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ON IMPLICATIONAL CLASSES OF STRUCTURES

Tsuyoshi Fujiwara

In the previous paper [1], we have studied that the least
universal Horn class coﬁtaining a given class K 1s constructed
by taking all isomorphic copies of direct limits of substructures
of direct products of structures in K. A universal Horn class
may be also called a generalized implicational class. However,
this generalized implicational class is restricted to being de-
fined by a set of generalized implicational sentences of finite
length.

In this paper, a (generalized) L@@,C)—implicational class
will be defined by a set of (generalized) L(@), @)-implicational
sentences each of which contains a conjunction of length < U&D

and a unlversal quantification over a string of variables of

length < e where @), @ are infinite cardinals, and Yy utD
"

are the initial ordinals of powers @), @ respectively. We shall
make the similar investigation for a (generalized) L(@, @)-impli-
cational class as in the above for a universal Horn class. The
method of this study is analogous to that of the paper [1], but
the results are not mere generalizations of the results in [1].

It can be seen from our results, especially from Theorem 1, that
the lengths of conjunctions and quantifications are closely con-
nected with direct limits and unions respectively. Theorem 2 is
a direct generalization of the aeove result in [1]. The charac-

terization (iii) of an L(@, @)-implicational class in the final
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remark appears to make the substance of the Tirst main thedrem
of the paper [3] clear, with the help of Theorem 2 in [2].

§ 1. Preliminaries.

Let L be a first order language with equality which has a
set {Vn [ n < %@9 of individual variables, where %@ is the
initial ordinal of an infinite power @m. All operation and rela-

tion symbols are assumed to be finitary. We use XO’ xl,...xg,...
as syntactical variables which vary through the variables vn,

n < %@Y and denote by (xgl £ < p) a subsequence of the sequence
(vn | n < %@9. A formula ¢ of L which contains at most some

of Xgs £ < p, as free variables is denotéd by d)(xg | £ < p),.if
the variables xg, £ < p, need to be indicated. If p 1s finite,

@(xg | £ < p) may be simply denoted by @(xo,..., X ). An atom-

p-1
ic formula of L means a formula of the form tl = t2 or of the
form rtl...tn, where r 1is an n-ary relation symbol of L and
tl,..., tn are terms of L. A structure @ of the similarity

type corresponding to the language L 1is simply called a struc-
ture for L. The domain of @ 1is denoted by D[@]. Let

<I>(xg | £ < p) beka formula of L, and let (agl £ < p) be a p-

sequence of elements in D[@]. Then we write @; (aE | € < p))

E Q(XE | £ < p), if (a‘E | £ < p) satisfies ‘D(xg | £ < p) in
when the free variables Xg’ £ < p, are assigned the values ag,
£ < p, respectively. If p 1is finite, @; (agl £ < p))

E @(xg | € < p) may be denoted by @®; 8gsee s ap_l)|=

).

Let @ and ® be structures for a language L. A mapping

@(xo,..., X5-1

h of D[@] into (or onto) D[B] is called an L-homomorphism of

® 1into (or onto) ®, if for any atomic formula @(xg | £ < p) of
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L and for any p-sequence (ag | £ < p) of elements in D[@],
@ (ag £ < p)) = o(x. | £ < p) implies (B (n(ap) | < o))

F e(xg|'g < p). An L-homomorphism h of @& onto ® 1is called
an L-isomorphism of @ onto @, if the mapping h 1is one-to-
one and the inverse mapping h'1 is also an L-homomorphism.

Let «E&I i€ I) be a family of structures for L. A struc-
ture () for L 1is called the direct product of the (21, ielI,
if the following two conditions hold:

(1) DI®] 4is the Cartesian product H(DK:&] | 1 e I);
(2) For any atomic formula e(xg | £ < p) and any p-sequence

(agl E < p) of elements in D@, @ (ag | € < p))

O(x; | £ < p) holds if and only if @; (a (1) [ £ < 0))

- ox, |
the i-th component of ag.

0(x £ < p) holds for all i € I, where ag(i) denotes
The above definition of a direct product is equivalent to the
usual definition of a direct product. Hence for any family of

structures for L, the direct product of this family exists.

