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COMMUTATIVE SUBARCHIMEDEAN SEMIGROUPS

Takayuki Tamura

ABSTRACT

A commutative semigroup is called subarchimedean if it has
an archimedean component which is an ideal. A commutative sub-
archimedean semigroup S without idempotent (called SAIF-
semigroup) is called the first kind if the greatest cancellative
homomorphic image of S is an M-semigroup. Every SAIF-semigroup
S contains a subarchimedean maximal cancellative subsemigroup M

and the structure of S is observed as the extension of M,

1. Introduction

A commutative semigroup S is called archimedean if, for
every a, b €85, there is a positive integer m and an element
c € S'sgph that a" = bc. As generalization of archimedeaness, the
concept of subarchimedeaness is defined as stated in the abstract.
A commutative cancellative archimedean (subarchimedean) semigroup
without idempotent is called an M- (ﬁL) semigroup. The concept
of subarchimedeaness plays an important role in the study of
archimedean semigroups. For example, the translation semigroup
of an M-semigroup is an ﬁ-semigroup; a commutétive archimedean
semigroup without idempotent contains a maximal canéellative
subsemigroup which is subarchimedian. 1In this paper we will deal
with the last example in more general case, that is, wewill study
commutative subarchimedean semigroups as an extension of a

maximal caneellative subsemigroup.



In Section 2 we will ‘give the basic results of commutative-
subarchimedean semigroups.  Subarchimedeaness is characterized
in terms of the archimedean ideal or some homomorphic images.
Further we will point out that there are two types called the
first kind and the second kind. This paper deals with only the
first kind. 1In Section 3 it will be proved that, in any commut-
ative subarchimedean semigroup without idempotent, there is a
maximal cancellative subsemigroup which is an ﬁLsemigroup. In
Section 4, we will describe the structure as the extension of an
ﬁhsemigroup; we call it "branch-growth." The concepts of
essential seﬁigroups and twigy semigroups ﬁppear at the step of
extensions, Finally the two examples will show that the two
concepts, essentiality and twiginess, are independent. It will
turn out that '"branch-growth" is a refinement of Putcha's concept
of mild-ideal. However there remain many questions in construct-
ing "branch-growth." Nevertheless, it is hoped that thié paper
will give a foundation for the future étudy. With respect to the
study of commutative archimedean semigroups without idempotent

from another point of view, see [4] [6] [8] {10] and so on.
2, Subarchimedean Semigroups

Throughout this paper, Z denotes the set of integers,
C 0
Z+ (Z_) the set of positive (negative) integers, Zi (2_) the set
of non-negative (non-positive) integers. The operation is the

usual addition.

Definition 2.1. A commutative semigroup S 1is called

subarchimedean if there is an element p €S satisfying the

following condition:
(2;1.1)" For eaéh’x>€'S3 there is an m € zZ, and y €S such

that pm = Xy.
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The element: p ~ is called a pivot element of S and the

set of p's is called the pivot of S, and denoted by

Piv(s). If S is a commutative semigroup, Piv(S) # @ if and
only if S 1is subarchimedean; S 1is archimedean if and only if
Piv(S) = S.

In this paper only commutative semigroups are treated, so we

will omit the word '"commutative.'" TFor simplicity we use the

following abbreviation.

Definition 2.2.

IF-semigroup is an idempotent-free semigroup, i.e., a
semigroup without idempotent.

CIF-semigroup is a cancellative idempotent-free semigroup.

N-semigroup is'a cancellative archimedean idempotent-free
semigroup, i.e., CAIF-semigroup.

CSA-semigroup is a cancellative subarchimedean semigroup.

CSAI-semigroup is a cancellative subarchimedean semigroup
with idempotent.

AIF-semigroup is an archimedean idempotent-free semigroup.

SAIF-semigroup is a subarchimedean idempotent-free semigroup.

ﬁ-semigroup is a cancellative subarchimedean idempotent-free
semigroup, i.e., CSAIF-semigroup. (See §Lsemigroup in

The following are the fundamental properties of SAIF-
semigroups. These properties are the natural extension of the

properties of archimedean semigroups.

Proposition 2.3

(2.3.1) 1f S 1is a subarchimedean semigroup and if S

e
n

homomorphic onto S', then S' is a subarchimedean semigroup.
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(2.3.2) If S,,...,S are subarchimedean semigroups, then
—_— 1 n — H

S, X ... X8 1is a subarchimedean semigroup.
n—2

(2.3.3) If S 4is a subarchimedean semigroup, then an ideal

of S is subarchimedean.

Proof. (2.3.1) Let h: S # S' be a surjective homomorphism.
We show that if p € Piv(S), h(p) € Piv(S'). Let x' €S'. As h
is oﬁto, x' = h(x) for some x €S. By assumption, there is m €Z+
and y €S such that pm = xy.  Then h(p)m = x'*h(y), hence h(p) €
Piv(s').

(2.3.2) » We need to prove only the case n = 2. Then the
conclusion will be obtained by induction on n. Let p € Piv(Sl),
q € Piv(S ). We will show (p,q) € Piv(Slxsz). ‘Let(x,}.r) E‘Sl X

S2' By assumption p = xz, qn = yu for some m, n € Z+, m>1,

n>1 andsomezGS,uES Then

@) = GT,d™ = &2y = x,y) L,y Ly

(2.3.3) Let I be an ideal of S. Let p € Piv(S) and
b €I. We will show pb € Piv(I). Let x € I. By assumption,
m

P =Xy for some y €S and m € Z+. Then pb € I and (pb)m =

x(ybm) where ybm €1I.

Proposition 2.3 can be stated in terms of the notation "Piv"

as follows:

Proposition 2.3', ‘

(2.3.1') If h 4is a homomorphism, h(Piv(S)) € Piv(h(S)).
1 0 . P

(2.3.2") PlV(Sl) X iow X PlV(Sn) = Plv(Slx. . .,XSn) .

