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Several Topics on The Quadratic Forms of 3-Manifolds

By
Akio Kawauchi

Department of Mathematics, Osaka City University

In [TT] the author defined a quadratic form of a compact,
connected, oriented 3-manifold with non-zero first Betti number.
( Also see a preliminary report [6].) This paper will consist of
the applications of this quadratic form to several unrelated topics.
We consider a finite complex pair (X,A) ( It is possible A=g@.)
with X connected and the non-zero first Betti number ﬁl(X) £ 0.
Let (X,i) be the infinite cyclic cover of (X,A) associated with
an epimorphism 'X}'Hi(x) —> <t>, Define T*(i,z)=TorQ[t]H*(§,K;Q)
and T*(ﬁ,i):ﬁomQ[T*(i,K),Q].

~
Definitions. The ideal order A\(t) of Tl(X) over Q[t]
is the Alexander polynomial of X with Y. Also, we define
T [adiod
§,(X,4) = rankQ[t]Hl(X,A,Q).

Remember the definition of the quadratic form: For a compact,
connected, oriented 3-manifold M with an epimorphism NX:TTi(M) -
. . 1.5 1,5 o
<t>, a t-isometric, symmetric bilinear form < , >:T(M,9M)XT(M,3M)
— Q = T (%,3M) is defined by the identity <x,y> = xUty + yUtx
for all x, y &€ Tl(ﬁ,Dﬁ).

Definitions. The pair (<, >,t) is the quadratic form of

M with Y. Further, let Qy(M)= signature< , > and nX(M)=nuliity
<, >

1)The definition of the nullity is the same as that of [T], but
different from that of [G‘] in the case of bounded manifolds.
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~N
Definition. The ideal order hy(t) of Tl(M)/Im[Tl(dﬁ)€>Tl(ﬁ)]
is the Hosokawa polynomial. ' R
For the quadratic form of a bounded 3-manifold, the Hosokawa

polynomial should be considered as well as the Alexander polynomial,

( e£.[T].)

* Main results of [f?]\vmay be stated as follows:

'l.Theorem;gl) Let M be closed with an epimorphism 'T:'ﬂi(M)

= <t>, If M is_the boundérx of a compact, connected, oriented
4-panifold W with an epimorphism Y: T (W) = <t> extending ¥

and such that the seguence Tz(W,M) <> Tl(M) e Tl(W) -is exact

at -Tl(ﬁ), then ny(M) is_even and the induced ‘non-singulat, -

form (<, >, t): Tl(ﬁ)XTl(ﬁ) = Q  is null-cobordant.In particular,

(3(M) = 0. Further, A(t) = £(t)£(¢t7}) for some #£(t) in Qlt].

(2) Let Xi, i = 0,1, be finite connected complexes. If there
exists a finite connected complex“Y which contains Xi and such

. . LY. P P
that Hj(Y,Xi;Q) = 0, 3=l’2f then we have eikxo) = ﬁf(Xi) f?r all

compatible epimorphisms 11, i = 0,1, Moreover, if Hj(Y,Xi;Z) =0,

then Aqét) and LAtﬁt) are equal up to units of olt] and
integral polynomials f(t) with |f(1) = 1. In_case Xi= M, an |

orientable 3-manifold, nwéMo) = nﬁéMl) ,and h7gt) and h;ﬁt) are

equal up to units of Q[t] =and integral polynomials f£(t) with
|£(1) = 1, provided that H(Y,M;32) = Hy(Y',9M,;2) = 0, j= 1,2,

for a subcomplex Y' of Y, : -

Illustration of (1). Let M = Féxsl, Fg a closed surface of

genus g and W = Tgxsl, Tg a solid torus of genus g. By taking

the epimorphismTaetermined by the projection to Sl, we have
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N
H (1) = Hl(FgXRl) = @lalt]/t-1]%8 ana H,(W,H) = 7,(¥,¥). Hence
43 . . . 1,0 1,0~
the conditions of (1) are satisfied. The form < , >:T-(M)XT (M)
-> Q satisfies <x,y> = [t’l(t—l)(t+l)x]Uy =0 for all x, y.
We have n(M) = 2g, G(M) = 0, Ay(t) = (-1)%8,

