, continuous
on [0,a) and X 853, then for t ¢ [0,a), Xy eZﬁ

and it is continuous in t, where

xt(s) = x(t + 8) for s e (-»,0];

This work was done when the author was a visiting
professor to Michigan State University, and partly reported
in "An International Symposium on Dynamical Systems" at

University of Florida, March, 1976.
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(ii) there exist two pdsitive constants ¢, d such that

v
'

lohe < e sup [o(s)] + dlelg

-B<s<0
for any B8 > 0, Where
olg = tne T [¥]g5 v eR,u(s) = ¢(s) on (-=,-81}

together with other conditions.

In our case, the space & is assumed to satisfy the

properties

[0CO)] < Moy, lolg < MBIo_gl a1t ¢_g e,

in addition to the conditions (1) and (ii), though c¢ and d
in (ii) may continuously depend ~on B. In particular, if x(t)
is defined on (-»,a) and continuous on [t,a),T < a, and if
X eb’s then we have

T

(2) ]xtlb,si c(t-1) TigEtIX(S)I + d(t—T)M(t-‘-T)IXTI&.

It is assumed for the equations (1) to have the trivial

solution, where f(t,¢) in (1) is defined and continuous on

81



8.

~

R x R.

The following definition will be made:

Definition. The trivial solution of (1) is said to be
(I) stable if for any € > 0 and any 71T > 0 there exists a

§ > 0 such that

IXT!63< § implies |x(t)| < e for all t > T;
(IT) asymptotically stable if in addition to the stability
for any T > 0 there exists a Go > 0 and for any € > 0
there is a T such that

IXT|13< §, and t >t + T imply [x(t)] < €3

where x(t) denotes any solution of (1). Here, §, 60, T may
depend on T but not on each solution. If these numbers are

independent of 1, then the stabilities are called uniform.

The following theorem is a simple version of the Liapunov-

Krasovskii's theorem (see [2] and also [3]).

Theorem A. Suppose that there exists a continuous

function V(t,¢) defined on R xYq such that V(t,0) = 0,
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(3) a(]¢(0)]) < V(t,9)

for a continuous, increasing, positive-definite function a(r)
and that for a continuous function c(t,r) >0, which is non-

decreasing in r,
) V(t,xy) £ - e(8,V(t,x,))

along any solution x(t) of (1), where

= TIm  ${V(t+h,x

h-»+0

V(t,x - V(t,x)}.

t) t+h)

Then the trivial solution of (1) is asymptotically stable
if for any r > 0

. t+T
(5) ! c(s,r)ds » » as T » o

t
and uniformly asymptotically stable if the divergence in (5)

is uniformly in t and if we have
(6) V(t,$) 2 b(|e],)
| < o(olg

for a continuous function b(r) with b(0) = 0.
Since the solutions may belong to the more restrictive
class as the time elapses, the following theorem is expected

to be more effective. Such a theorem has been given by



Barneal[l4] for the uniform stability of an autonomous system

with finite delay (also refer [5]).

Thorem B. In Theorem A, it is sufficient for V(t,¢)
to satisfy (4) under the case (¥*¥) x(s) 1is a solution of (1)
at least on the interval [p(t,V(t,xt)), t], where the
continuous function p(t,r) < t is increasing in t > 0 and
in r > 0 and satisfies p(t,r) » © as t + o, p(t,r) » «

as r »> 0. For the uniform stability we assume
(7) p(t,r) = t - a(r).

Here, also we assume that the trivial solution of (1) is

unique for the stability and that f(t,¢) in (1) satisfies

(8) [£(t,0)] < L|¢IB

for the uniform stability.

ale)

Proof. Let € > 0 be given. Suppose that V(T,XT) <=

but V(t,xt) > a(e) for a t > 1. Then there exists

t; = inf {t > 73 V(t,x.) 2 a(e)l}.

