124

A duality theorem for iterated infinite cyclic coverings

by

Akio Kawauchi

This paper will derive a dual structure immanent in a manifold by establishing a duality analogous to the classical Poincaré duality for iterated infinite cyclic covers of a compact manifold. An application will be done in Section three. Spaces and maps will be considered in the piecewise-linear category, unless otherwise stated.

1. Preliminaries

Let X^n be a compact, connected, piecewise-linear n-manifold and suppose we are given a sequence $X^{(N)} > X^{(N-1)} > \cdots$ $> X^{(2)} > X^{(1)} > X^{(0)} = X^n$ such that for each i, i = 1,2,..,N-1, $X^{(i+1)} > X^{(i)}$ is the composite of $X^{(i+1)} > \hat{X}^{(i)} > X^{(i)}$, where $\hat{X}^{(i)} > X^{(i)}$ is a finitely sheeted (possibly irregular) connected covering and $X^{(i+1)} > \hat{X}^{(i)}$ is an infinite cyclic connected covering (,that is, a regular connected covering whose covering translation group is infinite cyclic). We use the notation \hat{Y} for a finitely sheeted connected cover of a space \hat{Y} throughout the paper.

- 1.1 <u>Definition</u>. For $k \leq 0$ f(k) is the class of arbitrary spaces. f(1) is the class of connected spaces with finitely generated fundamental groups. For $k \geq 2$, f(k) is the class of connected spaces Y with $\pi_1(Y)$ finitely generated and such that the integral group ring $Z[\pi_1(Y)]$ is Noetherian and $H_i(\overline{Y};Z)$ is a finitely generated left $Z[\pi_1(Y)]$ -module for $i \leq k-1$ and $H_k(\overline{Y};Q)$ is a finitely generated left $Q[\pi_1(Y)]$ -module. (Throughout the paper, \overline{Y} denotes the universal cover of a space Y.)
- 1.2 Lemma. $\pi_1(x^{(N)})$ is finitely presented, if it is finitely generated.

This follows rapidly from Lemma 1.3 below and the induction on N [by considering $X^{(N)} \times S^m$ for a large m, if possible].

1.3 Lemma. Let $n \geq 5$. If $\pi_1(X^{(1)})$ is finitely generated, then there is a map $\varphi \colon X \Rightarrow S^1$ such that for a point $p \in S^1$ $\varphi^{-1}(p)$ is a connected compact(piecewise-linear, proper bicollared) submanifold of $X^{(1)}$ such that the natural homomorphism $\pi_1(\varphi^{-1}(p)) \Rightarrow \pi_1(X^{(1)})$ is an isomorphism.

Proof. Let $X^{(1)}$ is obtained from a simplicial map $\phi_1: X > S^1$. For a non-vertex point $p \in S^1$ $\phi_1^{-1}(p)$ is a compact submanifold of $X^{(1)}$. Since $\Pi_1(X^{(1)})$ is finitely generated, from an argument of J. Stallings[/2] we can assume that $\phi_1^{-1}(p)$ is connected. Next, since $n \geq 5$, we can kill the kernel of $\Pi_1(\phi_1^{-1}(p)) > \Pi_1(X^{(1)})$ by a surgery by an argument of M.A.

Gutiérrez[2]. Thus we have a map $\emptyset: X > S^1$ homotopic to \emptyset_1 such that $(\emptyset^{-1}(p))$ is connected compact submanifold of $X^{(1)}$ and $\pi_1((\emptyset^{-1}(p))) > \pi_1(X^{(1)})$ is a monomorphism. An argument of L.P.Neuwirth[8], then, implies that this monomorphism must be an isomorphism. This completes the proof.

By Lemma 1.2, if $X^{(N)} \in f(1)$, then $\mathcal{T}_1(X^{(N)})$ is finitely presented. So, one may note that the class f(k) is closely related to the finiteness condition studied in detail by C.T.C.Wall[/3] at least for manifolds of the type of $X^{(N)}$.

It seems difficult to know whether or not the integral group ring of a group is Noetherian. A partial result on this is as follows:

1.4 Lemma. Let G_0 be a subgroup of a group G with finite index or with infinite cyclic quotient group. If $Z[G_0]$ is left Noetherian, then Z[G] is left Noetherian.

