ON EXTENDING FUNCTIONALS ON COMMUTATIVE SEMIGROUPS Yuji Kobayashi

In the present report we will outline some of the studies on homomorphisms of commutative semigroups into the additive group of real numbers; when they are extensible or when they exist. Most of the proofs are omitted and the reader should refer to the literature cited.

1. <u>Introduction</u>. Let G be a commutative semigroup.

A homomorphism of G into the additive group R of all real numbers is called a <u>functional</u> of G. Let H be a subsemigroup of G. When is a functional of H extended to a functional of G? The answer is easy. In fact, it is almost always (for example, always if G is cancellative) extensible as the following proposition shows. The reason is based on the fact that R is a divissible abelian group.

 $\underline{\text{Proposition}}$ l. Let G be a commutative semigroup and H its subsemigroup. Let f be a functional of H. Then f is extensible to G if and only if f satisfies

(1)
$$h_1g=h_2g$$
, $h_1,h_2 \in H$, $g \in G \implies f(h_1)=f(h_2)$.

Our problem next is extending some types of functionals under some suitable conditions. We consider two cases:

(i) functionals bounded by some functions from the both

sides, (this case brings us some Hahn-Banach type theorems,)
(ii) non-negative functionals (non-negative real valued
functionals).

2. <u>Hahn-Banach type theorem</u>. There are many versions and extended forms of the Hahn-Banach theorem on linear spaces. Kaufman [2], [3] gave some Hahn-Banach type extension theorem on commutative semigroups. Fuchssteiner [1] established it as an elegant theorem (Sandwich theorem) and deduced many related results from it. Here we will give a new theorem from which their results are deduced (see [6] for details).

Let θ and f be functions of a commutative semigroup G into R. f is called a <u>lower</u> (resp. <u>upper</u>) θ -function of G if for all $x,y \in G$

(2)
$$f(x)+f(y) \le f(xy) \le f(x)+\theta(y)$$
 (resp. $f(x)+f(y) \ge f(xy) \ge f(x)+\theta(y)$).

A function f of G is called <u>homogeneous</u> if for any $x \in G$ and $n \in \mathbb{Z}_+$ (the set of all positive integers)

(3)
$$f(x^n) = nf(x).$$

We can always homogenize a lower (upper) θ -function by the following lemma.

Lemma 1. Let f be a lower (resp. upper) θ -function of G. Then there exists the limit

(4)
$$\mathcal{G}(x) = \lim_{n \to \infty} \frac{f(x^n)}{n},$$

for every $x \in G$, and \mathcal{G} is a homogeneous lower (resp. upper) θ -function satisfying $f \leq \mathcal{G}$ (resp. $f \geq \mathcal{G}$).

Theorem 1. Let G be a commutative semigroup and H its subsemigroup. Let f be a lower (resp. upper) θ -function of G such that $f|_H$ is a functional of H. Then there exists a functional \overline{f} of G such that $f \leq \overline{f} \leq \theta$ (resp. $\theta \leq \overline{f} \leq f$) and $f|_H = \overline{f}|_H$.

We give a sketch of the proof. Let (g, K) be a couple of a lower θ -function f and a subsemigroup K such that $g \ge f$, $K \supset H$, $g|_{H} = f|_{H}$ and $g|_{K}$ is a functional of K. Let $(\overline{f}, \overline{K})$ be a maximal element (the existence is assured by Zorn's lemma) in the couples in the sense of the order:

(5) $(g, K) \ge (g', K') \iff g \le g', K \subset K' \text{ and } g|_{K} = g'|_{K}.$ If $\overline{H} \neq G$, we can find $x_o \in G \setminus \overline{H}$, $h_o \in \overline{H}$ and $n_o \in \mathbb{Z}_+$ such that

(6) $\overline{f}(x_o^n \circ h_o) > n_o \overline{f}(x_o) + \overline{f}(h_o).$

 $f_n(x) = \overline{f}(xh_o^n) - n\overline{f}(h_o)$ is monotone increasing on n for every $x \in G$ and bounded by $\theta(x)$. Hence there exists the limit $g(x) = \lim_{n \to \infty} f_n(x)$. Then it is proved that g is a lower θ -function such that $g|_{\overline{H}}$ is a functional of \overline{H} and $(g, \overline{H}) \geq (\overline{f}, \overline{H})$. On the other hand we have from (6) that $g(x_o^{n_o}) > \overline{f}(x_o^{n_o})$, this contradicts to the maximality of $(\overline{f}, \overline{H})$. Thus we must have $\overline{H} = G$.