(2.3.3') I1f 1 is an idealif_ S, I°Piv(S) gPiv(I). In

addition,
(2.3.4) 1f I is an ideal of S, Piv(I) < Piv(s).

(2.3.5)  S'Piv(S) S Piv(S), that is, Piv(S) is an idealof S.
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(2.3.6) Piv(S) = Piv(Piv(S)), that is, Piv(S) is archimedean.

Proof. (2.3.4) Let p € Piv(I) and x €S. Then xp €1 as
p € I. By assumption there is m € Z+ and y € T such that pm =
(xp)y = x(py). Hence P € Piv(S). _

(2.3.5) 1If p € Piv(S) and x €8S, pm = xy for some y €S, and
m €2 . Then, if b €35, (pv)" = x(ybm). This shows pb € Piv(S)
for all b € S,

(2.3.6) Let p, q € Piv(S). By definition pm = qx for séme
x €S and m € Z+. Then pm+1 = q(xp), but xia € Piv(S) by (2.3.5).
Thus p € Piv(Piv(S)), hence Piv(S) g:Piv(Piv(S)). Sinée Piv(S)
is an’ ‘ideé.l‘ of S by (2.3.5),

Piv(S) gPiV(PiV(S)) S Piv(S) by (2.3.4),

hence Piv (S) = Piv(Piv(S)).

Proposition 2.4. If S is subarchimedean, then Piv(S)

Proof. Let a € Piv(S) and S, be the archimedean component

0

containing a. Then Piv(S) S S, because Piv(S) is archimedean by

0
(2.3.6). As Piv(S) is an ideal of S by (2.3.5), for any x €8S,

we have xa € Piv(S) &S Let b € SO' Since S, is archimedean,

o’ 0

(xa)c = x(ac) for some c € S0 and some n € Z+. Hence

o
]

S, S Piv(S). Thus S, = Piv(s).

Definition 2.5. Let S be a commutative semigroup and let

€S. Define and 1 b
P pp P y

]

b4 Pp y if and only lf pmx pny for some m, n € Z,.

X '% y if and only if’ pmx = pmy for some m € Z+.

(2.6) Both Py and T\P are congruences on S for all p €8.
Let ]R_?_ (]lgl_) be the semigroupvof non-negative (positive)

real numbers under addition.

-5 -
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Proposition 2.7. Let S be either an SAIF-semigroup or a

CSAI-semigroup which is not a group.

(2.7.1) If p € Piv(S), then px # x for all x € S.

(2.7.2) T¥ is the smallest cancellative congruence on S
for all p € Piv(S).

(2.7.3) There is f €Hom(S,R)) such that f£(x) > 0 for all
x € Piv(S).

p’S = 8 for all p € Piv(s).

1

(2.7.4)

nog

n

Proof. From the assumption it follows that Piv(S) is an
AIR-semigroup.

(2.7.1) If x € Piv(S), px # x by [10]. If x ¢ Piv(S), then
px € Piv(S) since Piv(S) is an ideal. Hence px # x.

(2.7.2) By (2.6) T% is a congruence. Assume Xy Tg xz. By
definition pmxy = pmxz for some m € Z,3 but pn = ux for some u € §
and some n € Z,. From pmxy = pmxz itifollows that pm+ny = pm+nz,
hence y TE z, Thus Tg is a cancellative congruence on S. Let
MN' be a cancellativg congruence on S, If va¥'y, then pmx =
pmy for some m € Z+, but pmx T pmy because ﬂ' is reflexive.

Then we get x T' v since M' is cancellative. Thus T% g;ﬂ'.
Hence‘Tk is the smallest cancellative congruence on S.

(2.7.3) Let S, = Piv(S). Since S, is an AIF-semigroup,

0 0
there is a non-trivial f € Hom(So,]R4). This is due to [5], [12].

~

It is sufficient fo prove that f can be extended to f €
Hom(S,]Ri). Define f by f(x) = f(ax) - f(a) where a € SO. Iﬁ is
easy to see that f is a well defined homomorphism and an
extension of f. We need only to show ?(x) > Oﬂ Suppose E(xl)

< 0 for some x, €S. Choose m € Z+ such that ?(a)'+ mf(xl) < 0.

1

Then E(axlm) < 0, but ?(axlm) 2‘0 since axlm € SO. We arrive at

contradiction. Hence f € Hom(S,]R:).

-6 -
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(2.7.4) By (2.7.3) there is an f EHom(S,IR:)_) with £(p) >0,

p € Piv(S). Suppose ﬁ an # @. There is a y € S such that
‘ n=1
y = pnx for some X €S (n=1,2,...). Then f(y) > f(pn) =
n Z

. nf(p) >0 for all n € Z+. This is, however, a contradiction,

because there is an n € Z+ such that f(pn) = nf(p) > £(y).

Therefore we have proved the claim.

According to (2.7.2), T% = TE for all p, q € Piv(S). So,
when S is subarchimedean, let T = Tk. '
The following theorem characterizes subarchimedeaness in

IF-semigroups.

Theorem 2.8. Let S be an IF-semigroup. The following are

equivalent.

(2.8.1) S is subarchimedean.

(2.8.2) S has an ideal which is an érchimedean component.

— —— e——— ————  o—

(2.8.3) S/pa is a group for some a € S.

(2.8.4) s/p_ is

£

CSA-semigroup for some a € S.

(2.8.5) S/pa is subarchimedean for some a € S.

(2.8.6) S/pa is subarchimedean for all a € S.

(2.8.7) S/Tg is a CSA-semigroup for some a € S.