Illustration of (2). Consider two oriented links 10’ ﬂi‘ZSB

which are PL link concordant,  that is, bound possibly non-locally
flat PL annuli A in 83%[0,1] provided ‘QiC:SzKi, i=0, 1. Let
Y = S?K[O,l]-—lﬁtN(A) for a regular neighborhood N(A) of A in
SBX[O,l] meeting the boundary 83X0UPSBXl regularly. Further, let
X; = YNS%i. The triple (Y,XO,Xl) satisfies the conditions of (2).
By taking the epimorphism "Wl(Y) > <t> determined by the unique
epimorphism ‘Wl(S3— j%) —> <t> sending each oriented meridian
curve to t, we have §(L)) = 8(£,), n(g)) =n(l,y), A (%) = 4;(%)
and h_(t) = h (%) modulo f(t)ez[t] with [f(1) =1 and units
of Qlt]. In particular, since every knot k is PL knot cobordant
to a trivial knot, it follows that (k) = 0, n(k) = O and |A(1)

= 1, where we choose A(t) to be primitive.

As a standard corollary of Theorem 1, we have the following:

2.Corollary. The polynomial Av(t) modulo f(t)f(t-l) for

£(t)ezlt] with [£(1) =1 and the integers EI(M), n(M), G(M)

are the invariants of the homology cobordisms of a closed and

oriented 3-menifold M with epimorphism YX: T (1) = <t>,

In ["T] we have obtained the following three consequences;
[In fact, in [7]] one can find a more general principle on each

topic. ]
-3 -
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1. The Baumslag-Solitar group G(p Q) = (a, b a 1oPa = %)
t B

is a 3-manifold group if and only if |p| = |a] or pq = O.
1

2. Consider the orientable torus bundle M over S
1 83

with

bundle projection p: M - 5. Regard Sl= Slx¥¢:Slx . The projection

p is not homotopic to a piecewise-linear embedding except for the

possible case that M is homeomorphic to .slxslxsl or the

boundary BN(S%Q§1;84) of the regular neighborhood N(S%&Sl;84)

of a "standardly" embedded Klein bottle SXxs! in s%. [To be
4

precise, a standardly embedded Kilein bottle in S means the

boundary of a solid Klein bottle in S¥.]

3. (A counterexample to PL Whitney ;emma) There exists &

simply connected,.compact 4-manifold W with HQ(W;Z) = Z®Z and
such that |

(1) Each homology class of HZ(W;Z) can be represented by a

piecewise-linearly embedded 2-sphere in W,

(2) Each pair of the homology classes of H,(W;Z) has the :

intersection number O,

(3) Each pair of the homology classes of HZ(W;Z) forming a

basis_can not be represented by mutually disjoint, piecewise-linearly

embedded 2-spheres.

Application A. Remarks on a connected linear graph in ,83.

Let IPC S’ be a connected linear graph with B (1%;2)=62".
We let X = SB-IntN(Ln) for the regular neighborhood N(I®) of
I® in $°. For an epimorphism "T:JXl(X) - <t> the Alexander
polynomial A‘Kt) of X with ¥ is called the Alexander polynomial
of L™ with Y. Also, let T(Ln) = gY(X). It follows that gr(z"™)

= n-1 and the primitive Alexander polynomial Ar(t) necessarily
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satisfies |[Ay(1)=1 for all epimorphisms Y .