. From the above definition, the direct product of the empty family

of structures for L 1s a one-element structure for L. in
which every atomic formula is valid. Such a structure is called
an L-trivial structufe.
X 1is called an operator if for every class K of structures
for L, X(K) 1is also a class of structures for L. If X and
Y are operators, the operator XY ié defined by XY(K) = X(Y(K)).
The operators I, S, P, and P¥ are defined as follows:
I(K): all L-isomorphic copies of structures in K;
S(K): all substructures of sgructures in X;

P(K): all direct products of non-empty families of structures
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in Kj
P¥(K): all direct products of empty or non-empty families of
structures in K.

Let E Dbe a set of constént symbols (i.e. nullary operation
_symbols) not belonging to the language L. Then, a new first
order language can be obtained from L by adjoining all the COh-
stént symbols e in E, which is denoted by L(E). If L(E)
contains at least one constant symbol, then E 1is said to be
L-generative. Now let ® Dbe a structure for L, and ¢ a mapping
of E into D[@]. Then @ can be expanded to a structure for
L(E) by considering y(e) as realizations of e to (@. Such an
expanded structure is denoted by @X¢¥). An ordered pair (E, Q)
is called an L-defining pair, if E 1is an L-generative set of
constant symbols not belonging to L and  1is a set of atomic
sentences of L(E). For any infinite cardinals (P and (@, an
L-defining pair (E, 2) is called an L(P, @ -defining pair if
E<@® and T <@, where E and 0 denote the cardinals of E
émd @ respectively.

Let XK be a class of structures for a language L, and let
(E, @) be an L-defining pair. Now let (& Dbe a structure for
L, and ¢ a mapping of E into D[@]. The pair ®, y) 1is
called a K-model of (E, Q), if @ is in K and every atomic
sentence in @ 1is valid in @&(y). We denote by (E, Q; K) the
class of all K-models of (E, Q). A K-model of (E, Q), say
@, ¢), is said to be free (in (E, Q; K)), if ® is generated
by {¢v(e) | e € E}Y and for any @@, ¢) € (E, Q3 K), there exists
an L(E)-homomorphism of @&X¢) into @(¥), i.e. there exists an

L-homomorphism of @ into @ that maps ¢(e) to y(e) for
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each e € E. We denote by F(E, Q3 K) the class of all free
K-models of (E, Q). Note that if @@, ¢) and @', ¢') are
in F(E, Q; K), then ®¢) and ®' (¢') are L(E)-isomorphic.
The following criterion for a class K to possess free
K-models can be.immediately obtained from Theorem 2 in [1]:

CRITERION. Let K ©be a class of structures for a language

L. Then, in order that for any L-defining pair (E, @), (E, Q; K)

# @ implies F(E, Q; K) # @, it is necessary and sufficient that"

S(K) € I(K) and P(K) < I(XK).

§ 2. The definition of a (generalized) L@, @)-implicational

Q;ass and its simple properties.

Let (@, @ be any infinite cardinals, and let %@Y %@) be

the initial ordinals of powers @), @ respectively. Let L be

a first order language with equality which has a set {vg] £ < Q@9
of variables. A new expression —----- which contains a conjunction
of length </%:) and a quantification over a string of variables
————— of the form

(%) V (xg | £ < a)IACe, [ n < 8) — 0]
is called a (generalized) L@, @) -implicational sentence, 1if

of length

&

o < %:Y B < %:Y and all Gn and O are (identically false or)
atomic formulas of L which contain at most some of the variables
Xgs € < a. Note that every L@, @)-implicational sentence is a
generalized L@, @) -implicational sentence.

Let ® be a structure for L. The sentence (¥) is said to
be valid in @), if for any a-sequence (agl £ < a) of elements
in D[®],
(#) ®:; (ag £ <a)) E On(xé | € < a) for all n < B implies

@ (ag |8 <))k olxg|E <o)
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Hence, if © 1s 'an identically false formula, the condition (#)

can be replaced by

(##) @ (aE g <)) k= —len(XE | £ < a) for some n < B.

Therefore the sentence (¥) in this special case may be denoted by
V(% | £ < )V (70 |n < B)]

which contains a disjunction of length < “ﬁ@ Let & be a usual

or generalized L), @)-implicational sente;lce of L. If ¢ 1is

valid in a structure @ for L, then bwe write @[ o.

Let % Dbe a set of generalized L(m, @) -implicational sen-
tences. A structure @ for L 4is called a model of I, if
every sentence in I is valid in @®. The class of all models
of I is denoted by ¥, A class KX of structures for L 1is
called a (generalized) L@, @)-implicational class, if K = §¥
for some set I of (generalized) LW, @)-implicational sentences.
Note that every L@, @) -implicational class is a generalized
L{@®, @) -implicational class.