Proof. (2.8.1) => (2.8.2): This is done bvaioposition 2.4,

(2.8.2) => (2.8.3): Let I be the ideal which is an
archimedean component, and let a € I. Then we will show that
S/p, is a group. It is known in [1], [7], [9] that I(Pa|I) is a
group. For eve?y x €8, x pa ax where ax € I. It follows that‘
S/pa 3'1/(pa|I),h9nce S/pé is a group.‘

(2.8.3) => (2.8.4) and (2.8:4) => (2.8.5) are obvious.

(2.8.5) => (2.8.1) [3]: Let g: S - S/pa be the natural
homomorphism and let g(x) = x. Let v E,Piv(S/pa)., For all x

€ S/pa, there exists anm € Z+ and ; € S/parsuch that v = x ;.

-7 -
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By definition of Pa, Vmak = xyaz for some k, £ € Z+. Then
(va)m+k = x(yazﬁmvk) where x 1is an arbitrary element of S; so
we see va € Piv(S).

So far we have seen that the first five conditions are
equivalent.

(2.8.1) => (2.8.6): This is obtained by Proposition 2.3,
(2.3.1).

(2.8.6) => (2.8.5): Obvious.

(2.8.1) = (2.8.7): See Proposition 2.7, (2.7.2).

(2.8.7) => (2.8.5): Obviously Tg g:pa’ hence S/TL is ho-
momorphic to S/pa. Since S/Tg is subarchimedean, S/pa is also
subarchimedean by Proposifion 2.3, (2.3.1). This completes the

proof.

Let S be an IF-semigroup and define Gr(S) by

Gr(s) = {a €8: S/pa is a group}.
Remark 2.9.1. Piv(S) = Gr(S).

Proof. Obviously Piv(8) S Gr(S). Let a € Gr(S). As S/pa
is a group, for every x € S, there is a y € S such that xy Pa a
namely a® = x(yan) for some m, n € Z+. This shows a € Piv(S),

hence Gr(S) € Piv(s).

Corollary 2.9.2 Gr(S) = S if and only if S is archimedean.

Remark 2.9.3 Define Ca(S) = {a €5: S/pa is a CSA-semigroup}

Then Gr(S) < Ca(S) but Ca(S) # Gr(S) in general.

Proof. The first part is evident. We show a counterexample”

for the second. Let S0 be an M-semigroup and S1 Z+. Let

S =5, U Sy If x € SO and n € Z., deflné x°n by
X'n = n°x = X for all x € SO’ n € Z+.

Then S 1is an SAIF-semigroup and 1 € Ca(S) but 1 £ Gr(S).

-8 -
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When S is subarchimedean and a € Piv(S), S/pa is called the
structure group of S with respect to a, and the element a is

called a standard element of the structure group S/pa.

Theorem 2.10. Let T denote the smallest cancellative

congruence. If S is an SAIF-semigroup, S/T is either an

ﬁ-semigroug or a CSAI-semigroup which is not a group.

Proof. By Proposition 2.7, S/T is a CSA-semigroup. If S/T
has no idempotent, S/7 is an M-semigroup. Suppose that S/7 is a
group. If S is archimedean, S must contain an idempotent by
Corollary 3.4 of [11] and Theorem 3.3 of [11]. This is a
contradiction. If S is not archimedean, S has a pivot V
which is an AIF-semigroup and a proper ideal of S. By
Proposition 3.1 of [11] and Corollary 3.4 of [11], V must
contain an idempotent. This is égain a contradiction. Therefore

S/Mis not a group.

Definition 2.11. Let ‘ﬂ be the smallest cancellative con-
gruence on S. An SATF-semigroup S is called the first kind
if 8/Mis an ﬁ-semigroup; S 1is called the second kind if S/T|

contains an idempotent.

Proposition 2.12. Let S be an SAIF-semigfouE. The

following are equivalent.

(2.12.1) 'S is of the second kind.

(2.12.2) For every a € Piv(S), there is x € 5 and m € Z+

m

such that a"x = a

(2.12.3) yx

]
<

for some x, y €8S.

(2.12.4) ©bx for some b € Piv(S), some x € S.

]
o

Proof. (2.12.1) => (2.12.2): ©Let a € Piv(S). As S/Tg has
an idempotent, anz = a"x for some x € S, some n € Z,. By

. )/
subarchimedeaness, a” = xz for some z €S, some {4 € Z,; hence

4
-9 -
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we get amx = a" where m = n + 4.
(2.12.2) => (2.12.3): Obvious.
(2.12.3) = (2.12.4): 'Let a € Piv(S). Then yx = y implies
(ay)x = ay where ay € Piv(S) since Piv(S) is an ideal.
(2.12.4) => (2.12.1): bx = b implies bx2 = bx, heﬁcex2 Mx.
Accordingly the negation of each of (2.12.2), (2.12.3) and
(2.12.4) is a necessary and sufficient condition for S to be of
the first kind. 1In thisgpaper we discuss only SAIF-semigroups of

the first kind.

Corollary 2.13. Let S be a commutative semigroup. S is

an SAIF-semigroup of the first kind if and only if S is sub-

archimedean and there is an a € Piv(S) such that a™x # a" for all

m € Z+ and all x E S.

Example 2,14, An AIF-semigroup is an SAIF-semigroup of the

first kind.

Example 2.15. Let S = {1,2,3,...} and 5, = {2+,3',4',...}

be the additive semigroups where x' + y' = (xty)' in Sl" Let

and define a binary operation in S such that S  is

Us 0

S = SO 1

an ideal of S, and S, is a sub-semigroup of - S, and if a € SO

1
and b' €5,

a+b'=b'+a=a+b for all a € So b' € Slg
Then S 1is an SAIF-semigroup of the first kind. If we define
a+b'=b'+a=a for all a €5, b' € 5>

then S 1is an SAIF-semigroup of the second kind.
More complicated examples will be seen at the end of

Section 3.