Proof. If G/G_O has a finite index, Z[G] can be considered as a finitely generated left module over $Z[G_O]$. Since $Z[G_O]$ is left Noetherian, it follows immediately that Z[G] is left Noetherian. If G/G_O is infinite cyclic, then Z[G] can be considered as a polynomial ring with negative exponents and with right coefficients in $Z[G_O]$. Then it follows that Z[G] is left Noetherian by using the proof of the Hilbert basis theorem.

2. A duality theorem

We will state our duality theorem individually on the iterated number N of infinite cyclic coverings.

<u>Duality Theorem O(Poincaré Duality). Suppose</u> $\hat{X}^{(0)}$ <u>is</u> orientable. There is a duality

 $\hat{\mu}^{(0)}\colon \text{H}^{1}(\hat{\textbf{X}}^{(0)}, \hat{\textbf{J}}\hat{\textbf{X}}^{(0)}; \textbf{Z}) \approx \text{H}_{\text{n-i}}(\hat{\textbf{X}}^{(0)}; \textbf{Z}) \quad \underline{\text{for all}} \quad \text{i.}$ This is widely known, since $\hat{\textbf{X}}^{(0)}$ is compact.

Duality Theorem 1. Suppose $\hat{x}^{(1)}$ is orientable. If $H_{\hat{1}}(\hat{x}^{(1)},\partial\hat{x}^{(1)};Z)$ is finitely generated abelian for $i\leq m$ and $\dim_{\mathbb{Q}^H m+1}(\hat{x}^{(1)},\partial\hat{x}^{(1)};Q)<+\infty$, then there is a duality

$$\hat{H}^{(1)}: H^{i}(\hat{X}^{(1)}, \partial \hat{X}^{(1)}; Z) \approx H_{n-1-i}(\hat{X}^{(1)}; Z)$$

for all $i \le m$ and for i = m+1 this map is a monomorphism.

This is a simple version of a known result. (See[4].)

An outline of the proof is as follows: Let $N_p^+ > N_{p+1}^+ > \cdots$ and $N_q^- > N_{q+1}^- > \cdots$ be the neighborhoods of the two ends of $X^{(1)}$ as in [4] or [6]. Let $\hat{N}_p^+ > \hat{N}_{p+1}^+ > \cdots$ and $\hat{N}_q^- > \hat{N}_{q+1}^- > \cdots$ be the lifts, which are still the neighborhoods of ends of $\hat{X}^{(1)}$, since $\hat{X}^{(1)}$ has still two ends. (See D.B.A.Epstein[1].) Using these neighborhoods, from an analogous method of [4] or [6] we obtain that

$$\hat{\mu}^{(1)} \colon H^{i}(\hat{x}^{(1)}, \mathbf{3}\hat{x}^{(1)}; \mathbf{Z}) \stackrel{p}{=} \lim_{\substack{p,q \to \infty \\ p \neq q \to \infty}} H^{i+1}(\hat{x}^{(1)}, \mathbf{3}\hat{x}^{(1)} \cup \hat{\mathbf{n}}_{p}^{+} \cup \hat{\mathbf{n}}_{q}^{-}; \mathbf{Z})$$

 $= H_{c}^{i+1}(\hat{X}^{(1)}, \partial \hat{X}^{(1)}; Z) \approx H_{n-1-i}(\hat{X}^{(1)}; Z) \text{ is an isomorphism}$ for $i \leq m$ and a monomorphism for i = m+1. This completes the outlined proof.

Duality Theorem 2. Suppose $\hat{x}^{(2)}$ is orientable and $X^{(1)} \in f(m+2)$ and $\partial X^{(1)}$ has at most finitely many components each of which is in f(m+1). If $H_{i}(\hat{x}^{(2)},\partial\hat{x}^{(2)};Z)$ is finitely generated abelian for $i \leq m$ and $\dim_{Q}H_{m+1}(\hat{x}^{(2)},\partial\hat{x}^{(2)};Q) < +\infty$, then there is a duality

$$\hat{\mu}^{(2)}$$
: $\hat{\mu}^{i}(\hat{x}^{(2)}, \hat{\partial}\hat{x}^{(2)}; \mathbf{Z}) \approx \hat{\mu}_{n-2-i}(\hat{x}^{(2)}; \mathbf{Z})$

for all $i \le m$ and for i = m + l this map is a monomorphism.