Vit,x,) < HEy,

Set t2 = max {t < ¢t 5

1°

Since we have



x|, < c(t=1) sup |x(s)]| + d(t-1)M(t-1)|x
t% o Tf____s;t , TIZIS
for t > 1t Dby (2) and since the uniqueness of the trivial

solution implies

(9) sup |x(s)] < K(&,1, |x |g)

T<sLt

with XK(t,t,r) - 0 as 1r - 0, we shall have

t e [ty,t;] and IXTEB< § dimply T < p(t,V(t,x.)).

a(e)

For this purpose, it is enough to choose & so that § < >

and

a(e)
2

l¢|£f A(pgl(r,éégl),T,d) implies V(t,¢) <

if 1t < p;l(T,aée)), where A(t,t,r) = c(t=-1)K(t,T,r) +

d(t-t)M(t-1)r. Thus, by the assumptions V(t,xt) is non-
increasing on [t2,tl], which contradicts V(tl,xt ) = a(e).
1
If £ 1in (1) satisfies (8), we may choose K in (9)

so that

K(t,t,r) = K(t—j)r

for a continuous functiQn K(t). Hence, in this case A is
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a function of t - 1t and r, and under the condition p(t,r)

=t - gq(r) &8 can be chosen independent of Tt so that

r < A(T + q(aée)), T, §) implies b(r) < aée)

In the second step, we should note that

(10) 6(t,xt) < - c(t,V(t,xt)) as long as
, o -1
.\V(t,xtD L (t,T)

and that p;l(t,T) tends to 0 as t - w.

Let 60 and Tl be such that 60(1) = §(1,1) and

IO+T1

! c(s,e)ds > n(o,t) - =€,

where o = p;l(T,E) and
n(o,t) > sup {V(o,¢); |¢|Z3§=b(o~¢) + c(o=-1)M(0=-1)8 (1) }.

Suppose that for a tl > T + 1, T = Tl + 0 - T, Wwe have

) > €. Clearly,

V(t,,x
1°7t,

t

-1
V(tl,xtl) > p, (tl,T).

Let t, = max {sup {t < t

-1
5 ; V(t,xt) =P, (t,T)},t}. Then, by

l’



(10), V(t,xt) is non-increasing on [tg, tlj. Hence,.we have

-1
P (t551) 2 V(t,,x, ) 2 V(b ,x. ) 2 €,
2 1
which implies
T ~_>= p(tzas)-
Therefore, o def p;l(T,E) > t,, that is,

V(t,x

A

t) - c(t,V(t,xt)) and V(t,xt) > e for t e [c,tlj,

and hence we have

t
I
> ;V(tl,xtl) < V(O,XG) 5 c(s,V(s,xS))ds
ty
< V(O,XO) - Of c(s,e)ds,
which implies
ty
Of,v c(s,e)ds < n(o,1) - €.

This contradicts ¢, > T + T(t1,e).

1
When p(t,r) =t - q(r), o =1 + q(e). Therefore, if
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the divergence in (5) is uniformly in t, then we can choose

T.

T independent of
Remark 1. It is sufficient that in the Theorem B for
each 1T there exists a Liapunov function V(t,¢;t) which is
{(t,xt); t > 1, x(t) 1is continuous on [T1,=),
(4) with a, c

defined on
and satisfies the conditions (3),

X egl
T, and corresponding to (6) we assume

independent of
b( sup |x_]|,)
T<s<?t 5 B ’

A

V(t,Xt;T)
because to estimate solutions we can choose different Liapunov
function for each solution.
Now, we try to construct a Razumikhin type theorem for
[e61l,

equations (1). Such theorems have been given in [3],
we shall state the following theorem by exftending

the
[7]. Here,
the ideas in [5], [8].
Theorem C. In Theorem B, suppose that p(t,r) is of
the form (7). |
x(s) in (¥) within a solution

Then, we can restrict

of (1) satisfying
S € [p(tgv(t’xt)):t]’

Vis,x ) < F(V(t,x.)) for

(11)



where F(r) 1s a continuous function such that F(r) > r
and F(r)/r 1is non-decreasing for r > 0.

To prove Theorem C, by Remark 1 it is sufficient to
construct a Liapunov function for each 1, which satisfies
the conditions in Theorem Bon [1,»). The existence of

such a L;?unov function follows from the following lemma.

Lemma. Let F Dbe as in Theorem C, and let p be as
in Theorem B with q(t;r) = t - p(t,r) which is non-
“decreasing in ¢t.

