goooboooogn
0 2900 19770 98-109

9%

NOTES ON THE THEORY OF DOUBLY STOCHASTIC OPERATORS

AND REARRANGEMENTS
YUJI SAKAI, SHINSHU UNIV.

1. Introduction.

The purpose of the present paper is to present basic
properties and recent results on the theory of doubly stochastic
operators and rearrangements. In section 2, we shall refer to
doubly stochastic matrices and rearrangements of vectors, and in
section 3, to the infinite version of doubly stochastic matrices.
And then, in section 4, we shall refer to doubly stochastic
operators and rearrangements of functions. For doubly stochastic
matrices we can consult an important paper of Mirsky [6]. Also for
doubly stochastic operators and rearrangements of functions, we
can consult Luxemburg [5] or Chong and ﬁice [1].

2. Doubly stochastic matrices and rearrangements of vectors.

We shall denote the set of all (n,n) real matrices byM. V

. . t
stands for the set of all n-dimensional vectors. For x= (xl, oo ,xn)

we shall denote by xi,...,x; the numbers arrahged in non-ascending

) t .
order of magnitude, and let x* = (xi,...,x;) . Ji(x) is the i-th
projection. We shallwrite x ) y whenever d}(x) 2 J;(y) (i=1,...,n).

For A€}, Ax is its adjoint. Weshallwrite A= (aij) 2 O whenever

aij 20 ¢(i,j=1,...,n). P-stands for the set of all permutation

matrices, G?for the set of all sub-permutation matrices. /& stands

for all (r,.) € Jllsuch that r;;=0ort (i,j = 1,...,n). We shall

ij



99

denote by x.y the multiplication of x,yeV. 1€V is the unit vector
(J.,...,l)t. Ae TN will be called multiplic’ative whenever é‘i(A(x.y))
= d§;(Ax). §;(Ay) (i = 1,...,n). We shall denote by CO(S) the
convex closure of 5§ , also let denote ¢ (S) the set of all
extreme points of a convex set § .

‘\ DEFINITION 2.1. Weshall define the following sets of matrices.

1. s-77={Aell:A20, Al £ 1} ; sub Markov.

1 } $ Markov.

{
7z ={AeT: A20, Al
3. @ ={Ae(_m_: A20, Al = 1, Ax*] 1} $ doubly stochastic.
. A& ={A€Tt: A20, A1 & 1, Ax1 £ 1} ; doubly substochastic.
THEOREM 2.2 ([13]). £(s-7%) =R ns-22, £(;) =Rrmr £ ) = ,
and é(,&) = ¢ . That is, extreme points of the whole set in
Definition 2.2 coincide with each multiplicative elements. Moreover,
s-7 = CO@ns-2), = CORA) , = COR), and £ = CO(Q) .
DEFINITION 2.3. Suppose x, ye V.

1. 'Y & X whenever ﬁyféi’x (k = 1,...,n).

=] [

*
i
2. Y < x whenever ¥y « X and £y, =3 X..
: @1 - 1
We shall denote by ©(x) (resp. 8(x)) the orbit of x by D € &(resp.
Sef). The following two theorems are fundamental in the theory of
d.s. matrices (See [6]).
THEOREM 2.4. y< x iff yeCO(Px:Pe¢p) iff ye(x),
when x,y 2 0, y« X iff yeCO(x:QeQ) iff  yed(x).

THEOREM 2.5.

1. y < x iff g;:ly‘(yi)

(7Y

2. y«x iff 2'¢(yi)

N

2?‘ (xi) for any non-decreasing convex
]

function ¢ : R—R.

k.3
¥ ¢ (Xi) for any convex function ¢ : R—R.
[
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3. Infinite doubly stochastic matrices and rearrangements
of vectors

In this section, let us usebseveral notations and terminology
which appeared in section 2 as their infinite analogies. For

instance, © stands for the set of all infinite d.s. matrices (d'j)

©0o
(i, j =1, 2,...). This means that d,, 2 O d,.=1and ¥d,. = 1
1, J 9y Sy ) 18 mea ij adz.ﬂl‘] é\l\]
(i, 3 = 1, 2,...). If A= (a..)em, x = (xl, x2,...)eV, we shall
denote by Ax the infinite dimensional vector (Z a ozof X.,000)
= 15735, 3= %25
. o
whenever Za. .X. is convergent for i = 1, 2,... . Givena topologi-

J=!
cal space (X,T). We shall denote by ET the T -closure of S5¢ X. %

stands for the vector space consisting of the boundedly line-summ-
able infinite matrices A = (a. .) characterized by Ae3¥ if and only
if fAk = max{sup ,,Z_".'a i sup g\lalJl} { = (see [3]). The
following was established by Kendall [4]

THEOREM 3.1. If ¥ is given the weakest locally convex

Hausdoroff\topology TK whichv makes all components, row-sums, and
column-sums continuous as linear functionals, then O = EE)TK(P) .
If the cartesian product :g._of countably infinite sets of real
lines is given the topology of pointwise convergence ’)"0 s aé Eﬁj;( Pr).
Further more, £(®) = p and é(,X) =@ .