3. Existence of Subarchimedean

Maximal Cancellative Subsemigroups

- 10 -
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Let S be an SAIF-semigroup and let a € S. Let mg~be the
z2t £ ZL1 zamzzlla tive subsemlgroups of S containing a fixed
a. mg # @ since mg contains the cyclic subsemigroup generated by

a. If {M : E €8} is a chain of subsets of mt, i.e., M. M

gl §2,

E < E., then we see that the union UM E M. By Zorn's lemma
1 2 £ca g 4

mg has a maximal element.

Proposition 3.1. Let S be an SAIF-semigroup and ¢: S -

S/T be the greatest cancellative homomorphism. Let-a € Piv(S)

and C a cancellative subsemigroup of S containing a. Then

there is an isomorphism Y of C into S/7T such that Y = ¢z where

¢ is the inclusion map of C into S.

Proof, Define Y by ¥(x) = o(x) fof x € C. (We denote
¢z (x) by @(x).) We need only to show that Y is one-to-one.
Assume x, y € C and ¥(x) = ¥(y). Then @(x) = 9(y) implies
a"x = amy for some m € Z+. By cancellation in C, we have x =y,

Let a € Piv(8), G = S/pa and let g: S - G be the natural

homomorphism: g(S) = G. Assume S = U Sh is the decomposition of
AEG

S due to g. Notationally g(x) = X\ if and only if x € SK'

Theorem 3.2. Let S be an SAIF-semigroup. For each

a € Piv(S), there exists a maximal cancellative subsemigroup M
of S containing a (that is,M is maximal in M)

such that g(M) = G. The M is necessarily an ﬁ-semigrbup.

Proof. Let G be the set of all cancellative subsemi-
a
groups T of S containing a having property that g(T) is a
subgroup of G. Qa # @ since g([a]) = {e} where € is the

identity of G. By Zorn's lemma, we can see that there is a

maximal element in QA’ Let M be a maximal element in qa and

let g(M) = H. We will prove H = G. Suppose H # G, let o € G\H.’

- 11 -
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Case I: o £ H for all m € Z+.
8

Take arbitrarily p € Sa and then choose q € S such that pg = a 0

where Sy € Z+ and So is the minimum. Of course g(p) = o, g(q) =

a-l and g(a) = € (the identity of G). Let M1 be the sub-
- s
semigroup of S generated by M, p and q. As pq = a 0 €M,

it is easily seen that every element of M, can be expressed as

1

exactly one of the following:

m n
X, Yp zq

where x €M, y, z € M1 and m, n € Z+-

Moreover the uniqueness of expression is shown as follows.

First of all we note that the following equalities are impossible:

m n m n
x=yp, x=2¢, yp =29 (%,9,z €M),

Suppose x = ypm_ Then g(x) = g(y)'dm, hence o' €H, If x= zqn,
g(x) = g(z):a@ ", so @ €H. Ifyp =zq", then g(y)-a" =
g(z)-u-n, hence Qp+n € H. 1In each case we arrive at a contra-

diction to the assumption on «.

Now assume ypm = zpn, v z €’M1, and suppose m # n, say

]

m > n., Then g(y)-cz'm g(z)'ozn which implies e H, a contra-

diction, hence m = n., By multiplying the both sides of ypm = zpn
o ms ms
by q , we have ya = za , so y = z follows by cancellation of
M. Thus we have proved that ypm = zpn implies y = z and m = n.
1
Similarly we have qu = zqn, y, z €M, implies y = z and m = n,
Thus the uniqueness of expression has been proved. By using this

we prove cancellation of M,. Since the equality x(ypm) x(zqn)

1

does not occur, we start with x(ypm) = x(zpn). Then xy

xz and

m = n by uniqueness; now y = z by cancellation of M. Similarly
x(qu) = x(zqn) implies y = z and m = n. Summarizing the above
together with cancellation of M, we have

xb = xc, x €M, b, c € Ml’ implies b = c.

To consider the remaining case, suppose (xpm)b = (xpm)c where
- 12 -
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' ms
b, ¢ € Ml. Multiplying the both sides by qm, we get (xa 0)b =
ms ms
(xa 0)c where xa © € M. By the preceding result, b = c.

Similarly (xqm)b = (xqm)c implies b = ¢. Thus we have shown
cancellation of Ml' Certainly g(Ml) = H-[a] is a subgroup of G
and M %Ml. This contradicts maximality of M in (}a.

Case II: a® €H for some m €Z, m # 0.

Without loss of generality we can assume m € Z+. (If

m € Z_, consider oz-l instead of @.) Let m) be the minimum of

m
positive m's with @ € H. As o X H, m, > 1. Let B =o 0 and
' m
choose arbitrarily p €S . Take x, €5, NM, then aSp 0 atx
’ i ’ B B m m_-s-+t B
0
for some s, t € Z+" 1f m > s, then (ap) = a xB. If
my < s, then we can find k € Z, and r € Z_?_ such that mok =35 +r,
k "0 _ t+r
0<r< my s then (a p) = a xB. Let q = ap in the first case;
’ m
let q = akp in the second case. Then q €S , q £Mbut q 0 €M
o
where m, is the minimum. Let M1 be the subsemigroup of S
generated by M and q. Every element of M1 has a unique
expression of the form, xqm where x € Ml, 0 gm< ms but if
m = 0, then x € M, and xq0 denotes x itself. The uniqueness of

expression is shown as follows. Let xqm = yqn, X,y € Ml, 0<m

< mys 0<n<m We can assume that at least one of m and =n

0
is in Z+. Now suppose m # n, say m > n. Then g(x)'czm = g(y).ozn

implies o Men where 0 < m-n < W This contradicts minimality

of my . Therefore m = n. Since S is subarchimedean, there is

u €S8 and t € Z+ such that at = qmu. Now xqm = qu implies

xat = yat, and then we get x = y by cancellation of M. Thus the

uniqueness has been shown. To show cancellation of Ml’ assume

L 1
=™ (vq™) = (=) (zq"), x, v, z €M
or
(3.2.1) xyqd™™ = xzq™ %,

- 13 -
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0° 0;
0 <mhn < ZmO, 0 <mtl < Zmo.
Let m+n-= imo +r, 0<r< ms i=0 or 1
m+ 4= jmo + s, 0<s< My j=0 or 1.
im jm ’