To prove Duality Theorem 2, we use the following lemma: 2.1 Lemma. Let $n \geq 6$ and $1 \leq k \leq (n-3)/2$. Suppose $X^{(1)} \in f(k)$ and $\partial X^{(1)}$ has at most finitely many components each of which is in f(k-1). Then there is a proper map $\varphi \colon X^{(1)} \gg \mathbb{R}^1$ such that for a point $p \in \mathbb{R}^1$ $\varphi^{-1}(p) = \mathbb{M}$ is a compact connected (piecewise-linear proper bicollared) submanifold with $\partial X^{(1)} \cup \mathbb{M}$ connected and such that $\Pi_1(\mathbb{M}) \stackrel{>}{\gg} \Pi_1(X^{(1)})$ and $\Pi_1(\partial \mathbb{M}) \stackrel{>}{\gg} \Pi_1(\partial X^{(1)})$ i = 0, 1 (if $k \geq 2$) and such that for any cover $(\widetilde{X}^{(1)}, \partial \widetilde{X}^{(1)} \cup \widetilde{\mathbb{M}})$ of $(X^{(1)}, \partial X^{(1)} \cup \mathbb{M})$ $H_1(\widetilde{X}^{(1)}, \partial \widetilde{X}^{(1)} \cup \widetilde{\mathbb{M}}) = 0$ with integral coefficients for $i \leq k-1$ or $i \leq k=1$ and with rational coefficients for $i \leq k-1$ or $i \leq k=1$ and with rational coefficients for $i \leq k-1$ or $i \leq k=1$ and with rational coefficients for $i \leq k-1$ or $i \leq k=1$ and with rational coefficients for $i \leq k-1$ or $i \leq k=1$ and with rational coefficients for $i \leq k-1$ or $i \leq k=1$ and with rational coefficients for $i \leq k-1$ or $i \leq k=1$ and with

with integral coefficients for $i \le k-2$ or $i \le k-l=1$ and with rational coefficients for $i = k-l \ge 2$.

Proof. By Lemma 1.3 there is a map $\mathfrak{S}_1: X > S^1$ such that $\mathfrak{S}_1^{-1}(p_1)$ is a compact connected submanifold of $X^{(1)}$ with $\mathfrak{S}_1^{(1)} \cup \mathfrak{S}_1^{-1}(p_1)$ connected and $\mathfrak{T}_1(\mathfrak{S}_1^{-1}(p_1)) \approx \mathfrak{T}_1(X^{(1)})$ and $\mathfrak{T}_1(\mathfrak{S}_1^{-1}(p_1)) \approx \mathfrak{T}_1(\mathfrak{S}_1^{(1)})$, i = 0,1 (if $k \geq 2$). [Since $\mathfrak{S}_1^{(1)}$ has only finite components, each components of $\mathfrak{S}_1^{(1)}$ must intersect with $\mathfrak{S}_1^{-1}(p_1)$. For $k \geq 2$ first apply Lemma 1.3 for each component of $\mathfrak{S}_1^{(1)}$.] Let $\mathfrak{S}_1^{(1)} > \mathfrak{R}_1^{(1)}$ be a lift of $\mathfrak{S}_1^{(1)}$. Note that $\mathfrak{S}_1^{-1}(p_1) = \mathfrak{S}_1^{-1}(p_1)$ for a lift $p \in \mathbb{R}^1$ of p_1 . The rest of the proof follows from Lemma 2.2 below and the following simple assertion: If $\mathfrak{S}_1^{(1)}(\mathfrak{T}_1^{(1)},\mathfrak{T}_1^{(1)}) = 0$ and $\mathfrak{S}_1^{(1)}(\mathfrak{T}_1^{(1)},\mathfrak{T}_1^{(1)}) = 0$, then $\mathfrak{S}_1^{(1)}(\mathfrak{T}_1^{(1)},\mathfrak{T}_1^{(1)}) = 0$. This follows from the homology exact sequence of the triple $\mathfrak{T}_1^{(1)}(\mathfrak{T}_1^{(1)}) = \mathfrak{T}_1^{(1)}$. In fact,

Hence $H_{i}(\widetilde{X}^{(1)}, \partial \widetilde{X}^{(1)} \cup \widetilde{M}) = 0$.