Let X be a vector space of matrices such that Al = sup Z Ia

3=
is finite, for which we give the w*-operator topology.. Where, a
subbasic neighbourhood of O € Jt in this topology is given by :
N(f, “15)={AGZ-I§I" Zla qu )e.Q.l,U=
al =

(ul, u2,...) € ). The following is fundamental (see {13]).

< e} £= (£, 1y

THEOREM 3.2.
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1. $(s=m) =R ns-m, £m) =P 1y £2@&) = p,
£(4) =@ , £(B~m) =@A772. And each set of the
above formulas coincides with the multiplicative elements of the set
in each bracket.
2. The above set in each bracket is compact in the Wk’
operator topology, and it is the w*-closure of each convex closure

of extrme points except a@ .

-k -k
3. p =Qnm, @ =44f'\%.
00 .
For any x = (xl, xz,...)eﬂ we shall define Mk(x) =
SUp X, + es0 + X, andm (x) = inf X, + ... + x, (k =1, 2,...),
11 1k k 11 1k

where the upperbound or lower bound are taken with respect to all
sets of k distinct positive integers il geosy ik. The following.-
are analogies of Theorem 2.5 (see[13]).
THEOREM 3.3.
. ) oo K3 .
1. Sx=y,5€4,x e implies Mk(ﬁ(lxll), f(lle Yyeeao) 2

Mk(¢( Iyll ), ¢(| yzl ),...) for any non-decreasing convex function

<f : R—=R .
2. Dx=y,Ded, x e L™ implies Mk(yg(xl), ¢(x2),»...) 2
Mk(¢(yl), ¢(y2),...) for any convex function ¢ : R—>R .

In particular, Mk(x) 2 Mk(y)?= mk'(y) 2 mk(x) .
1 oo oo
If xel , then 3 x. = §$°y. .
: = 1 C=l 1
As an infinite version of Theorem 2.4, we have the following
(see [127) .
THEOREM 3.4. Suppose 0 <X, ¥y e ,a_l. Then vy < x iff yef(x).

Suppose 0 £ X, ¥ € Ll. Then y <« x iff ye (x).
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L. Doubly stochastic operators and rearrangements of functions.

Let (X,A,Y#) be a measure space. By M(X,A,M) we shall denote
the set of all extended real valued g-measurable functions on X. Also
we shall denote’ the set of all functions f 2 O, fe M(X,&%) by M+(X,,Ur).
If E is a set, then /TE will denote the characteristic function of
E. Let R be the set of all real numbers and R be the set of all
extended real numbers. We shall denote by df(t) =,u{f > t} (t€R)
the distribution function of fe& M(X,u). Suppose (X,A.,%) and (X,A,4)
are measure spaces such that a(X) = #(X') in the sense that both may
be infinite. Let fe M(X,u), fe M(X,4). Then we shall say that f
and f’ are equimeasurable and write f ~ f’ iff u(£7031) = (€7 13])
for every bounded closed interval J of R where J may be the
singleten set {-=} or {=]. If A(X) = 4(X) = a { = and feM(X,4),
f'e M(X, &), £~ £’ isequivalent to d_ = d_,. Let feM(X,4), w(X) =

f f

a { =. Then the right inverse of its distribution function df will be

denoted by f* and will be called the decreasing rearrangement of f.

That is, if O { s £ a, then f*(s) = inf {t td (t) & s} . Then f* is
a decreasing right continuous function on [0,a] such that f*~_ f. ' The
next theorem play the important role on the theory of d.s. operators
and decreasing rearrangements (see [8, 1]) .

THEOREM 4.1. If (X,A,M) is a non-atomic finite measure space
and if f eM(X,4) then there exists a measure preserving trans-
formation (¢: X —> [O, M(X)] such that f = f%(Q MU-a.e.

DEFINITION 4.2. Suppose (X,A,4) and (X ,A,u4) are finite
measure space with #(X) = u(X') = a, that fe Ll(X,ﬂ), ge Ll(X',,u.').

Then, we write
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1. f € g whenever Ls fxdt ¢ I:g*dt for all O & As s a.
2. f < g whenever f«g and J: fdu = J:gd}c.
In this case f is said to be majorized by g.

Evidently <« and <« are partially orders for certain elements
of M(X,4) and M(X’ 4). Here, we list up fundaméntal properties for
these partially orders.

PROPOSITION 4.3.

1. :t"\..geL1 is equivalent to f<« g and g« f or f<g and g« f.