Then (3.2.1) becomes. (xyq O)qr = (xzq 0)qs. By the uniqueness,
we have r = s and
im jm
(3.2.2) =xyq 0 o xzq 0;

i

thenm +n =m + £ (mod‘mo) implies n = 4 (mod mo), but since

0<n< Wy and 0 < £ < my, We get n = 4; accordingly m + n =
m + £ implies i = j. Finally y = z follows from (3.2.2) by
cancellation of M. Hence M1 is cancellative, and g(Ml) is the
subsemigrdup of G generated by H and o where 0?0 €H, It is
easy to see that g(Ml) is a subgroup of G and M giMl; we arrive
at contradiction to the maximality of M in Gye

In both Case I and Case II we have shown that H = g(M) = G.
Let m& be the set of all cancellative subsemigroups of S con-
taining a fixed maximallelement M of Qa which was obtained
above. By Zorn's lemma, m& has a maximal elemeqt MO. Obviously

m& c:mg where mg was defined at the beginning of this section.

Now M, is also maximal in mg, and M SZMO implies G = g(M) gig(MO),

hence g(Mb) = G, Thus MO € Qa and so M = MO by maximality of M.
By Theorem 2.8 and the assumption on S, we conclude M is maximal

in mg, gM) = G and M is an §Lsemigroup.

0]

Corollary 3.3. Let S be an SAIF-semigroup and a € Piv(S).

Let g: S = S/pa =G, If M is

[&]

maximal in Qa then M is maximal
in mg and g(M) = G.
Definition 3.4, Let S be an SAIF-semigroup and a € Piv(S).

A subsemigroup M of S is called N-maximal containing a if M 1is

‘maximal in mg and g(M) = G, hence M is an ﬁ-subsemigroup of S.

- 14 -
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Therefore Theorem 3.2 proves the existence of M-maximal subsemi-

group which contains a pivot element. An N-maximal subsemigroup

is different from a maximal ﬁLsubsemigroup in general. By Zorn's
lemma we see the existence of a maximal M- (%) subsemigroup'

containing a pivot element,

Remark 3.5. Let S be an SAIF-semigroup. A maximal
cancellative subsemigroup of S containing a £ Piv(S) need not be

an ﬁLsemigroup as is shown in the following example:

Example 3.6. Let 1 <2 < ... <n< ... < ®and define S by

s =1 S =7 Xe++XZ for each n € Z ;
w ¥ n o+ + +°
Ny
n
. .
s= Us_ U S
v n=1

and then define a binary operation in S as follows: If both X
and 'Y are in the same Si (i=1,...,n,...,w), X-Y is already
defined in Si' 1f (Xml""’xmm) € Sm and (ynl""’ynn) € Sn and
if m < n and m=1,2,..., then

(xml,...,xmm) (ynl,...,ynn) = (ynl,...,y ) (x 1207 % )

= (xm1+yn1,...,xmm+ynm, yn,m+1,...,y ).
«©

Define h: U 5, - Z, by h(x e X ) = x w=1,2,...). 1If

2 H
i=1 ml mmn 1
®©
p €S, and X € U Si’ define p:X = X.p = p + h(x). Then S is
. i=1
an SAIF-semigroup of the first kind since S/M=z,. Let x €5

+

and M(x) be a maximal cancellative subsemigroup containing x.

Then we have

S if x € Sw
M) = .
o]
Us. if x € Us..
i=1 * i=1 *

M(x) is an mrsemigroup if x € Sw’ but not an ﬁ-;emigroup if

- 15 -



then S 1is an SAIF-semigroup of the second kind since S/T\:'Zi,

We have the same result on M(x).

Remark 3.7. Let S be an SAIF-semigroup of the first kind.
Let a € Piv(S). All maximal cancellative subsemigroups of §S

containing a are not necessarily N-semigroups.
4, Branch-Growth

Following Putcha [8], a subsemigroup A of an SAIF-semigroup

S 1is called a mild ideal of S if, for each x €5, xA NA # §.

Fact 4.1. The following are fundamental properties of mild

ideals.

(4.1.1) Mild ideals are preserved under homomorphisms.

(4.1.2) Let A, B and C be commutative semigroups such that

CCBCA, If Cis a mild ideal of A, then B is a mild ideal of

A, : "

(4.1.3) 1f a subgroup H is a mild ideal of a group G, then

H=0G.

Proposition 4.2. ([8], [2]). Let S be an SAIF-semigroup,
let a € Piv(S). lf M is maximal gg'mg, then M is a mild
ideal of s.

Definition 4.3. Let B be a subsemigroup of a commutative
semigroup A, and J a subsemigroup of B. B 1is called a J-mild
jdeal of A if, for every x €A, xJ NB # @.

Obviously every J-mild ideal of A 1is a mild ideal of A;

conversely a mild ideal J of A 1is a J-mild ideal of A. The

- 16 -
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M in Theorem 3.2 is an [a]-mild ideal of S where [a] is the

cyclic subsemigroup of S generated by a.

Definition 4.4, Let A and B be commutative semigroups.

A is called a branch-growth of B with respect to a if B
is an [a]-mild ideal of A for some a € B, and if
ax = an, x €A, implies m < n.

We denote A by ﬁra(B). A branch-growth of B with respect to
a 1is not uniquely determined by B and a, but ﬁra(B) denotes
any one of those.

Fact 4.5. Let A, B, C and Ai (i=1,2,...) be commutative
semigroups.

(4.5.1) If C<SB CA and if A = Bra(c), then B = (Bra(C)
and A = Bra(B). .