If a Liapunov function V(t,¢) satisfies (3), (4)

under the condition (11) and

V(t,9) < b(t,|¢L8),A

then for each 1 there exists a Liapunov function W(t,xt;r)

which satisfies

(12) (lx(e)]) 2 W(t,x 57) < b¥(t,T, )
a(|x(t)]) < X 3T) £ T Tzslitlxslﬁ

and

(13) W(t,x,5T) < - c*(t,W(t,x 31)),

10
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if x(s) 1is a solution of (1) on [p(t,W(t,xt;T)),t], where

b¥(t,t,r) = sup b(s,r),
T<s<t

c¥(t,r) = min {c(t,r), ra(t,r)},

a, b, ¢, p, @ for V, and

T, -1 i Ty log —[—
Q(pt (t,F (5)),F (é‘)) F ~(r)

a(t,r)

Proof. Define

W(t,x ;T) = sup V(S,Xs)ea(s,v(s,xs))(s - t),

T<s<t

and for a fixed x(s) set

Wit) = Wit,x, ;1) V(E) = V(t,x.),

P(S,t) = V(s)ea(s,V(S))(S - t).

Since a(t,r) > 0 (r > 0), obviously we have (12).

To prove (13), we choose s(t) € [1, t] so that

W(t) = P(s(t),t).

For small h > 0 we may assume that s(t+h) - s(t) as h -+ 0.

11
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Case 1. s(t+h) < t for small h > 0. In this case,

since W(t) > P(s(t+h),t), we have

W(t+h) - W(t)
h

A

P(s(t+h),t+h) - P(s(t+h),t)
: h

A

W(t+h)%{l _ ea(s(t+h),V(s(t+h)))h}

A

- W(t)a(s(t),V(s(t))) + o(L)

A

- W(t)a(t,W(t)) + o(1).

Here, we note that a(t,r) is non-decreasing in r, non-
increasing in t and that V(s(t)) > W(t).
Case 2. t < s(t+h) < t + h for some arbitrarily small

h > 0. Then, clearly s(t) = t. Therefore,
V(t) = W(t) > P(s,t) for any s < t.

Hence,

(14)  V(5) > v(s)e-@(s>V(8))alt,V(t)) for any

s e [p(t,V(e)),t].

Assume that x(s) 1is a solution of (1) at least on [p(t,

W(t)),t] and, in particular, T ; p(t,W(t)).

12
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If we can prove that
(15) v(e) » FE),
immediately we have
t < ppts, FHEEL)) 1r s 2 p(e,v(e)),

and hence by the definition of oa(t,r)

V(s)

a(s,V(s))q(t,V(t)) £ log —g——>»
F o (V(s))

which implies V(t) > F 1(V(s)), that is,
F(V(t)) > V(s) for s e [p(t,V(t)),t] with (15).

This fact also proves (15) for all s e [p(t,V(t)),t], and

hence we have
(16) F(V(t)) > V(s) for all s e [p(t,V(t)),t].
Since s(t) = t, we have -

W(t+h) - W(t)
h

= V(s(t+h))%—{e

13

a(s(t+h),V(s(t+h)))(s(t+h)-t-h)

- 1}



, V(s(t+h)) - V(t)

h
SV(t)a(t,v(e)) (HERL = gy 4 y(p)sldh) - &
+ 0(1)
< - W(t)a(s,u(e)){1 - S = b

- c(t,W(t)>§-<—t—i§)——‘—§ £ o(1)

- c¥(t,W(t)) + o(L),

A

s(t+h) - ©
h

To complete the proof of Theorem C, it is sufficlent to

because V satisfies (4) under (16) and

note that if q is independent of t, then so is a and that
the property (5) for c(t,r) implies the same property for

c¥(t,r).

Remark 2. As 1s clear from the lemma, for the stabllity
it is sufficient that the property (5) holds for c*(t,r). In
addition to the case given in Theorem C, this 1is satisfied

if ¢ is independent of t and

BT s
t

—T1 > o as T > oo,
q(py (s,r),r)

The asmptotic stability of

14

e [0, 17.

93
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x(t) = - ax(t) + b(t)x(p(t)),
[b(t)] ; B < a, p(t) = €t, 0 <e <1,

can be proved as the case.

However, unfortunately the case where

o(t) = ‘/1'"T+ T - 1

is not covered by our result, though the asymptotic stability

can be proved by the method in [3].
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