2. If £f<g, then rf + s<rg + s for all r, seR.

3. If f<g, then ﬂ‘ﬂll S gk and ¥fl, & Hgh,.

4, Suppose f, f e Ll(X,ﬂ), 9, g € Ll(X',,a') and f < 9,
(n=1, 2,...). 1If fn——-) f‘ and 9,/ ¢ ‘in L1 of L“ norms, then f<g.

5. f *.XX implies f = XX A -a.e.

1

. . < (£* e * e .
6 (fl + + fn) (fl + + fn) for fl, , fnéL

L .
. S € eoof € £x,,  fx,
7 If O s fl, y fn L7 (X)), we have f1 fn fl fn

The following is a simple characterization of —~ (see [14]).
THEOREM L.4. Suppose 4(X) = 4(X') < =, that fe L (X) ,
ce o 7
gel™(X'). Then f<g iff jf( )d/t 2 Ig( )d,u' and Ifd,u: Jg@d’
(&)

for all e R. Where f is the trancation of f at «.
We shall denote by M' the set of all fe M (R) such that
d.(t) < = for any t€éR' = (0,=). For any feM', let f* be defined

on R by f*(s) = inf{t: df(t) 4 s} if s > 0, f*(s) = 0 if s £ O.

Then the symmetrically deéreasing rearrangement f of feM' is iA‘(s)
= f*(2 [s]). It is easy to see that the function f decreases
symmetrically on each side of the origin and satisfies f~f. If

s s : o
J f*dt ¢ Jg*dt for any se rR" and ffdt = rgdt in the sense that
° ° -09 ~-00
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both may be infinite, we write f4<g. f@g(s) = rf(t)g(s—t)dt is
: %
the convolution of f, ge& M.
‘THEORE’M k.5 ([11]). If £ € M (i=1,..., n) and gJ_é Mt
(j =1,..., m) then flm...@fn4-%1®...®?n and
.(fl Fooat fn) ®(g:l Faeet gm)-4—(%l Foaot fn)®(al Faaat 6m).
THEOREM 4.6 ([14]). 1If f, ge Ll(R)nM+ then feg iff
f®a+§®ﬁ mrewwyheMﬂ'
The following is the extension of the notion of doubly
stdchastic matrices to operators defined on the Ll space.

]. ’ ’ ].
DEFINITION 4.7. A linear operator T : L (X,u) =—— L (X,p)

is called doubly stochastic (in short d.s.) whenever Tf< f for

all fe Ll(x’,/l), where 4(X') = 4(X) < -.

From now on to Definition 4.20 let us assume that A(X) =
H(X) { =. The following ié a fundamental theorem in the theory of
d.s. operators. It was first establishedk for the Ll[O, a] space by
Ryff [8].

THEOREM 4.8 ([2]). Let T be a linear map of the simple

functions of Ll(,u') into Ll(/l). The following are equivalent

1. T extends to a d.s. operator on Llcﬂﬁ.

. < ! = ’, . I.
2 0% TX X, and ITXEdJJ #(E) for all E e A
3. There is a linear extension of T to LILAQ such that

Tf< f for all fe Ll(/c').

THEOREM 4.9. A linear operator T : L (X,4) — LY(X,4) is
d.s. iff

1. T g. O, T ‘¢ = Xxs T*xx = xxl .

2. TA:X,= Ay HT”,é‘l, T 2 O.



We shall denote by @(X',X) the set of all d.s. operators
. LX) — LY (x,#). For every f€ LYx4) we set Sf(x',x)
= {Tf :\TGS(X’,X)} . The following theorem is due to Ryff 18l
who first established it for the Ll[O,l] space.

THEOREM &4.10. .@(X',X) is convex and compact in the w*-
operator topology, when it is regarded as a set of operators acting
on L (X).

THEOREM .11 ([2]). If Te€®(X,X), T* (acting on L~ ) always
admits a unique extension to L1 operator which belongs to @(X,X’) .

By the above theorem, @(X,VX) is a selfadjoint compact conveXx
semigroup. The following extension of Ryff’s theorem [8] to the
Ll(X,/t) is due to Day [2].

THEOREM 4.12. Let fé€ Ll(x’,,a'). Then Qf(x’,x) is w-compact.
In addition, if g€ M(X,4), then g<f iff ge O (X/X).

The following 1:,heorem was originally given for positive
functions on (0,1) by L’orentz and Shimogaki [9] .

THEOREM 4.13 ([2]). If f,, f,€ LY (X 4) and geM(X,#) and

g<f, + f2 then there are g, g, € Ll(X,ﬂ) such that g = g, + 9, and

1

gl< f_  and 924 f2.

1
For Ll((O,a)) space we have the following (see [10]).

THEOREM 4.1k.