Proof. It is easy to construct a finite connected 2-complex
K< S%[0,1] with S7XONK = Ix0 and L'=S’1MK, a standard n-leafed
rose in S5X1, and such that H,(S°x[0,1]-K;2) =H,(5X 0-Ix0;2)=
H*(SBXl-L';Z) by the inclusion isomorphisms. Take a regular
neighborhood N(K) of X in S°%[0,1] meeting S°¥OUS-x1
regularly. Let Y = $x[0,1]-IntN(K), X, = YNS’X1, 1 = 0,1. By
applying Theorem 1,(2) fo the triple (Y,Xo,Xl), we have that
@RIP) = n-1 and IA7(1X = 1, since 1(1(83X1-L') is a free group
of rank n. This completes the proof. |

This assertion can be also derived from results of S.Kinoshita
[ 9 ,Theorems 8 and 9]. It seems that the above proof clarifies
the geometric meaning to some extent.

The Hosokawa polynomial hy(t) of X with ¥ is called-
the Hosokawa polynomial of I® with Y. As a simple consequence,
the Hosokawa polynomial of T with Y is equal to the Alexander
polynomial of I with Y. In [10] S.Kinoshita showed that, for
any integral polynomial f(t) v}}ith |[£(1) = 1, there exists a
B8-curve whose Alexander polynomial is f(t). From this one can
derive the following existence assertion: For gach n > 2 - and any

primitive(integral) polynomial f(%t) with [|£(1) = 1, there exists

g_gnotted n-leafed rose L <:S3 with an epimorghlsm \ Tr (83~L )

= <t> sending suitably oriented meridian curves of I™ to t
and such that the Alexander polynomial Ay(t) of I with Y is
f(t). ( See S.Suzuki[]4] for a discussion.)

Application B. An elementary proof of Y.Matsumoto's example

of a spineless 4-manifolds. -5 -
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In [12] Y.Matsumoto announced the following assertion:

Assertion. There exists a compact, connected orientable

4-manifold W which is homotopy eguivalent to a torus Fl=SlXSl

and_such that no homotopy equivalence of Fl to W is homotopic

to a piecewise~linear embedding.

We shall give it an elementary proof.
The construction of W is as follows: Take the embedding

h:sT - 51x0? illustrated in Fig. 1. Then extend h to a framed

Fig. 1

1.2

embedding h:S™XD° = IntSlXD2 so that the framing is trivial in
S3 via inclusion 81XD2<:S3. Take as W +the mapping torus of h.
Proof of Assertion. Suppose there exists a piecewise-linear
embedding FICZW that is also a homotopy equivalence. We can
assume that ’Fl ~has just one locallyfknotted point in W.(See
R.H.Fox and J.W.Milnor[ 2 ].) Let kcS° be a knot representing
this local knot type. Take a regular neighborhood N = N(Fl) of
Fl in W and let W'= W-IntN. Since the embedding FlC W induces
an isomofphism H*(Fl;Z)c; H,(W;Z),it follows that W' is a
homology cobordism between QW and 7QN. Note that %N:ﬁ:?YXSlUE(k)
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, where 4 is a 2-cell in Fl and E(k) is the knot exterior of
the knot kcS>. Choose a basis {xy, x,, x5} for E,(3W;2) 2202
such that x; is the image of a generator of H2(W,W—F1;Z)¢=Z—l
under the composite monomorphism Hz(w,W—Fl;Z) 2 Hl(W—Fl;Z) %§>
Hl(gw;z). The remaining two generators x, and X5 are chosen