The following lemmas can be easily obtained from the above
definitions:

LEMMA 1. Let K Dbe a generalized L(M), @)—implicational

class. Then K 1is closed under the formation of substructures,

i.e. S(X) & K.

LEMMA 2. Let K be a (generalized) L{@®, @)-implicational

class. Then K is closed under the formation of direct- products

of (non-empty) families of structures. That is, P(K) £ K for

every generalized L(@, @) -implicational class K, especially

P¥(K) < K for every L(W), @) -implicational class K.

Let M be a partially ordered set, and let (P be any infi-

nite cardinal. M is said to be (D-directed if for any subset N

- 6 = .
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of M which satisfies N < (@, there exists a element w &€ M
such that v <y for all v € N. A family (:LI p € M) of
structures for L 1ndexed by a set M is said to be (P-directed
if M 1is an (prdirected partially ordered set and CQIEE@%
whenever u < v. Let (:L [u € M) be a(:rdirected family of
structures for L. A structure @ for L 1is called a union of
«:h] p € M) and denoted by K}K:LI p e M, if D[@]

= \J(DE@L]| L € M) and each C% is a substructure of @®. Let
K be a class of structures for L. We denote by %:fK) the
class of all structures that are unions of (pP-directed families
of structures in K.

Now we shall prove the following:

LEMMA 3. Let K be a generalized L(m, M)-implicational

class. Then K 1is closed under the formation of unions of

(Mrdirected families of structures in K, i.e. Q@fK)SE K.

Proof. Let I ©be a set of generalized L(@, @)-implica-
tional sentences such that I¥ = K. Let F = @, |u e M) bve
any @-directed family of structures in I¥, and let @ Dbe the
union of F. Now let

o = V(Xgli <oc)[/\(®n|n < 8) — o]

be any generalized L(@, @)-implicational sentence in £, and
let (aE | £ < a) be any a-sequence of elements in D[@].

Now assume that

@; (ag &< a)) ko (x,|E<a) forall n<B8.
We shall prove that
@; (ag 18 < o))k o(xg & <o),

By the definition of a union, there exists a subfamily

«Ebg | £ < a) of F such that ag'e DRCng for each & < a.
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Hence there exists a structure (%xe F . such that (%J Ei(%l for
g
all & < o, because o < Y and F is an (@-directed family.
Hence
«:L; (ai g <a)) E On(xE | £ <a ) for all n < B,
because ®u§® and a

g
we have @%1F ®. Hence

@5 (2] < @) F olx, | £ < o),
and hence

@ (ag |8 <))k olx, [ € <a).
Therefore every generalized L(W), M)-implicational sentence in I
is valid in @, i.e.® € t*¥. This completes the proof.

Let «:L | u € M) be a family of structures for L indexed
by a directed partially ordered set M, and let (fﬁ Ip, v eM
and u < V) be a family of L-homomorphisms fﬁ of (:L into C%
such that fs is the identity mapping for each pu € M and
fsz = fz whenever A < u < v. Then the system S =
(@, | u e M), (f':i |u, veM and u < v)) is called a direct
system. Let A = U(D[@u] x {u} | u € M), and let . be the
equivalence relation on A defined by ‘

(a, u> ~ (b, v) 1if and iny if for some ) € M, fﬁ(a) = fﬁ(b).
Now let K be the set of all equivalence classes of A defined
by the relation ~. Then a structure 65 for L 1is called a
direct limit of the direct system S 1if the following two condi-
tidns hold:

(1) DI®] = As

(2) PFor any atomic formula O(xl,..., xn) of L .and for any

elements a;,..., a  1in D[®],

@; 8yseees &) E 0(xq,..+, x ) 1f and only if there exist

-8 -
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somev;u € M. and some elements By BY in 'DE:L] such
that «:L; Biseees an)|= e(xi,..., Xn) and (ai, u) € gi
for each i =1,..., n.
Note that the above definition of a direct limit is equivalent
to the usual definition of a direct limit. Hence for any direct
system S, there exists the direct 1limit of S..
Let (P Dbe any infinite cardinal. A direct system
(«:L| u € M), (f: | us v eM aﬁd u < v)) is called a (@-direct
system if the index set M 1s (P-directed. Let K be a class
of structures for L. We denpte by %:fK) the class of all
structures that are direct limits of @-direct systems of struc-

tures in K.