(4.5.2) 1f B = (Yr}ra(C) and if A = @ra(B), then A = Bra(C).

(4.5.3) 1If a EAl ﬂliiﬁAiﬁl = ﬂ’t}ra(Ai) (i € Z_,_), then

Ai = ﬁra (Al) .

I 8

i=1
Lemma 4.6, Let A, B be commutative semigroups. Let
a €B <=ZA, and A = lﬁra(B). Then A is an SAIF-semigroup of the

first kind and a € Piv(A) if and only if B 1is an SAIF-semigroup

Proof. vNecessity. Let x € B C A, Since A 1is sub-
archimedean, a" = xy for some m € Z,, some y ‘E A. Now
A= ﬁra(B)' implies a"y € B for some n € Z,. Then a™ o x (&%),
hence B is subarchimedean and a € Piv(B). Since A is c;f the
first kind, zu # z for all z, u € A, hence for all z, u € B;
therefore B is of the first kind., We havé used Proposition

2.12.

- 17 -
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. . . £
Sufficiency. Let x €A, There is 4 € zZ, such that a x €B
' k
because A = ﬁ’:lra(B). Now B is subarchimedean: a = (azx)z =
x(a'ez) for some k € z+ and some z € B. Hence A 1is subarchi-
medean and a € Piv(A). Suppose A 1is not of the first kind.
There are z, u € A such that zu = z. However a" = zv for some
v €A, some m € Z+ because of subarchimedeaness. Then zu = z

s m m A e s . '
implies a u = a , which is a contradiction to the assumption that

A= ﬁra(B) (see Definition 4.4). Hence A is of the first kind.

Lemma 4.7. Let Ai(i € Z+) be commutative semigroups.

C e = i
Let a E.Al _'~A2 S ... such that Ai+1 ﬁra(Ai) (i € Z+).

@© o]

iiJlAi is an SAIF-semigroup of the first kind and a € Piv(iglAi)

a € Piv(Ai) (ic¢ Z+).

Lemma 4.8. Let A, B be SAIF-semigroups. Assume a € B S Aand

A= ﬁra(B). Then Piv(B) S Piv(A).

Proof. Let b € Piv(B) and let x € A, Then a"x € B for some
. n m m
m € Z+. By assumption, b = (a x)y = x(a y) for some y € B and
some n € Z+. Hence b € Piv(A).
Let S be an SAIF—semigroup of the first kind, a € Piv(S)
and let M be an M-maximal subsemigroup containing a. Define
a sequence of subsemigroups of 'S as follows: "y‘z in M'" means

z = yu for some u € M.

M, = M,
(4.9.) Mi = {x €8; amlalx in M for some m > i} 4 € Z+),
5 z
{ -
‘\Mm- J Mi.
Ogi<

IfF0gi<igc® Mj is a branch-growth of Mi with respect to a;

S 1is also a branch-growth of Mj with respect to a (0 < j < ),

- 18 -
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In addition, define

M; = {x €38: am]alx in M for some m > i} (i € Z+).

%
Proposition 4.9. M, and Mi are SAIF-subsemigroups of S of

the first kind where 0 < A < @, i € Z,s

MCM ©...CM
= 1‘= = 1

N

C = . * g
. C M_, and Mi 1 {x €8: ax € Mi} where
i€z,.

Proof. It is easy to see that M EZMi for all i € Z,. Let

i, j € Z+ with i < j. Then a'x = amb, i < m, implies alx =

o
a" 3"'b where j < m + j-i. Hence if i < j, M, SM,. We show M, -
is a subsemigroup for each i € Z+. Let x, y € Mi’ namely,

i »
a'x =a'b, a'y = a"c where i <m, i <nand b, ¢c €M. Then

m~i

a'xy = a"by = a"yb = a'ya" b = a1

be
where i <m + n - i. Hence xy €M .
= i
Obviously M, & M_ for all i € Z+ and M_ is a subsemigroup of
i= - )

S. When the equality is removed in the above proof, we see that
* €S EM*}
Mi is a subsemigroup. It is easy to show M, ., = {x : ax T
Mi (i € Z+) is SAIF of the first kind by Lemma 4.6; M_ is SAIF-

semigroup of the first kind by Lemma 4.7.

Specializing Proposition 3.1, We introduce the éoncept of

"twigy."

Definition 4.10. An SAIF-semigroup S of the first kind is
called twigy if there exists a cancellative subsemigroup M of S
and an>isomorphims v of M onto S/T such that M N Piv(S) # @
and 1§ = @t where M is the smallest cancellative congruence, ¢ is
the natural homomorphism, and ¢ is the inclusion map.

s———tf—-—> s/M
N

Let a € M Piv(S). M is necessarily an N-maximal subsemigroup of

-19 -



S containing a. S 1is twigy if and only if there is an isomor-

phism ¥ of M into S/T such that ¢(s) & ¥ (M).

Theorem 4.11. Let S be an SAIF-semigroup of the first

kind, and M be an M-maximal subsemigroup of S containing a

pivot element a of 'S. Then M}\ (1 < A < ®) is a twigy sub-

semigroup whose greatest cancellative homomorphic image is

isomorphic to M. M_ is a maximal subsemigroup of S with this

property.

Proof. 1t is clear that each M)\ (1 < A < =) contains M.
Let o: S --"S/Tla be the greatest cancellative homomorphism. By
Lemma 4.6 or 4.7, a € Piv(S) implies a € Piv(M), a € Piv(Mi)
hence a € Piv(Mw). Then cp_‘-Mi and clem are the greatest cancell-
ative homomorphisms., We note that ©(x) = ¥x, for all x €M, by
Proposition 3.1. By definition, if z EMi, then :3.i = amb, for
some i, m with i < m, and some b € M, hence ®(z) =.¢P(am_ib) -
¥(@™%b) € YM. Therefore o) S¥YM. If z €M, z €M for |
some i and @(z) € ¥ M as above, '?hus cp(Mm) C ¥YM. Suppose
M_SM' and o(M') giY M. If z €M', o(z) = ¥Y(c) = @(c) é M.
Then ajz = ajc for some ¢ €M agnd j € Z+.
Hence z € Mj SM, i.e., M' =M and M, is maximal.