2.2 Lemma. Let $2 \le k \le (n-3)/2$ and $X^{(1)} \in f(k)$. Assume $\Pi_1(\varphi^{-1}(p)) \approx \Pi_1(X^{(1)})$ for a proper map $\varphi \colon X^{(1)} \Rightarrow \mathbb{R}^1$ with $\varphi^{-1}(p)$ a compact connected submanifold. Then there is a proper map $\varphi \colon X^{(1)} \Rightarrow \mathbb{R}^1$ homotopic to φ by a homotopy with compact support such that $\varphi^{-1}(p)$ is a compact connected submanifold and $\Pi_1(\varphi^{-1}(p)) \approx \Pi_1(X^{(1)})$ and $\Pi_1(X^{(1)}, \varphi^{-1}(p)) = 0$ with integral coefficients for $i \le k-1$ and rational coefficients for $i \le k$.

Moreover we can have $H_{i}(\widetilde{\varphi}^{-1}(p)) \approx H_{i}(\widetilde{X}^{(1)})$ with integral coefficients for $i \leq k-1$ and rational coefficients for i = k. Proof. $H_{i}(\widetilde{X}^{(1)}, \widetilde{\varphi}^{i-1}(p)) = 0$ follows from a surgerical argument of L.C.Sieben**mann**[/0]. [First, note that $H_2(\overline{X}^{(1)}, \overline{\varphi}^{-1}(p))$ $= H_2(\overline{\mathbb{X}}_+, \overline{\varphi}^{-1}(p)) + H_2(\overline{\mathbb{X}}_-, \overline{\varphi}^{-1}(p)) = \pi_2(\mathbb{X}_+, \varphi^{-1}(p)) + \pi_2(\mathbb{X}_-, \overline{\varphi}^{-1}(p))$ is a finitely generated $\mathbb{Z}[\pi_1(\mathbf{X}^{(1)})]$ -module (or $\mathbb{Q}[\pi_1(\mathbf{X}^{(1)})]$ module for k = 2), where $\overline{X}^{(1)} = \overline{X}_{\perp} \cup \overline{X}_{\perp}$ with $\overline{X}_{\perp} \cap \overline{X}_{\perp} = \overline{P}^{-1}(p)$. Hence by killing the generators, we may have a proper map $e_1: X^{(1)} > \mathbb{R}^1$ homotopic to e_1 by a homotopy with compact support such that $\varphi_1^{-1}(p)$ is a compact connected submanifold and $\pi_1(\varphi_1^{-1}(p)) \approx \pi_1(X^{(1)})$ and $H_2(\overline{X}^{(1)}, \overline{\varphi}_1^{-1}(p)) = 0$. Similar for $i \geq 2$.] Next, note that $\pi_i(X^{(1)}, f^{(-1)}(p)) = 0$ with Z coefficients for $i \le k-1$ and Q coefficients for i=k , and $\pi_{k+1}(X^{(1)},\phi^{(-1)}(p))$ = $H_{\nu+1}(\overline{X}^{(1)}, \overline{\varphi}^{-1}(p))$ with Q coefficients by the relative Hurewicz isomorphism theorem (modulo torsion). Consider the exact sequence of the following part: $H_k(\overline{X}^{(1)}, \overline{\varphi}^{-1}(p)) > H_{k-1}(\overline{\varphi}^{-1}(p))$ $\mapsto H_{k-1}(\overline{X}^{(1)}) > 0$. Since $H_{k-1}(\varphi^{-1}(p))$ is finitely generated over $Z[\pi_{\gamma}(X^{(1)})]$ and $Z[\pi_{\gamma}(X^{(1)})]$ is Noetherian, we obtain that Ker i_* is finitely generated over $Z[\pi_1(X^{(1)})]$. Since $\mathrm{H}_{\mathrm{k}}(\overline{\mathbf{X}}^{(1)}, \overline{\boldsymbol{\varphi}}^{,-1}(\mathbf{p})) = \mathrm{H}_{\mathrm{k}}(\overline{\mathbf{X}}_{+}, \overline{\boldsymbol{\varphi}}^{,-1}(\mathbf{p})) + \mathrm{H}_{\mathrm{k}}(\overline{\mathbf{X}}_{-}, \overline{\boldsymbol{\varphi}}^{,-1}(\mathbf{p})) = \pi_{\mathrm{k}}(\mathbf{X}_{+}, \boldsymbol{\varphi}^{,-1}(\mathbf{p}))$ $+ \pi_k(X_{-}, \varphi'^{-1}(p))$, we can kill the generators of Ker i_* by a surgery and hence we can assume that the map $\pi_{k}(X^{(1)}, 6^{-1}(p)) =$ $\mathrm{H}_{\mathtt{k}}(\overline{\boldsymbol{\chi}}^{\left(1\right)},\overline{\boldsymbol{\phi}}^{,-1}(\mathtt{p})) \, \geqslant \, \mathrm{H}_{\mathtt{k-1}}(\overline{\boldsymbol{\phi}}^{,-1}(\mathtt{p})) \text{ with Z coefficients is a trivial}$