so that X5 represents a generator of Hl(81XD2;Z) and x3 is

a new generator resulting from the mapping torus of h. Let Yﬁ;
ﬂi(BW) —> <t> be the epimorphism sending x; to t and XpiXg to
1. We have Hl(’a'ﬁ) = Q(t]At-DeQlt]/&-1D and H,(ON)=Q[t]Ak-Ie
Q[t]&t-ﬂ@Tl(ﬁ(k)) for thé epimorphism 'Ki(aN) - <t> corresponding
to °Ti. By Corollary 2, the knot polynomial Ak(t) of k.<:S3 [,that
is, the ideal order of Tl(ﬁ(k))] must be of a slice type,i.e.,
a(t)z £(£)£(+™1). Next, let X,: T, (3W) = <t> be the epimorphism
sending X)s%p 1%z to t. Then we have H1(§W) =Q[t]/4-D @Q[t ] At-D
@l t1/2t°-3t+2) ana H; (3N) = Q[t]/s-DeQl+]Lt-0T, (B(x)). By
Corollary 2 again, 2t2;3t+2 must be of a slice type, since A&‘t)
is of a slice type. This contradicts the irreducibility of 2%2-3t+2.
This completes the proof.

Remark 1. The conclusion of the proof can be also reached by
using the signatures instead of the Alexander polynomials. In fact,
from tho above proof we can see that (k)= Gié%W) =0 and (k)=
d§503w) = + 2, which is a contradiction. |

Remark 2. In [R ] Y.Nakagawa and the author showed that the
n-variable Alexander poiyﬂomial AT(tl"”t ) "modulo. f(tl;..,tn)

n
£(¢71,..,471) for an integral f(ty,..,t.) with [£(1;..,1) =1
is a homology cobordism invariant of a closed orientable 3-manifold
M with epimorphism ¥:W,(M) = <t,,..,t >. Y.Matsumoto suggested
to the author that the above assertion can be also shown by
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applying this to the three-variable Alexander polynomial A\'(tl’t2’t3)

of W with ¥ sending x

i JCO ti, i=l,2\,30 ‘

Now consider a compact, orientable 4-manifold W with H,(W;Z)
N H(Fgi2) and H*('aw;z)xﬁ*,(ngsl;z), where F_ is a closed
surface of genus g. Let X, be an element of Hl(‘aW;Z) that is
the image of a generator of Hé(W,BW;Z)=Z by the monomorphism i
'a:Hz(W,'aW;Z) —> Hl('BW;Z). The principle used in the proof of the
above assertion is formulated as follows: o

Theorem. Assume there exists g piecewise-linear embedding

e:F, = W such that e*:H*(Fg;Z)%H*(W;Z). Then for all epimorphisms

: 'lt'l(QW) —> <t> sending %, to t we have A(t) = (t"—l)2g Ak(t')

modulo f(t)f(t+~1)

for an integral f(t) with |£f(1) =1 and
units of Q[t], ny (W) =2g, QW) = 0"(x) and ez(?W)r- 0. Here, Ak(t,)

is the knot polynomial of the local knot type <k<.‘.S3> of the

embedded surface e(Fg) in W,Aprovic_lred that e(Fg) is modified

to h_ave just one locally knotted point.

Application C. A piecewise-linear embedding of a closed
54).

3-manifold in 4-sphere s* ( or a homology 4-sphere

It suffices to consider a closed, connected and orientable

3-manifold M3, since any closed non-orientable 3-manifold canhot

be embedde’d in a homology 4-sphere §4

The dnly known classical result is due to W.Hantzsch[3 ].
4

Hantzsch's Theorem. Jf M is embeddable to S", then the

torsion part Tl(M;Z) of "Hl(M;Z) splits into two copies of &

torsion group T, i.e., Tl(M;Z)%TGT.

This follows from the Alexander duality and the Mayer-Vietoris
-8 - ‘



sequence. The 4-sphere S4 can be replaced by a homology 4-sphere

§4 and the embedding may be topological. As a direct consequence
of Hantzsch's Theorem, the lens space L(p,q) cannot be embedded
. =4
in S°.

We are now interested in a piecewise-linear embedding e:M —=

§4. The only advantage of this is that e(M) separates §4 into

two connected compact piecewise-linear manifolds Wl,bw2 with
common boundary e(M) by the Alexander's theorem.[Here, by a
homology 4-sphere, we mean a triangulated 4-manifold having the
integral homology gfoup of S4.]