1. If f~g and f an& g are simple functions on (O,a),> then
there exists an invertible measure preserving transformation (O on
(0,a) for which Ta,fi = fo (= g holds.

2. Suppose f, géLl(O,a) and f~g. Then Tf = g holds for a

d.s. operator which is a w*-cluster point of a sequence of members
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of {To.} where @ is aﬂ invertible measure preserving map on (0,a).

For equimeasurability of funcfions we have the following
two theorems which were first established for the Ll(O,a) space
by Sakai and Shimogaki [10) . e(f:A) is the set [x s f(x) >/1}
and each function ‘feLl(X,/l) will be called smooth if ﬂ{x : £f(x) =
A} =0 for all AeR.

THEOREM 4.15. Suppose fé& L1(X,#) and ge LY(X,4) and

Tf = g ’for Te ©(X,X). Then the following statements are equivalent :
1. fag.
2. Tf('x) = g(o‘) for all &éR.
3.  for all A€ R.

TXe(t:2) = Xe(g:a)
LJ:- T*g = f.

THEOREM 4.16. For every smooth function féLl(X,A')' there is
one and only one d.s. operator T such that Tf* = f. This operator
T is induced by some measure preserving transformation. Moreover,
f* = Sf, Se® implieé S = T*.

The following are characterizations of d.s. operat;)rs which
are induced by measure preserving transformations (see [10]).

THEOREM 4.17. Let T be a d.s. operator on Ll(O,a). ~ The
following statements are equivalent :

1. T is a permutator: Tf~f for all feLl((O,a)).

() )(0() for all K& R

2, T is trancation invariant : Tf = (Tf
1
and all felL (0,a).
3. T is multiplicative: T(f.g) = Tf.Tg for all f, gelL .
L. T is an isometry in Ll(O,a).

5. T*T = 1.
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6. T is induced by a measure preserving ‘_transfomation.
In péfficular, a ds oi)erator T is induced.by aﬁ in\;ertible
measure preserving transformation if am’ib o.nl)} bif ,TT*“= T*‘T = I.

THEOREM 4,18 ([16]). ’If 6 and 0 are meésuré pres-erving
transformatioﬁs on (0,1) with ] in{re.rtible, ‘then o ’
T=1T.5p ¢ £(d((0,1),(0,1))). |

We shall denote by .4 the set of ai.l‘L“(RJF) éperétoré éuch
that (1) S£20 for 0§ £e L°(R'), (2) S14& 1, and (3)
j:o sfdt £ r'fdt for O £ fe Ll(R+)nL°.(R+); In particular, let
denote by A* the set of all SeJd such that S1 = 1. Recenfly,
Sakamaki and Takahashi [15] established the following . h

THEOREM 4.19. Suppose O £ f, geLl(R+) and g is decreasing

+ s 3 . w s - g

on R". 1If Lgdt < L fat for all se R' and J;gdt = L fdt, then
there exists Teéd4 such that g = Tf. Moreover if f, geL“(R+),Z
there exists an operator T 6.3 such that g = Tf.

Recently, Takeuchi [17] introduced the notion of
? -rearrangement.

DEFINITION %.20. If a subfamily F= {xk: k & p} of A satis-
fies the following conditions, we shall call ¥ a stratus. (1‘)
= {ﬂ(E) :_Ee‘A, #4(E) £ ~}. (2) X =4, 4(X) =k (k€).
(3) X = }gr'xk and k ¢ k' implies XkC X If there exists a
measure preserving mapping m : X — X such that «4(m™(E)s E’)
= O for each pair E, E‘€ A with &4(E) = Hu(E'), thén we shall call
that (X,A,4) is- homogenuous. We shall call (X,A,4) a stratus

system whenever (X,A,4) is homogenuous and have a stratus. We

shall define P(X) = sup [k: x;‘Xk} and J-f'(x) = inf [t : df(t) < f’(x)f

10
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for all xe€X. r(x) will be called the F-distance and gf(x) will

be called the 5;-rearrangement.

DEFINITION 4.21. Suppose (X,A,4) is a stratus system. An

operator T : Ll(X”a) — Ll(XVd) will be called a doubly substo-

chastic Markov opefator whenever T satisfies the following

conditions. 1. T 2 O.
1
2. Ldea S qua for all 04 fel (X,x) (kep).
k k
3. T*Xx = xx.

We shall denote bynqﬁmthe set of all doubly substochaétic Markov
operators.

THEOREM 4.22 ([17]). Suppose (X,A,4) be a stratus system
and f, ge LY (X,u) satisfies d, 20, Jgg 0 and Lde,a= LJgd,a.

Then the following statements are equivalent :

1. dg. $ .
Lkaf YIRS Lfgdﬂ (ke )
2. Sf=fM§ for some Téﬁﬁ
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