Analogously to the operator deriving M from M defined by

(4.9-) ,we define an operator 3JW g to any subsemigroup of S.

Definition 4.12, Let S be an SAIF-semigroup of the first
kind, and a € Piv(S). Let A be a subsemigroup of S containing a.

n i . . .
| aox in A for somem,1€Z+w1th

Define 'JU%(A) ={x €8; a
m > i}. T (&) is called the twig hull of A in S.

m%(A) is a subsemigroup of S containing A. By Theorem
4,11, S is twigy if and only if S = ‘;ﬂ.bs(M) = M_. We can show
Inbs ™) = M for any SAIF-semigroup S of the first kind,

- 20 -
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Theorem 4.13. Let S be a commutative semigroup.: S is an

SATF-semigroup of the first kind if and only if S 1is a branch-

growth of an M-semigroup M with respect to a of Piv(M),

equivalently, S 1is a branch-growth of a twigy semigroup T

with respect to a of Piv(T).

Deal with 3Uk(M) of M for the balapce of this Paper. Let
S be an SAIF-semigroup of the first kind, a € Piv(S), and M an
M-maximal subsemigroup of S containing a. Mi(O <i< ®) were
defined before.

In the following lemmas, aOX (aox) denotes X (x), and

o
Mb =M; m, n, k, £ € Z+.

Lemma 4.14.
(4.14.1) Ifm>k>0,n>4>0and m+ £3>n +k, then
amM‘ is an ideal of akM .
n-— — —/—— — &
(4.14.2) 1If n > 4, then amML g:ath for each m € Zi,

Proof of (4.14.1). Let x € Mn’ ax = alb, i>n, b €M. To

prove ak\amx in ML’ we show a m-kx € MZ‘ As 4+ m -~k >n by

) 4 m-k fm-k-n_n Aim-k-n+i
assumption, a a X = a ax=a b.

Sincem -k »>0and i -n>0, £+m -k -n+1i> 4 Hence

am-kx € Mﬂ. Thus ath g:akMz. Next we show that ath is an

ideal of akM . As M CM |
4 L= "n

, + +
aM afu = AWy M, ™y ca™y .
n 4 n

n

N

= n
Proof of (4.14.2) By Proposition 4.10, ML gZMn if n 212.
Hence a'M, Ca'M .
4= n
We have the following commutative diagram where the arrow -

shows inclusion.
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3 2
a M a M aM M \Ml )
_a M1 1 / M2
- . / / \ ~N
- N 5 \ 2 /’r \\
P MZ\ d a M2 /77 aMZ
P \-\ N a2M3 \“AaM
e A 73
Phe \ / N, N
, a M4 / a Ml; ~
) s \ 3 N .
- , a M5 ~
7 ~
J ~

As M is cancellative, amMn is cancellative if m > n. Let
SO = Piv(S). Recall a € SO. Let An be the archimedean com-

ponent of Mn such that a € An’ 0 <n < ® that is, An = Piv(Mn).

Lemma 4.15. If m >1n > 0 but m > 0, then amMn is an

M-subsemigroup and an ideal of An'

i e » T .8.
Proof. Slpce Mn - Mn+1’ we get An < A by Lemma 4.8. If

n+l
X €M, a"x € M, m > n, by definition, but a GAn implies
n = .

a™ CAM CA , and a™ A c:amMzC'amM , hence’ amM is an ideal
n= nn<s n nn = n= n n ’
of An' As An is an AIF-semigroup, a™ is also. By Lemma 4.14,
: n
a%n CMif m > n, hence am'Mn is cancellative; thus amMn is an

M-semigroup.
Since a €M , a'M is an ideal of M for each m € Z,. Also
m m m +

amMm is an M-subsemigroup of Am for each m € Z+ by Lemma 4.15;

m+1
a

. . 7 14, A
Mm_*_1 is an 1de§11 of amMm for each m € n by Lemma 4,14 s

aM1 is archimedean,

aM CA

| = Piv(M).

0

\ T T2 ’TB

A—->A —->A2——-—>A3-—->

AR

aMl'i‘-‘ a Mz-(—“a M3<f—
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Definition 4.16. Let S be an SAIF-semigroup. S is
calied essential if S contains a cancellative ideal. This

definition is due to [4].

Theorem 4.17. Let S be a commutative semigroup. S 1is a

@
twigy semigroup if and only EE S- is the union U Ti of
‘ i=0

essential twigy semigroups T, such that
i

T, is an M-semigroup and :m;ri(TO) =T, for each i €Z,.

Proof. Necessity is already proved by Theorem 4.11 and
Lemma 4.15. Sufficiency. It follows from Lemma 4.7 that S is
an SAIF-semigroup of the first kind. Also we see Piv(To) C Piv(S)
since S is a branch-growth of T.,. It can be shown that for

0
each x €8, x T b for some b € T, and a € Piv(T,), hence

I ¢

S/Tg = TO' Thus S is twigy.
We can state the process of construction of a twigy semi-
group T as follows: Let M be an gﬂsemigroup. Let

I = I1 2 12 D ++* be a sequence of N-semigroups such that

L)
]

Piv(M) and Ii is an ideal of Ii-l for each i € Z+. Let

T =M, and T, be a commutative ideal extension of I_ by a

1 1

commutative nil-semigroup N1 such that To CZTl. Next, let T2 be

a commutative ideal extension of 12 by a commutative nil-semigroup

N2 such that Tl EZTZ. Continue Fhis process and obtain T =-§LT1-
As Ii is an M-semigroup (i € Z+), the ideal extensions are ;;t
difficult.