LEMMA 4., Let K be a generalized L(@, @)-implicational

class. Then K is closed under the formation of direct limits

of M-direct systems of structures in K, i.e. LﬁxK)fz K.
=
Proof. Let I be a set of generalized L@, @)-implica-

tional sentences such that ¥ = K. Let

S = <«:L | v e M), (f: lu, veM and uw<v))

be any @-direct system of structures in I¥, and let @ Dbe the
direct 1limit of S. Now let

o = ‘v’(xE | £ < u)[/\(@n In < B) - 0g1
be any generalized L{@, @)-implicational sentence in I, and
let (ag | £ < 0) be any a-sequence of elements in Dﬂfﬂ.

Now assume that

K5; (gg | & < a)) F'On(xg | £ < a) for all n < B.

We shall prove that ‘
@; (ag |5 < @) 0, (x |

For each vh < B, we define: Xn as the sequence of ordinals such

E;<oz).

o



that ' - g [g € X } 1s the set of all variables appearing in
en. Since @) is the dlrect limit of S, for each n < B,
there exist an element ¥n € M and a sequence (ag’Z A= Xn)
of elements in 'DEEL'] such that

s - X 7

; " X X and

«:%v’ (ag ,IE € n)) E en(xg | € € n), n

(aun, u ) € a; for each £ € X,
Moreover, there ex1st an element € M and a sequence

Mg
(aUﬁ | £ g X ) of elements in DK:% ] such that

E(a R UB> € ag for each & € Xg.

For each £ € \J(Xn | n < B), we now define Yg as the set of

th X £ T £ 1 Y Wy
all n such that < 3¢ ‘Then for all n € £ <ag s un>

A

are 1in ‘ag. Hence for any pair (n, n') € Yg X Yg’ there exists
an element Vo ont € M  such that
. £l .
eV, (gHny o eVt (gHnty

_ L @Ry = e (ap)
Since Yg X,Yg <@ and M is M-directed, there exists an element
v M such that v_ _, < v for all ! Y x Y_. Hehce

ge ) a n’n!‘= 3 <T1,T1>E £ £

Vg, U . .
11 £ E(apl). Y th 1 t DI&. 1. S
a u’z(eE ),’n’e /¢, are the same element in E:%g] ince

each Xn is finite? \j(Xn|~n < B) <@. Hence there exists an
element Vv € M such that ,Vg;é v for all & € \J(Xn |n < B).
B),

all f (aun), n. e Yg’ are the same element in DK:b].

And hence for each element E € \J(Xn | n

fin

Therefore for each £ € \)(X |n < B), we can define an element
ag in DIB,I by i -
ar. chn(aE‘) Vfor some n € Yg'
Then’we can.immediately obtain the following:

. - 1)
@,; (a1 e U Inx< B)))l o, (xg 18 € Ux In <8’ for
all n < B, and (ag,'v) e ag for each & € \J(Xn In < 8).

Since (:% F &, we have

- 10 -
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@5 (ag 18 € U In<B)) o (x| g eV Inzen?.

Hence by the definition of a direct limit, we have
; (a < = X, < o
(®’(E|E on)HGB(EIE )
as desired. Hence every generalized L(@, @)-implicational
sentence in I is valid in @, i.e. ® € I¥. This completes
the proof.

§ 3. Some lemmas concerning free structures and natural

limit structures.

Let K be a class of structures for L, and let (E, Q)
be any L-defining pair. We denote by %), (E, 2) the set of
all L(p, @ -defining pairs (X, T) which satisfy XS E and
T Q(Q, where and @ are infinite cardinals. For (X, TI),

(Y, 4) € lb@(E, Q), we define (X, I') < (Y, A) as both XS Y
3

and T < A. Then (E, @) forms a directed partially ordered
>
set. Now assume that for each (X, T) € %:M:§E, Q), F(X, T'; K)

# @, 1.e. there exists «:%X rys 9(x F)) in F(X, T; K). Then,

for all (X, 1), (Y, A) € (E, @) satisfying (X, T) < (Y, 4),

- (Y,4)

.there exists an L(X)-homomorphism f(X,F) of (E%X,r)(¢(x,r))

into CD(Y A)(¢(Y A))’ i.e. L-homomorphism f§§’$§ of C:%X r)
into C%Y,A) which maps ¢(X,P)(e) to ¢(Y,A)(e) for each