homomorphism. This implies that $i_*: H_{k-1}(\mathring{\varphi}^{-1}(p); Z) \approx H_{k-1}(\mathring{X}^{(1)}; Z)$.

following part: $H_{k+1}(\overline{X}^{(1)}, \overline{\varphi}^{-1}(p)) \rightarrow H_{k}(\overline{\varphi}^{-1}(p)) \xrightarrow{i} H_{k}(\overline{X}^{(1)}) > 0.$

With Q coefficients, the same argument is applicable for the

proof.

By applying Lemma 2.2 for $\Im X^{(1)}$ (if $k \geq 2$) and then for $X^{(1)}$, we complete the proof of Lemma 2.1.

2.3. Proof of Duality Theorem 2. First consider the case that $n \geq 6$ and $m+2 \leq (n-3)/2$. By Lemma 2.1 we have $H_{\mathbf{i}}(\hat{X}^{(2)}, \partial \hat{X}^{(2)} \cup \hat{M}^{(1)}) = 0$ with Z coefficients for $\mathbf{i} \leq m+1$ and Q coefficients for $\mathbf{i} = m+2$. By using a covering translation of $X^{(1)}$, choose a copy M' of M in $X^{(1)}$ so that M'N M = \emptyset . M and M' separate $X^{(1)}$ into three parts. Let V be the compact part and N_{+} , N_{-} be the others. (See Fig. 1.)

Fig. 1

Note that $X^{(1)}$ can be covered by ascending compact manifolds $V_0 < V_1 < V_2 < V_3 < \cdots$ such that each V_i is separated by two copies of M obtained by covering translations of $X^{(1)}$. For $m+2 \ge 1$ we note that M, V, N₊ and N₋ are connected and have the fundamental groups isomorphic to $\mathcal{T}_1(X^{(1)})$ by inclusions. Since $H_i(\hat{X}^{(2)}, \partial \hat{X}^{(2)} \cup \hat{M}^{(1)}) = 0$, from the Mayer-Vietoris sequence we obtain that

$$\xi: H_{\mathbf{i}}(\hat{\mathbf{X}}_{(5)}, 9\hat{\mathbf{X}}_{(5)}) \approx H_{\mathbf{i}+1}(\hat{\mathbf{X}}_{(5)}, 9\hat{\mathbf{X}}_{(5)}, 0\hat{\mathbf{U}}_{\mathbf{i}+1}^{+} \hat{\mathbf{U}}_{\mathbf{i}-1})$$

$$\partial: \Pi_{i+1}(\hat{x}^{(2)}, \partial \hat{x}^{(2)} \cup \hat{n}_{i}^{(1)} \cup \hat{n}_{i}^{(1)}) \approx \Pi_{i}(\hat{x}^{(2)}, \partial \hat{x}^{(2)})$$