/We shall consider only pairs (M,Y) satisfying the following

hypothesis:

Hypothesis. The epimorphism 7 : Ttl(M) - <t> satisf@es
8T (M) =B, (m)-1."

Note. If for M with @, (M) =n>1 there exists an
epimorphism from 'ﬂi(M) to the free group of rank n, then such
a manifold M satisfies P{(M): §,(M)-1 for all epimorphisms
Y: T, (M) = <t>. An example is the manifold ML) obtained from
57 by a surgery along a (homology) boundary link fes’  with
null-homologous framing. ( cf. N.Smythe[13].)

For an embedding e:Mc:§4, we let 5= W UMWQ. From the
Mayer-Vietoris sequence, we obtain an isomorphism 1i+1§'
2wy 2) N (Wy;2) & BH(M;2)

Definition. An embedding e: McS is Y-essential, if Y
,regarded as an element of Hl(M;Z); is either in ‘Im i* or

1

in’ Im iX.
S . 2
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Theorem. If there exists a Y-essential embedding e:M —>§‘f

then Ay(t) = £(t)£(t™1), (M) = O and n(M) is even.
Proof. Assume Y€ Inm ii. Then there exists an epimorphism
:?:TTI(WI) ~> <t> with the following commutative triangle:
i
'Tl‘l(M) —1‘>111(Wl)
T\ V&
<t> X
Let @,(M) =n, §;(W;) =m and B,(W;) = n-m. From the duality
theorem on Q[t]-ranks (See [( ].), it follows that
Fow ) - a¥(w M) o
g% (Wy,m)= 6% (W) < n-1,
Y g
52(M) = 61(M) = n-1
and
¥
gQ(Wl) < n-m.
Consider the following exact sequence of the pair (Wlfﬁ):
~ ~ ~ ~ 3 ~ s
coo—> Hy (W) = H (0 W) = B,() = B,(W) Lo 5, (7,5
’a ~ i N\
. r - gv
This squfnce asserﬁf that 62(M) - @3(WI,M)§5§2(W1). Hence
X3 T 3 : 1 (W -
_ 62(M) - @B(Wl,M) = gz(wl). Thus, the image of 3*'H2(W1’Q) -
Hz(wl,ﬁ:Q) is contained in TZ(W,M). Thisrimplies that the sequence
T2(Wl:ﬁ) 25 Tl(ﬁ) s Tl(wl) is exact. The result now follows

from Theorem 1,(1). This completes the proof.

Example 1. Consider the link 31U-3*£ in 83, illustrated
in Fig., 2. Let M = M(BlU-—Bi) be the 3-mariifold obtained from S°
by a surgery along the link 31053‘:{ with null-homologous framing.

M is not embeddable to 5.

. Proof. Choose a basis §x, y} for Hl(M;Z)z Z®Z as in Fig.2.
- 10 -
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Suppose e: MC §4. For simplicity,identifnylimjZ)#Hl(Wi;ZBQHi(W2{Z)I

D

-3

Fi3.9.

Case(1) Hl(wl;z)=0 ( or Hl(WZ;Z)zO). In this case, e is ¥-essential
for all epimorphisms Xﬁ'ﬂi(M) = <t>, By taking the epimorphism

¥ sending x to t and y to 1, we obtain Ap(t)=t’~t+1 (and
G5 (M) = + 2), which is a contradiction.

Case(Z) Hl(wl;Z)Qle(w2;Z)z Z. Let mx+ny and m'x+n'y be the
generators of Hl(wl;?) and Hl(wz;z), respectively. Then we may
assumé m'-m'n = 1, Consider the epimorphism 'Xi:TYl(Wi) - <t>

,i= 1,2, as follows: jl(mx+ny)= t and ’Ti(m'x+n'y)= 1l,i.e.,

Yi(x) =t and Ti(y):,t'm', and 'Ié(mx+ny)= 1 and Xé(m'x+n'y)=t
jice., y(x) =t and Wy(y) = ™. Notice that by () = [(¢")2.
24110 (+™™ )%t '+1]. In case m'+n' is odd, then Ag(-1)=3.