(xX,T)
(x,T)

the identity mapping and that fg%’ﬁgf§§’$g = fgi’%; it
s ’ ’

e € X. These homomorphisms have the properties that f is

(X, T) < (Y, A) £ (Z, A). Hence the palr of families

(Y,A)
(@(X,F) ! (x, P)€M®’@(E, Q)) and (f(X,I") ‘ (X, T), (Y, A)

E, 2) and (X, TI') < (¥, A)) forms a direct system, which

el%)ﬂﬁ

1) 2) 1In this expression, \j(Xn-]n < B) denotes the subsequence
of (E|& < a) which consists of all ordinals belonging to the
set-union U(Xn In < B). '
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is called a direct system (P, @) -naturally defined by (E, Q; K).
The direct limit of a direct system (®, @) -naturally defined by
(E, 23 K) 1is called a (P, @ -natural limit structure with respect

to (E, Q; K) and denoted by (E, 23 K). Note that

&)

%,@(E, Q; K) 1s unique up to L-isomorphism if it exists. Now

we define a mapping ¢ of E into D @(E, Q; K)] as
o(e) = <¢(X,I‘)(e)’ (X, T)y for some (X, T') € M®@(E, Q) satis-

fying X 2 e, where <¢(X I,)(ej, (X, T)) denotes the member of
>

D% (E, 93 K)] that contains <¢(X,1‘)(e)’ (X, T)>. Of course,

Q@

this is well defined, because if (X, T) < (Y, A) then
<¢(X,I')(e)’ (X, r)> = <fg§:%g¢(x’r)(e), (Y, A)> = <¢(Y,A)(e)’ (Y, A)>.

The mapping ¢ defined as above is called a natural interpretation

of E to %@(E, Q; K).

Under the above definitions and notation, we shall prove the

LEMMA 5. Suppose %’@(E, Q; K) 1is in K. Then

(E, ©; K), ¢) is in F(E, 9; K).
Gba
Proof. It 1is easily seen that ( (E, 23 K), ¢) 1is in
>

(E, 9; K) and ©(E, Q; K) is generated by {¢(e) |e € E}.
Now let (®, ¥) be any member of (E, Q; K). We shall prove
that there exists an L(E)-homomorphism of %@(E, Q; K)(¢) into
®() .

Let © be any atomic sentence of L(E) which is valid in
%,@(E,‘ 2; K)(¢). Then there exists some (X, I') in %@(E, Q)
such that ®(X,1‘)(¢(X,I‘)) E 0. Since @®, v) is in (E, Q; K),
®, er)3) is in (X, T; K). Hence there exists an L(X)-homo-
morphi f int X b

phism o ®(X,I“)(¢(X,I‘)) into ®(¥[X), because

(®(X,I‘)’ q)(X,I‘)) is in F(X, TI'; K). Hence we have ®AWlx) E o,

3) IHX denotes the mapping which is the restriction of 11: to X.
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and hence ®Xy) F 0. Therefore there exists an L(E)-homomorphism

of %@(E, Q; K)(¢) into @(¥). Hence (%@(E, Q; K), ¢) 1is

in F(E, 9; K). This completes the proof.

LEMMA 6. Let K be a class of structures for L such that

for any LM, M) -defining pair (X, I'), (X, T'; K) # # implies

F(X, T; K) # §. And let I be the set of all generalized L(m, @)-

implicational sentences that are valid in all structures in K.

Then the following assertions hold for any L(m, M)-defining pair
(E, 9):

(1) F(E, Q; *) # g if and only if F(E, Q; K) # #.

(2) If @, ¢) € F(E, 0; K) and (®, y) € F(E, 9; 3*), then

®(¢) and @ y) are L(E)-isomorphic.

Proof. Let E = {eg | £ < a} and let @ = {en(eg | £ < o) |
n < B}N)’ where aq < %@) and B < %:y

First we shall prove the assertion (1). Assume that
F(E, Q; I*¥) = g. Then by Lemmas 1, 2 and the Criterion,

(E, Q; ¥) = g. Hence (E, Q; K) = g, because

- (E, Q; K) < (E, Q; Z¥). Hence we have F(E, Q; K) = g#. Converse-

ly assume that F(E, Q; K) = g. Then by the assumption of this
lemma, (E, Q; K) = @. Hence for any (@, 6) € (E, #; K),

@8) F V(710 (e, [ € < a)|n < 8).
And hence for every structure @® in K,

®F V(x, | £ < )LV (710, (x, £ <a)|n<B)l.