with Z coefficients for $i \leq m$ and Q coefficients for i = m+1. Further the coboundary δ is injective for i = m+1 with δ coefficients. By excision, we have $H(\hat{X}^{(2)}, \partial \hat{X}^{(2)} \cup \hat{N}^{(1)} \cup \hat{N}^{(1)}; Z) =$ = $H(\hat{V}^{(1)}, \hat{\partial V}^{(1)}; Z)$, where $H = H^*$ or H_* . Since $H_*(\hat{X}^{(2)}, \hat{\partial X}^{(2)}; Z)$ is finitely generated abelian for $i \leq m$ and $\dim_{\mathbb{Q}^H_{m+1}}(\hat{x}^{(2)}, \partial \hat{x}^{(2)})$;Q) < + ∞ , H;($\hat{v}^{(1)}$, $\partial\hat{v}^{(1)}$;Z) is finitely generated abelian for $i \leq m+1$ and $\text{dim}_{\mathbb{Q}^{\text{H}}m+2}(\hat{\mathbb{V}}^{(1)}, \Im\hat{\mathbb{V}}^{(1)}; \mathbb{Q}) < +\infty$. Since $\hat{\mathbb{X}}^{(2)}$ is orientable, $\hat{\textbf{V}}^{(1)}$ is orientable. Hence by Duality Theorem 1 we have $\hat{\mathbf{p}}^{(1)}:\mathbf{H}^{i+1}(\hat{\mathbf{v}}^{(1)},\partial\hat{\mathbf{v}}^{(1)};\mathbf{Z}) \approx \mathbf{H}_{n-2-i}(\hat{\mathbf{v}}^{(1)};\mathbf{Z})$ for $i \leq m$ and for i = m+l this map is a monomorphism, where $\hat{\mu}^{(1)}$ \in $H_{n-1}(\hat{V}^{(1)}, \partial \hat{V}^{(1)}; Z) = H_{n-1}(\hat{X}^{(2)}, \partial \hat{X}^{(2)} \cup \hat{N}_{+}^{(1)} \cup \hat{N}_{-}^{(1)}; Z).$ We shall show that $\hat{\mu}^{(1)}:H^{i+1}(\hat{X}^{(2)},\partial\hat{X}^{(2)}U\hat{N}_{+}^{(1)}U\hat{N}_{-}^{(1)};Z)\approx H_{n-2-i}(\hat{X}^{(2)};Z)$ for $i \le m$ and for i = m+1 this map is a monomorphism. Let V' be such that V'DV and V' is a compact manifold separated by two copies of M by covering translations. Further let N_1 , N' be two components of $cl(X^{(1)}-V')$ such that $N_{\downarrow} \subset N_{\downarrow}$ and $N_{\downarrow} \subset N_{\downarrow}$ and let A = cl(V'-V). Consider the following commutative diagram $(i \leq m)$:

$$\mathbf{H}^{\mathbf{i}+\mathbf{l}}(\hat{\mathbf{v}}^{(1)},\hat{\mathbf{v}}^{(1)}) \overset{\approx}{\leftarrow} \mathbf{H}^{\mathbf{i}+\mathbf{l}}(\hat{\mathbf{v}}^{(1)},\hat{\mathbf{v}}^{(1)},\hat{\mathbf{v}}^{(1)},\hat{\mathbf{v}}^{(1)}) \overset{\approx}{\leftarrow} \mathbf{H}^{\mathbf{i}+\mathbf{l}}(\hat{\mathbf{v}}^{(1)},\hat{\mathbf{v}}^{(1)},\hat{\mathbf{v}}^{(1)})$$

$$\begin{array}{cccc}
\hat{\mu}_{\mathbf{v}}^{(i)} \approx & \hat{\mu}_{\mathbf{v}}^{(i)} \approx \\
\hat{\nu}_{\mathbf{v}}^{(i)} \approx & \hat{\nu}_{\mathbf{v}}^{(i)} \approx \\
\hat{\mu}_{\mathbf{n}-2-\mathbf{i}}^{(i)} & & \hat{\nu}_{\mathbf{v}}^{(i)} \approx \\
\hat{\nu}_{\mathbf{v}}^{(i)} \approx & \hat{\nu}_{\mathbf{v}}^{(i)} \approx \\
\hat{\nu}$$