Corollary 1 (Sandwich theorem; Kaufman [2], Fuchssteiner [1]). Let f and g be functions of G into $\mathbb R$ such that $f \leq g$ and $f(x)+f(y) \leq f(xy)$, $g(x)+g(y) \geq g(xy)$ for all $x,y \in G$. Then there exists a functional h of G such that $f \leq h \leq g$.

Proof. We may assume that G has the identity e and f(e)=g(e)=0. The function \overline{f} defined by

(7)
$$\overline{f}(x) = \sup \{ f(xy) - g(y) \mid y \in G \}$$

for $x \in G$ is a lower g-function and $f \le \overline{f}$. Theorem 1 asserts that there is a functional h of G such that $\overline{f} \le h \le g$.

We give the following as an application of Theorem 1 to non-negative real valued functions of G. The proof is omitted.

Corollary 2 (Kaufman [3]). Let θ be a function of G satisfying $\theta(xy) \leq \theta(x) + \theta(y)$ for all $x,y \in G$. Let f be a functional of a subsemigroup H of G. Then f is extended to a functional \overline{f} of G such that $0 \leq \overline{f} \leq \theta$ if and only if (8) $xh_1 = yh_2$, $h_1, h_2 \in H$, $x,y \in G \Longrightarrow f(h_1) \leq \theta(y) + f(h_2)$.

3. Extending non-negative functionals. Let G be a commutative semigroup and H its <u>cofinal</u> subsemigroup (i.e. for any $x \in G$ there is $h \in H$ such that $x \mid h$ in G). Let f be a non-negative functional of H satisfying

(9)
$$h_1 | h_2 \text{ in } G \Longrightarrow f(h_1) \le f(h_2).$$

We define two functions $N_{\mathbf{f}}$ and $L_{\mathbf{f}}$ of G into R by

(10)
$$N_{f}(x) = \sup \left\{ f(h_{1}) - f(h_{2}) \mid h_{1} \mid xh_{2}; h_{1}, h_{2} \in H \right\},$$

$$L_{f}(x) = \inf \left\{ f(h_{1}) - f(h_{2}) \mid xh_{2} \mid h_{1}; h_{1}, h_{2} \in H \right\}.$$

Lemma 2. For all $x,y \in G$ we have

- (11) $0 \le N_f \le L_f$ and $N_f \mid_{H} = L_f \mid_{H} = f$.
- (12) $N_{f}(x)+N_{f}(y) \leq N_{f}(xy) \leq N_{f}(x)+L_{f}(y) \leq L_{f}(xy) \leq L_{f}(x)+L_{f}(y)$.

Inequality (12) implies that N $_{\bf f}$ is a lower L $_{\bf f}$ -function and L $_{\bf f}$ is an upper N $_{\bf f}$ -function of G. Therefore, we have by Theorem 1

Theorem 2 (Putcha and Tamura [8], Kobayashi and Tamura [7]). Let G be a commutative semigroup and H its cofinal subsemigroup. Let f be a non-negative functional of H. Then f is extended to a non-negative functional of G if and only if f satisfies condition (9).

A cofinal subsemigroup H of G is called strongly cofinal if for every $x \in G$ there are $h \in H$ and $n \in \mathbb{Z}_+$ such that $h \mid x^n$.

Corollary 1. Let f be a positive (positive real valued) functional of a strongly cofinal subsemigroup H of G. Then f is extended to a positive functional of G if and only if f satisfies condition (9).

G is called <u>archimedean</u> if for any $x,y \in G$ there is $n \in \mathbb{Z}_+$ such that $x \mid y^n$. G is called <u>subarchimedean</u> if there is $x_o \in G$ such that for any $x \in G$, $x \mid x_o^n$ for some $n \in \mathbb{Z}_+$.

Corollary 2. Any positive functional of a subsemigroup of an archimedean commutative semigroup G satisfying condition (9) is extended to a positive functional of G.