L) We denote by @n(eg | £ < a) the atomic sentence of L(E)
which i1s obtained from an atomic formula OH(XE[ £ <qa) of L
by replacing the variables XE by the constant symbols eg
respectively. Note that any atomic sentence of L(E) can be
written in such a form.
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Therefore the generalized L(@, @)-implicational sentence
\/(Xg | £ < a)[\/(-16n(xgl £ <a)|n < B)]
belongs to f. Hence (E, Q; £¥) = g, and hence F(E, Q; z¥) = #.
| Next we shall prove the assertion (2). Assume that @, ¢)
€ F(E, Q; K) and (@@, y) € F(E, Q; I¥). Since ®, ¢)
€ (E, Q; K) < (E, Q3 Z¥*), there exists an L(E)-homomorphism h
of @(y¥) onto ®(¢). Now let O(eg | £ < o) be any atomic
sentence of L(E) such that ®(¢) E ole, | £ < o). Then, for
any @, ) € (E, Q3 X), we have
@(8) k ole, | & < a),
because there exists an L(E)-homomorphism of @&(¢) into @(e).
Hence for any @, 1) € (E, g; K),
B(1) E /\(On(eE | €& <a)|n<B) — E)(e‘E | & < a).
And hence for every ® € X,
®F Vx| g < AT € <a)|n<gB) — O(XE le < ).
Therefore the L{@m, @)-implicational sentence
V(x| £ < )[ACe (x| g |

belongs to . Since ® € r* and O(y) F en(eE | £ < a) for

£ <a)|n<B) —>o(x. g <a)l
all n < B, we have
@) kE @(eg | £ < a).
Hence the L(E)-homomorphism h of GX¢) onto @&(¢4) is an
L(E)~isomorphism. This completes the proof.
The following lemma can be easily obtained from the above
lemma and the definition of an (W, @) -natural limit structure.

LEMMA 7. Let XK and I be the same as in Lemma 6. Then

the following assertions hold for any L-defining pair (E, Q):

(1) %@(E, Q; K) exists if and only if %@(Ei Q; T¥)

exists. .
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(2) Q%DE(EL'Q; K) and K@fE’ Q; **¥) are L-isomorphic if
both exist.

§ 4, Main theorems.

Throughout this section, we assume that L 1is a first order
language with equality and with an infinite set {Vg | & < %@9
of @ variables as in the preceding sections.

THEOREM 1. Assume that @ and (@) are regular infinite

cardinals, and let K be any class of structures for L. Then

ki) ILnSP(K) is the least generalized L({m, @M)-implicational class

W@

contalning K. That is, if ¥ 1is the set of all generalized

L@, @)-implicational sentences that are valid in all structures

in K, then v -

Tk = q@;gﬁFP(K).

Proof. By Lemmas 1, 2, 3, and 4, it is clear that

r¥* > U IL_SP(K).
@'
We shall prove that

¥ = U®IL®SP(K) .

Assume that @ is any structure in I¥. Now let M be the set

of all non-empty subsets of D[®] whose cardinals are less than
@. Since @ 1is regular, M forms an @-directed partially ordered
set under the inclusion relation. For each ﬁ € M, let @% be
the substructure of (@ generated by u. Then «:L [p € M) forms
an M-directed family of structures, and clearly
® = \J«:L | v e M).

Hence, in order to prove I¥ = q:}%ZFP(K), it suffices to prove
that each @J is in IT_®SP(K).

By Lemma 1, each C% is in I¥. Therefore we haye

@, v,) € F(E,, 2; I¥),
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where Eﬁ = f, wu is a one-to-one mapping bf Eu onto p,

and‘ Qu is the set of all atomic sentence;.of L(Eu) which are

valid in (Eh(wu). Hence for any L), @)-defining pair (X, T)

e M
'F(X, I's o¥) # § follows from Lemmas 1, 2 and the Criterion.

m,n(Eu’ Qu), «:L, wu[x) is in (X, T; £¥), and hence
Therefore there exists a direct system (@, @)-naturally defined
by (Eu, Qu; ¥), which is an @)-direct system consisting of
structures in ¥, because ﬁu <@ and ® is regular. Hence
the (@), @)—natuljal limit structure %@(Eu, Qu; I#) exists,
and by Lemma 4, it is in I¥. Therefore by Lemma 5, we have
E Q ; I¥ F(E Q -y ¥
(%@( u, u’ )’ ¢u) e ( u, u’ )3