—1). In case

Hence ATét) is not of a slice type i.e., £(t)f(t
m'+n' is even, then m+n is odd, since mn'-m'n = 1. Then,
Ayét)=[(t—n)z—t_n+1][(tm)z-tm+l] is not of a slice type. This
contradicts to the fact that e is ¥y~ and “62~essentia1. This

completes the proof.

Remark 1. In the above example, let ¥ be the epimorphism
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sending both x and y to +t. One can see that AT(t)z(t2~tf+l)2
and Q3(M)=0 and nX.(M)zO. More strongly, thé quadratic form
(<, >t) of (M)¥) is null-cobordant.(cf.[5 ])

Remark 2. If we perform a knot sum operation on 31U-3*‘ g -
then the manifold M(Bﬁ:—?{) resulting from the knot 31#—3*1*
( the square knot ) iSee“‘-Fig.’*'-ybelovL) with null—-hbmologous‘
framing is embeddable in S4, since the knot 31# -33*_ is a slice
knot. (See, for example,[ 5 ,Corollary 2.5].)

%
31#'31
Fig. 3.
Question. Is M(3;) - Int o> embeddable to s* 2 That is,

2 4

do there exist a 2-knot k“¢ S  having M(Bl)-Int A’ as a

Seifert surface ? (D.B.A:Epstein[]1 ] observes that if such an
embedding exists, then there will dd exist a degree one map from

4

S7 +to the suspension of M(Bl).)

Example 2. Consider the link ,QCS3 with two components

illustrated in Fig. 4. Choose a basis {x, y} for H, (M(R);2)

specified in Fig. 4 and let Tm’n: ‘T[l(M(.Q,)) -> <t> be the

m

epimorphism rsending x to ¢ and y to tn, where m and n

- 12 -
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are coprime integers., It can be shown that there esists a TO 1
. ’

(or ¥, .~)essential embedding of M(L) 1o s*. m fact, divide
1,0”) !

. Fig 4.
s* into 4-cells Dg'_, Dg with common boundary s2: s%=p UD4
Let D27<Dl, D xD2 be the two 2-handles used to obtain M({) from

S°. Bmbed DDS to DF and DXD5 to Dj. ( See Fig, 5.) This
shows that M({) is embeddable to Sdr as a To l{-( or Tl 0—)
H ?

essential embedding.

Fig. 5.

On the other hand, we can show that there is no Yo n-’essential
s ’

embedding of M(L) to 5% at least in the case that both m and

- 13 -



n are odd.( For other cases, the assertion is still undetermined.)

™0 Since both m and n

Proof. A,tm(t)r_ (t2-1)2(£7-1) %4t
n
are odd, we have 3%15(—l)= 17. This implies that Atm(t) is
m S n

not of a slice type.

Application D. Cobordism of 3-manifolds.

A closed connected orientable 3-manifold M is distinguished

,if there are given an epimorphism ‘T:1§1(M) = <t> and a
generator \ of HB(M;Z):SZ. Denote the distinguished manifold
by M(Y,l). If HY(M;Z) = O, then we %ake the empty § as Y.
Definition. Two distinguished manifolds M(¥,L) and
M'(¥',\!) are cobordic, if there exists a compact, connected,
oriented 4-manifold W with QW=M(¥,L)UM'(%',-\) and an |
epimorphism X: 'T(l(W) - <t> extending T,"{" such fhat the
sequence Tz(W;BW)-€> Tl(dw) La T1CW) is exact at Tl(z%),

One can easily checked that the class of distinguished
3-manifolds modulo this cobordic relation forms an abelian
group under the usual (oriented) connected sum operation; We

say that this group is the (3-dimensional) rational cobordic

group and denoted by SR?(Q). The subclass of distinguished
3-manifolds with free abelian first homology groups modulo the
cobordic relation forms a subgroup of SR?(Q) denoted by ER?(Z)

and called the integral cobordic group.

