50

On a characterization of finite groups of p-rank 1.

by Goro Nishida

(Department of Mathematics, Kyoto University)

Let G be a finite group. Let p be a prime number. Define the p-rank $r_p(G)$ of G by the maximal integer k such that G contains the elementry abelian p-group $\left(Z_p\right)^k$ of rank k.

It is obvious that G is of p-rank 0 if and only if the p-Sylow subgroup $G_{(p)} = e$. According to Cartan - Eilenberg [2], we see that G is of p-rank 1 if and only if $G_{(p)}$ is either a cyclic group Z_{pr} or a generalized quoterniounic group if p = 2, It is also shown [2] that a finite group G with p-rank 0 or 1 for any p is characterized by having the periodic cohomology. Such a group is called an Artin - Tate group.

Now the purpose of the present note is to give a characterization

of finite groups of p-rank 1 in terms of stable homotopy groups.

Let |G| be the order of G and let $\sum_{\mathbf{n}}$ denote the symmetric group on \mathbf{n} letters. We denote by $\rho = \rho_G: G \to \sum_{|G|}$ the regular permutation representation, and $B\rho: BG \to B\sum_{|G|}$ denotes the induced map on classifying spaces. Let

$$\omega : \coprod_{n} B \sum_{n} \rightarrow \Omega B (\coprod_{n} B \sum_{n}) \cong Q(S^{0})$$

be the Barratt - Priddy - Quillen map [1], where $Q(S^0) = \lim_k \Omega^k S^k$. Then as the adjoint of the composition

$$BG_{+} \xrightarrow{\beta \rho_{+}} B\sum_{|G|+} c B\sum_{n} \xrightarrow{\omega} Q(S^{0})$$

we obtain a stable map of spectra

$$f : S(BG_+) \rightarrow S$$

where $BG_{+} = BG \cup disjoint$ base point. Then we obtain a homomorphism

$$\phi = \phi_{G} : \pi_{n}^{S}(BG_{+}) \rightarrow \pi_{n}^{S}(S^{0})$$

of stable homotopy groups. Note that $\pi_n^S(BG_+) \cong \pi_n^S(BG) \oplus \pi_n^S(S^0)$, direct sum. The restriction $\phi|_{\pi_n^S(BG)}$ is also denoted by ϕ .

Now let $J:\pi_n(0)\to\pi_n^S(S^0)$ denote the J-homomorphism, where $0=\lim 0(n). \text{ Restricting } J:\pi_n(0)\to\pi_n^S(S^0) \text{ on } \pi_n(U) \text{ or } \pi_n(S_p),$ we obtain the complex J-homomorphism J_C or the quoternionic J-homomorphism J_H .

For a finite abelian group A, we denote by $A_{(p)}$ the p-component of A. Then we can state our theorems.

Theorem 1.1. Let G be a finite group of p-rank 1. If p is odd, then

$$Im[\phi : \pi_*^S(BG) \to \pi_*^S(S^0)] \supset (Im J)_{(p)} = (Im J_C)_{(p)}.$$

If p = 2, then

$$Im[\phi : \pi_{\star}^{S}(BG) \rightarrow \pi_{\star}^{S}(S^{0})] \supset (Im J_{H})_{(2)}.$$

Theorem 1.2. Let G be a finite group. Then the p-rank of G is equal to 1 if and only if $\phi: \pi_{2p-3}^S(BG)_{(p)} \to \pi_{2p-3}^S(S^0)_{(p)}$ (\$\phi: \pi_3^S(BG)_{(2)} \to \pi_3^S(S^0)_{(2)}\$ if \$p=2\$) is an epimorphism.

Concerning with the 2-component, it may be worth showing the following

Proposition 1.3. $\phi: \pi_1^S(BG) \to \pi_1^S(S^0)$ is an epimorphism if and only if the 2-Sylow subgroup $G_{(2)}$ is a non trivial cyclic group.

From this proposition it follows immediately that if $G_{(2)}$ is non trivial cyclic, then G is not perfect, hence not simple unless $G = Z_2$ (Burnside's theorem).

If one uses the Feit - Thompson theorem [3], one can show the following

Corollary 1.4. Let G be an Artin - Tate group. Suppose that $H_i(G:Z) = 0$, $1 \le i \le 3$, then G is trivial.

Proof. By the assumption, $\pi_3^S(BG) = 0$. Hence by Theorem 1.2, we see that $G_{(2)} = e$, i.e., G is of odd order. Then by the Feit - Thompson theorem, G is solvable. Then $H_1(G:Z) = 0$ implies G = e.

Now for a finite group G of p-rank 1, Theorem 1.1 shows the non-triviality of $\pi_{2p-3}^S(BG)_{(p)}(\pi_3^S(BG)_{(2)})$ if p=2. We remark that such a non-triviality of $\pi_i^S(BG)_{(p)}$ for i<2p-3 does not hold as the following examples show. If p is odd, then \sum_p is of p-rank 1. It is known [5] that $H_i(B\sum_p:Z_p)=0$ for i<2p-3. Then by Serre's class theory, $\pi_i^S(B\sum_p)_{(p)}=0$ if i<2p-3. For p=2, consider the binary icosahedral group I*. This is a subgroup of order 120 of $Sp(1)=S^3$. Hence I* is an Artin - Tate group and $I_{(2)}^*$ is the quoternionic group. It is well-known $[\gamma]$ that $H_1(BI^*)=H_2(BI^*)=0$. Hence $\pi_i^S(BI^*)=0$ for $i\leq 2$.

The non-triviality of $\pi_{2p-3}^{S}(BG)_{(p)}(\pi_{3}^{S}(BG)_{(2)})$ clearly fails

for general finite groups as the following Quillen's example shows. Let F_q be the finite field with $q=p^d$ elements. Then Quillen has shown [b] that $H^i(BGL(n, F_q): Z_p)=0$ for 0 < i < d(p-1). Thus $\pi_i^S(BGL(n, F_q))_{(p)}=0$ for i < d(p-1).

Theorem 1.5. Let r be an integer ≥ 2 . Let $f: SBZ_{2r} \to S$ be an arbitrary stable map. Then $f_*: \pi_7^S(BZ_{2r}) \to \pi_7^S(S^0)$ is not epimorphism.

For an odd prime, the problem seems to be more difficult. For example, a direct computation shows that the element $\beta_1 \in \pi_{2p(p-1)-2}^S(S^0)(p) \quad \text{is in the image of} \quad \phi : \pi_{\star}^S(BZ_{pr}) \to \pi_{\star}^S(S^0)$ for any r.

REFERENCES

- [1] M. G. Barratt-S. Priddy, On the homology of non connected monoids and their associated groups, Comment. Math. Helv., 47(1972).
- [2] H. Cartan-S. Eilenberg, Homological algebra, Princeton 1956.
- [3] W. Feit-J. G. Thompson, Solvability of groups of odd order, Pac. J. Math., 13(1963), 775-1029.
- [4] D. S. Kahn-S. Priddy, Applications of the transfer to stable homotopy theory, Bull. AMS, 78(1972).
- [5] M. Nakaoka, Decomposition theorems for homology groups of symmetric groups, Ann. Math., 71(1960).
- [6] D. Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. Math., 96(1972).
- [7] J. Wolf, Spaces of constant curveture, 3rd ed., Publish or Perish, 1974.