where ¢u is the natural interpretation of Eu to

E Q. ;3 I¥). Hence we have that and E Q 5 ¥
%’@( w ) ®u %,@( NERUR I )
are L-isomorphic, that is,

| = E s T*).
®u L%,@( pe sl )
Since SSP(K) & ISP(K) and PSP(K) & ISP(K), it follows from
the Criterion that for any L@, @)-defining pair (Y, A),
(Y, A; SP(K)) # @ implies F(Y, A; SP(K)) # #. Moreover I
can be considered as the .set of all generalized L(®, @)-impli-
cational sentences that are valid in all structures in SP(K),
because K < SP(K) & ¥ follows from Lemmas 1 and 2. Hence by
Lemma 7, G%EngEu, Qu; SP(K)) exists, and it is L-isomorphic to
G%)()(Eu’ Qu; I¥). Therefore we have
= E 5 .
®, =, GpafEy» 25 SP(K)

Slnce M@MﬁfEu’ Qu) is (D~directed, we have that each (:L is
L-isomorphic to a direct 1imit of an @M)direct system consisting
of structures in SP(K), i.e. C% € IH:§P(K), as desired. This

completes fhe proof.
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THEOREM 2. Assume that (@ is a regular infinite cardinal

not greater than the cardinal (@, and let K be any class of

structures for L. Then ILﬁ§P(K) is the least generalized
<

L(m, @) -implicational class containing K. That is, if I is

the set of all generalized L(m, @)-implicational sentences that

are valid in all structures in K, then

$*¥ = II,_SP(K).
)

Note that if @ > @, then every generalized L@, @)-impli-

cational sentence is equivalent to a generalized L@, @)-impli-
cational sentence.
Proof. By Lemmas 1, 2, and 4, it is clear that
I¥ = IL,_SP(K).
We shall prové that ]tD
I* = IL®SP(K).
Assume that @ is any structure in I¥. Then we have
@, v) € F(E, Q; I¥),
where ,E =Aﬁﬁfﬁ, ¥ is a one-to-one mapping of E onto D[@®],

and € is the set of all atomic sentences of L(E) that are

valid in @(¥). Hence for any L(D), @) -defining pair (X, T)
€ 1 £:§E, Q), @®, v[x) is in (X, T; I¥), and hence F(X, T; I¥)
# @ follows from Lemmas 1, 2, and the Criterion. Therefore
there exists a direct system (@, @)-naturally defined by
(E, 2; I¥), which is an ()-direct system consisting of structures
in I¥, because (@ 1s regular. Hence the (@, @) -natural limit
structure (;E*:§E, Q; I*¥) exists, and by Lemma U4 it is in I¥.
Therefore by Lemma 5, we have

«QﬁuifE’ Q; I¥), ¢) € F(E, Q; 1¥),
where ¢ 1is the natural interpretation of E to (gbbn(E’ Q; L¥),

- 17 -



Hence we have

® =, G a(Es a5 ).
On the other hand, for any L@, @)-defining pair (Y, A),
(Y, A; SP(K)) # @ dimplies F(Y, A; SP(K)) # #. Moreover z¥
can be considered as the class defined by the set of all generé
alized L@, @)-implicational sentences tha? hold in SP(XK).
Hence by Lemma 7, <e>(:§E’ Q; SP(X)) exists and it is L-isomorphic
to %,@(E, Q; I¥). Therefore we have

®;L%,@(E’ Q3 SP(K))- ,
This implies that @ € IL®SP(K), because w@@(E, Q) is @~
directed. Therefore we have ZI¥ EEI%:§P(K). This completes the
proof.

We denote by A(L) the set of all atomic formulas of the

language L.

THEOREM 3. Assume that the infinite cardinal @ is regular

and (M is any cardinal > A(L), and let K be any class of struc-

tures for L. Then UﬁJSP(K) 1s the least generalized L(m), @)-
)

implicational class containing K. That is, if I 'is the set of

all generalized L(m), @)-implicational sentences that are valid in

all structures in K, then

I*¥ = U _ISP(K).
o

Proof. By Lemmas 1, 2, and 3, it is clear that
\ ¥ =2 U@ISP(K) .
We shall prove that
PR = U@ISP(K) .
Assume that @ 1is any structure in ¥, Now let M Dbe the set

of all non-empty subsets of D[®] whose cardinals are less than

@. Then M forms an @-directed partially ordered set under the

- 18 -
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inclusion relation, because @ is regular. For each u EIM,
let C% be the substructure of @ generated by wu. Then
«:L | u € M) forms an @-directed family of structures, and
clearly
® = U(@ulu e M).