1.Lemma. If M(¥,\) is homology cobordant to M'(Y',L')

- 14 -



38

with compatible Y and ¥' accompanied, then M(Y,\) is
cobordic to M'(X', l').

Proof. Let W Dbe a homology cobordism between M(¥,\) and
M'(¥', ('). It is immediate to see that the sequence '1‘2('\;!',337)
2 Tl(‘a?f) Las Tl('fwl) is exact. This completes the proof.

The following shows that the converse of Lemma 1 is not
’ true.

Example. S xs#sxs%s'xs® and sixsixs® ( with arbitrary
epimorphisms) are cobordic (, in fact, represent the zero
element of Sf(Z)CSZ_j(Q)) and have the same ( integral) homology
group. However, these are never homology cobordant.[This follows
from Corollary 2, since n‘-(S'lXSZ#Slx_S2#S]XS2) =0 and

n;‘,(SIXSlXSI)= 2 for arbitrary epimorphisms Y and ¥'.]

2. Lemma. If H-(M;Z) = O, that is, M is a rational

homology 3-sphere, then M  represents the zero element of

Q(Q).

Proof. Take a simply connected, compact 4-manifold W

whose boundary is M. Let 2 be the boundary of a 3-cell in the
interior of W and N be the regular neighborhood of & in W,
Write - W1= W -IntN., Then '3W1; MU S]X 32 and the inclusion

SlXS2C Wl induces an isomorphism '\Tl(SlXSZ) ::',Kl(wl)z <t>,
Since Tl(ﬁjl) = 0, M is cobordic to SlX82 and hence represents

the zero element of S}?(Q).

Now we consider two distinguished homology orientable
handles M(Y,L) and M'(¥',U') (, that is, two distinguished
- 15 -
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manifolds having the integral homology group of SiXS2).

3. Lemma, The connected sum M(V,L)#M'(%', ') is cobordic
to the circle union (MOM')(¥",\"). (See [5G 1.)

Proof. Construct a 4-manifold W that is the adjunction

space with boundary W
U sleino 1]
homeomorphic to the disjoint union - M(Y, Lh#M'(X',L')U(MoM )(?" -U).

{ See Fig. 6.) Notice that ﬁT(W) 0 for the specified

MxLr.13

S'x B*x £0.\2

Fig. 6. .
epimorphism ?:7[1(\'1) — <t>, Hence 3-‘:(w W)= 0 by Duality
Theorem II of [T ]. This implies that T (w,'aw) T (Dw)
i#> Tl(w) is exact. This completes the proof. 7

From Lemma 3 it follows that the class of distinguished
homology ofientable handles modulo the cobordic relation forms
a suﬂgroup SE{(Z) of‘SR?(Z) ( and hence of gﬁ?(Q)).under“the
circle union. From the construction of the N-cobordism group
S?(Slxsz) ( See [SfL), we can easily see the following: '
- 16 -
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4, lemma. There is the following commutative triangle

of epimorphisms:
S (51xs?) — Q3(2)

&\ S

G

, where G_ is the Levine's integral matrix cobordism group.

We shall show the following:

5. Theorem. The epimorphism ﬂ;:gai(z) - G_ is an

isomorphism. Thus, SE;(Z) is isomorphic to the direct sum

of infinite copies of %, __Z_2 atd ,Z.;;:. ‘

Proof. Let M= M(,L) be a distinguis'hed homology

orientable handle with "I"[M]: 0. Take a closed connected oriented
surface FgC M of genus g 'transversal to the generator of
H)(M;2) dual to Y. ( See [4].) Let ©: H) (F 3 2)3H, (F;2) =
Z be the linking pairing defined by O(x,y) = L(x,i,(y)) for
cycles x and y in Fg’ where i*(y) is the cycle in M
translating y off F, in the positive normal direction and
IL(x,i,(y)) is the linking number of x and i,(y) in M.,
[Notice that both x and i,(y) are homologous to O in M.]
(ef. [T, 2.19];) Lr(M] = 0 asserts that there exists a basis
°(l”"’ A g Pl”',’ Pg for Hl(Fg;Z) with e(o(i,o(j) =0 fqr
all i, j. In particular, o‘i'o(j = e(o(i,o(j)— Q(O/j,o(i) = 0, where

. denotes :the intersection number in Fg.