4. Existence of non-negative (positive) functionals.

Let G be a commutative semigroup. It might not be difficult to describe the condition for G to have non-trivial functionals applying Proposition 1. The problem of finding the concrete condition for G to have non-trivial non-negative (positive) functionals is rather difficult. Tamura and the author [7] gives a necessary and sufficient condition for that in terms of quasi-order. But we do not know the concrete

condition. Some sufficient conditions are obtained from the results in the preceding section.

An element $a \in G$ is called <u>normal</u> if the following two conditions are satisfied;

- (13) for any x there is $n \in \mathbb{Z}_+$ such that $x \mid a^n$,
- (14) $a^n \mid a^m \Longrightarrow n \le m$.

These imply that the subsemigroup [a] generated by a is cofinal and that the mapping $a^n \longmapsto n$ is a functional of [a]. We can extend the functional to a non-negative functional of G, hence we have

<u>Proposition</u> 2. If a is a normal element of G, then there is a non-negative functional of G such that f(a) > 0.

G is called <u>normal</u> (resp. <u>subnormal</u>) if every (resp. some) element of G is normal.

Proposition 3. An archimedean (resp. subarchimedean) commutative semigroup without idempotents is normal (resp. subnormal).

Theorem 3. If G is a normal (resp. subnormal) commutative semigroup, then $\operatorname{Hom}(G, \mathbb{R}_+) \neq \emptyset$ (resp. $\operatorname{Hom}(G, \mathbb{R}_{+^\circ}) \neq 0$).

In Theorem 3, \mathbb{R}_+ (resp. \mathbb{R}_{+o}) denotes the additive semigroup of all positive (resp. non-negative) real numbers. The further details of the preceding arguments in $\S 3$ and $\S 4$ would be found in [7]. By Proposition 3 and Theorem 3 an archimedean commutative semigroup without idempotents is homomorphic into \mathbb{R}_+ . In particular, an Γ -semigroup is

homomorphic into \mathbb{R}_+ , from this we can prove the fundamental fact that an \mathcal{N} -semigroup is a subdirect product of \mathbb{R}_+ and an abelian group (Tamura [9], Kobayashi [4]).

In the case of finite rank (the free rank of the quotient group of G is finite) the complete condition for G to have non-trivial homomorphisms into \mathbb{E}_+ (\mathbb{E}_{+0}) is given as follows.

Theorem 4 (Kobayashi [5]). Let G be a commutative cancellative semigroup of finite rank. Then

- (i) $\text{Hom}(G, \mathbb{R}_{+0}) \neq 0$ if and only if G is not a group,
- (ii) $\operatorname{Hom}(G, \mathbb{R}_+) \neq \emptyset$ if and only if G satisfies for any $x,y \in G$ there exists $n \in \mathbb{Z}_+$ such that $x^{mn} \nmid y^m \text{ for all } m \in \mathbb{Z}_+.$

The proof is proceeded by reducing to the geometrical consideration in a finite diminsional real vector space. It is necessary for G to be of finite rank because there is a semigroup S of infinite rank satisfying condition (15) and $\operatorname{Hom}(S, \mathbb{R}_{+o}) \neq 0$ (see [5]).

REFERENCES

- [1] B. Fuchssteiner, Sandwich theorems and lattice semigroups, J. Functional Analysis 16 (1974), 1-14.
- [2] R. Kaufman, Interpolation of additive functionals, Studia Math. 27 (1966), 269-272.
- [3] ———, Maximal semicharacters, Proc. Amer. Math. Soc. 17 (1966), 1314-1316.
- [4] Y. Kobayashi, Homomorphisms on N-semigroups into \mathbb{R}_+ and the structure of N-semigroups, J. Math. Tokushima Univ. 7 (1973), 1-20.
- [5] ______, Conditions for commutative semigroups to have non-trivial homomorphisms into non-negative (positive) reals, to appear in Proc. Amer. Math. Soc.
- [6] ———, An extension theorem of functionals on commutative semigroups, preprint.
- [7] Y. Kobayashi and T. Tamura, Quasi-order preserving homomorphisms of commutative semigroups into the non-negative reals, preprint.
- [8] M. S. Putcha and T. Tamura, Homomorphisms of commutative cancellative semigroups into non-negative real numbers, to appear in Trans. Amer. Math. Soc.
- [9] T. Tamura, Irreducible χ -semigroups, Math. Nachrichten 63 (1974), 71-88.

Faculty of Education
Tokushima University