By Lemma 1, each @% is in I¥. Hence we have

| (®u’ wu) € F(Eu’ Qu; I¥),
where E = f, wu is a one-to-one mapping of Eu onto U, and

V!
Q is the set of all atomic sentences of L(Eu) that are

u
valid in Qg“wu). On the other hand, for any L@, @)-defining
pair (Y, aA), (Y, A; SP(K)) # # implies F(Y, A; SP(XK)) # #.
Moreover I  can be considered as the set of all generalized
L(@, @)-implicational sentences that hold in SP(K). Hence by
(1) of Lemma 6, we have F(Eu? Qu; SP(K)) # @, because

F(Eu, Qu; I¥) # @ and (Eu, Qu) is an L@@, @)-defining pair.

Now take

(u, ¢u) € F(Ep, HE SP(K)).

- Then by (2) of Lemma 6, C%(wu) and C%(¢u) are L(En)—isomorphic.

Hence (EL € ISP(K), and hence ® € q:;SP(K). Therefore we have
Z*EE(E}SP(K). This completes the proof.

A§ immediate cohsequences of Theorems 1, 2, and 3, we have
the following characterizations of generalized L{mw), @)-implica-
tional classes respectively:

COROLLARY 1. Assume that @ and (@ are regular infinite

cardinals. Then, a class K of structures for L is a general-

ized LM, @)-implicational class if and only if I(XK) & K,

S(K) & K, P(K) = K, U@(K) < K, and LK) S K.
&

COROLLARY 2. Assume that (@ is a regular infinite cardinal
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not greater than the cardinal @). Then, a class K of structures

for L 1is a generalized L(@, M)-implicational class if and only

if I(K) &K, S(K) =K, P(K) = K, and Lﬁ\(K)E K.

COROLLARY 3. Assume that the infinite cardinal @@ is reg-

uiar and @M is any cardinal > A(L). Then, a class K of struc-

tures for L 1is a generalized L(m), M)-implicational class if and

only if T(K) & K, S(K) =X, P(K) & K, and U’@(K) = K.
Y

Remarks on L{@m), @M)-implicational classes. From Theorem 1,
we can easily obtain the following analogous theorem for L@, @) -
implicational classes:

(I) Assume that @M and @ are regular infinite cardinals,

and let K be any class of structures for L. Then U_JIIL_SP¥(K)

is the least L(m), M)-implicational class containing K.

We simply expaln this fact. Let I be the set of all
L{@, @) -implicational sentences valid in all structures in K,
and let T be the set of all generalized L@, @)-implicational
sentences valid in all strﬁctures in KV{E}, where ® 1is a
L-trivial structure. Then it is clear that I¥ = T¥ gnd IP¥(K)
= IP(KV{B}). Hence by Theorem 1, we have

U@IL®SP*(K) U@H@SIP*(K)
U@IL®SIP(KU{®}) = U®IL@SP(KU{®}) = T¥% = 3%,
Hence q:;%:FP*(K) is the least L(@), @)-implicational class

containing K.

By the similar method as in the above, we can obtain the
‘following theorems (II) and (IT) analogous to Theorems 2 and 3
respectively.

(IT) Assume that @ is a regular infinite cardinal not

greater than the cardinal (), and‘let K _be any class of

- 20 -
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structures for L. Then ILﬁ§P*(K) is the least LM, M)-impli-
NS/

cational class containing K.

(IIT) Assume that the infinite cardinal @ is regular and @

is any cardinal > A(L), and let K be any class of structures

for L. Then UﬁJSP*(K) is the least L@, @)-implicational
()

class containing K.

| The following characterizations of L«@L(ﬁ»—implicational
classes are immediately obtained from the theorems (I), (II),
and (IIO) respectively.‘

(1) Assume that (@ and @ are regular infinite cardinals.

Then, a class K of structures for L is an L({®, @)-implica-

tional class if and only if I(X) € K, S(K) € K, P¥(X) < K,

greater than the cardinal (). Then, a class K of structures

for L is an L@, M) -implicational class if and only if

I(K) S K, S(K) S K, P¥(K) S K, and L (K) K.
)

(i) Assume that the infinite cardinal @ is regular and o)

is any cardinal > A(L). Then, a class K of structures for L

is an L(@, @)-implicational class if and only if TI(XK) < K,

S(K) € K, P¥(XK) & K, and U~(K) & K.
: @
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