In this paper we do not discuss precisely how to construct
T or Ti (i€ Z+) and how to get an SAIF-semigroup S ofAthe
first kind from T as a branch-growth.

Let S be an SAIF-semigroup, a € Piv(S), and let M be a

maximal ﬁﬂsubsemigroup of S containing a. For each i € Z+,

- 23 =
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define
M(l) ={x €S: ax € M};
M(i) = {x €8: am\aix in M for some m < i}, i > 1.
M(“0 = U M(i),

i=1

Then we get the following commutative diagram where = shows

inclusion.
M—> M, —>M —> - —> b?i —_—> ‘—>me
| . !
;l;(l)_> ﬁ<2>_> YO e
We can see S = M(GO,

Proposition 4.18. Let S be an SAIF-semigroup of the first

kind. S is essential (and twigy) if and only if there is an

a €Piv(S) and a maximal cancellative subsemigroup M containing

(1)

a such that S = M (S = Mi) for some i € Z+.
However the two concepts, essentiality and twiginess, are

independent as the following two examples show.

Examgle'4.l9. Here is an example of an archimedean twigy
semigroup which is not essential. The proof is left for the
reader's exercise.

Le 8' = {(m,g): m, x € Zi} andvdefine

(m,x) (n,y) = (max{m,n}, x+y+l).
Define p by
either m = n and x = y
(419 .1) (m,x)p(n,y) 1iff

or m#nand x=y> Max{m,n}.

Then S' is a semigroup and P 1is a congruence on S'. Let
S = 8'/p. We can show that S is an AIF-semigroup. For
notational convenience, any element of S is still denoted by

(m,x), and then (4.19.1) is regarded as the definition of
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122

(m,x) = (n,y). Let M= {(0,x): x € Zi}. M ;'Z+ and M is a
maximal cancellative subsemigroup of S. The projection
(m,x) - x is the greatest cancellative homomorphism of S as

shown in the following: First (m,x)T (n,y) implies x = y.

(0,0 |
Conversely if (m,x) and(n,x) are given and if k > max{m,n}, then
we get
k Lk

(0,0) (m,x) = (0,0) (n,x).
Hence S 1is twigy. Suppose S has a cancellative ideal J.
Let a = (0,0). As S is archimedean, for b € J, there is m € z,
and ¢ €S such that a" = bc. Hence a" € J, and ams1 £ J; thus
m 1 - m,1 .
a S is cancellative for some m € Z+. However we show a S~ 1is

never cancellative as follows:

Let. n > m. .Then

(0,0)™(n,0) = (0,m-1)(n,0) = (n,m),

(0,0)"(0,0) (0,m),

[
]

(0,m-1)(0,0)

and (n,m) # (0,m) since m < n.

On the other hand, ) ,
0,00 ™ (n,m) = (0,n-m-1) (n,m) = (n,n),
0,00 ™ (0,m) = ©,n-m-1) (0,m) = (0,0,

and (n,n) = (0,n). This completes the proof.

Example 4.20. We exhibit an example of an essential SAIF-
semigroup which is not twigy.
Let A = {(a,x):a €Z, x € Z+}, B =.{[b,m]: b €z, m € Z+};
Considering the set Z+ and a(letter 0, define
s =A U({o0} UB Uz,

and define the commutative binary operation in S by

(a2,x) - (b,y) = (atb,xty+l) - for a, b € Z, X, 5y € Z+

]

0 -(b,y) (b,y+1) for b €72, y € Z+

0° 9

(0,1)
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[a,m]" [b,n]

[a+b ,m+n+1] for a, b € Z, m, n € zZ,

a*[b,n] Ta+b,n+1] for a € zZ,, b €Z,n€ Z+

a‘b

[a+b,1] for a, b € z,

]

(a,x)*[b,n] (atb,xint+1) for a, b €Z, m, n € Z+

0 *[b,n] = (b,n+1) for b €Z, n € Z+
a-* 0 = (a,l) fora€Z+
a " (b,y) = (ath,y+l) for a € Z+, beZ, y ¢ Z+.

We can easily show associativity of S since S is isomorphic
into Z X Z+ XL = {((a_,z,i)): a €Z, z € Z+, i€ L}, the direct
product of»the group Z, the semigroup Z+ gnd the seﬁlilattice L
of order 2, L = {0,1}, 0 =0:1=1-0 = 0, 12 = 1. In fact the
isomorphism S ~ZX Z+ XL isrgiven by
(a,x) —> ((a,%+1,0))
»0 —_— ((O? 1,.0))
[a,m] —> ((a,m#L,1))

a —> ((a, 151))-

Both A U {6} and B U Z, are AIF-semigroups and A U {0} is an ideal

of S. Moreover, A is a cancellative ideal of S, and there-
fore S is an essentia1 SAIF-semigroup.

Consider the smallest cancellative congruencé Tb on S,
Note that 0 is a pivot element‘of S. Let X, €7, U {0} and
Y €S. One can show that if Ok'XO = Gk'Y for some k € Z+ then

0

Suppose S is twigy. Then S must have a cancellative sub-

semigroup M which contains 0 and Z,. Leta €MD Z,. Then

a*a = [2a,1] €M of cdurse 2a € M by the above remark; moreover

(2a,1) €M since 0 * 2a = (2a,1). However

- 26 -

X =Y. This shows that {0} and {a} are T]n-classes for all a € Z+.
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0-(2a,l) = (2a,2) = 0-[2a,1], (2a,1) # [2a,1].
This is a contradiction. Therefore § 1is not twigy.

The following are unsolved:’

Let B be an SAIF-semigroup of the first kind. Given B
and a € B. Construct branch-growths A of B with respect to
a, Especially, if M 'is an M-maximal subsemigroup and a €M,
(®)

how can we construct M from Mm?

- 27 -
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