6. Lemma. By suitable choices of @l,.., B, we can assume

g
that Of.of; = B;-B; = 0 and ;.8 = Eij for all i, j.

Proof. Let a({ be the element of Hl(Fg;Z) dual to 0(1

y 1.e., o

1.@({ = gil’ é’i.o(f= O by the non-singular skew-

- 17 -
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symmetric pAairing Hl(Fg;Z)XHl(Fg;Z) => 7 w.r.t. the ba&is
o(l,..,g(g,@l, ..,@g, Hl(Fg;Z) has the orthogonal decomposition-
Hl(Fg;Z)={'o(l,o(f}_L Xl' Notice that d2""9(g are contained in
X,. Since H)(F32)/ ey - s aigh ol oY § @Ky /ety - - ot}
free abelian group of rank g, Xl/{o(2,..,o(g} is free abelian of
rank g-1. By induction, Xl has an orthogonal decomposition

_.go(z,o(z}l --.l.{a( 4#}and hence Hy (F ;2)= ={oy » }l'-'Up(g ﬂ;}
Take O(l,..,qlg# as el"”@g’ This proves Lemma 6.

By lemma 6, assume di‘Q_(jz pi‘@j =0 and o(i.ﬁjz 5713 Let

d7s e stigr 870008
pointedl out by H.Terasaka( See, also, [1L ,pl78].), we can obtain

be the standard basis for Hl(Fg;Z). As

- . O —
an auto-homeomorphism h.Fg = Fg such that h*(oii) = p(i an@

h*(ﬁg) :QJ. As a result, o(l,.-., o{g are represented by mutually

disjoint, simple closed curves S%C Fg,.., SéCFg. Thicken Si,..

,sé to mutually disjoint annuli $1x[0,1] S séx[o,lj cF,
and then thicken these annuli to mutually disjoint solid tori

SiX[O,l]Z,.., Séx[o,l]2 along the collar of Fg in M, Identify

1
i

w=4x[0,1]U(U,&, D.X[0,1]°)X1 be the adjunction 4-manifold.

ST with the boundary 3Di of a 2-cell D;,i=1,..,8. Let
6(ef;,q;)=0 implies that the framing of six[o,l]2 is the null-
homologous framing. W is homeomorphic to the disjoint union
MUS]'XSZ#N; where Hl(N;Z)z@Zg, since B(o(i,o(j)mo for all 1i,j.
Now consider the following exact sequence H’;’.(’V\f ) —>H, (W)=
H, (W) da H, (W DW), where the cover W 1s associated with the
eplmorphlsm X Tl" (W) = <t> extending ¥ (M) = <t>, Notice
that the epimorphism ¥': Tl'l(S #N ) = <t> induced from Y
is in fact defined by the projection of Tcl(slxsz#N)=Tt1(slxs2)*
T (N) to the factor T, (5'Xs%)=<t>. Since H,(¥;Z)= Z, we

‘ - 18 -
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obtain BI(W) = g;(w,aw)=o. Also, we have pz(sw); g and

3;(&4)5 g. [ Note that H2(W;Z) = @ 2z%.] The above sequence, then,
implies 1Image j, < ’1‘2('71,871). Hence the sequence Tz('ﬁ,?%)—@-)
Tl('a'vf) das Tl(v) is exact. This completes the proof.of Theorem 5.
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