This shows that the inclusion i: $\hat{V}^{(1)} \subset \hat{V}^{(1)}$ induces an isomorphism $i_*: H_{n-2-i}(\hat{V}^{(1)}; Z) \approx H_{n-2-i}(\hat{V}^{(1)}; Z)$. Using lim_ $H_*(\hat{V}^{(1)};Z) \approx H_*(\hat{X}^{(2)};Z)$, we obtain that the inclusion $\vec{y}: \hat{V}^{(1)} \subset \hat{X}^{(2)}$ must induce an isomorphism $j_*: H_{n-2-i}(\hat{V}^{(1)}; Z) \approx$ $H_{n-2-i}(\hat{X}^{(2)};Z)$. For i=m+1 an analogous discussion shows that $j_*:H_{n-3-m}(\hat{V}^{(1)};Z) \rightarrow H_{n-3-m}(\hat{X}^{(2)};Z)$ is a monomorphism.[Use additional facts of Lemma 2.1 that $H_m(\hat{N}_{\pm}^{(1)}, \hat{N}_{\pm}^{(1)}; Z) = H_{m-1}(\partial \hat{N}_{\pm}^{(1)}, \partial \hat{N}_{\pm}^{(1)}; Z) = 0$ to prove that $H^{m+2}(\hat{V}_{\pm}^{(1)}, \hat{A}_{\pm}^{(1)}) \cup \partial \hat{V}_{\pm}^{(1)}; Z) > H^{m+2}(\hat{V}_{\pm}^{(1)}, \hat{A}_{\pm}^{(1)}) \cup \partial \hat{V}_{\pm}^{(1)}; Z$ $\partial \hat{V}^{(1)};Z)$ is injective.] Therefore, combined with $\hat{U}^{(1)}$: $H^{i+1}(\hat{v}^{(1)}, \partial \hat{v}^{(1)}; Z) > H_{n-2-i}(\hat{v}^{(1)}; Z), \text{ we have that } \hat{u}^{(1)}$: $H^{i+1}(\hat{X}^{(2)}, \partial \hat{X}^{(2)} \cup \hat{N}_{\perp}^{(1)} \cup \hat{N}_{\perp}^{(1)}; Z) > H_{n-2-i}(\hat{X}^{(2)}; Z)$ is an isomorphism for $i \leq m$ and is a monomorphism for i = m+1. Let $\hat{\mu}^{(2)}$ be the image of $\hat{\mu}^{(1)}$ via boundary homomorphism $\partial: H_{n-1}(\hat{x}^{(2)}, \partial \hat{x}^{(2)})$ $\hat{N}_{+}^{(1)}U\hat{N}_{-}^{(1)};Z) > H_{n-2}(\hat{X}^{(2)},\partial\hat{X}^{(2)};Z)$ (of the Mayer-Vietoris sequence). The composite $H^{i}(\hat{X}^{(2)},\partial\hat{X}^{(2)};Z) \stackrel{\mbox{ξ}}{\longrightarrow} H^{i+1}(\hat{X}^{(2)},\hat{X}^{(2)}|I|$ $\hat{N}_{+}^{(1)} \cup \hat{N}_{-}^{(1)}; Z) \xrightarrow{\hat{\Omega}^{(2)}} H_{n-2-i}(\hat{X}^{(2)}; Z) \quad \text{is given by the map} \quad \hat{\Omega}^{(2)}.$ Thus we have a desired result for the case that $n \ge 6$ and $m+2 \le (n-3)/2$. For the case that $n \ge 6$ or $m+2 \ge (n-3)/2$, choose a sufficiently large integer k such that n+k > 6, m+2 < (n+k-3)/2 , and consider $S^{(k)} X \hat{X}^{(2)}$. From the above argument, the map

is an isomorphism for $i\leq m$ and a monomorphism for i=m+1. (X denotes the cross product.) Since $\mathrm{H}_{n+k-2}(\mathbf{S}^k\mathbf{x}\hat{\mathbf{x}}^{(2)},\mathbf{S}^k\mathbf{x}\hat{\mathbf{x}}^{(2)};\mathbf{Z})$ $=\mathrm{H}_k(\mathbf{S}^k;\mathbf{Z})\mathbf{x}\mathrm{H}_{n-2}(\hat{\mathbf{x}}^{(2)},\hat{\partial}\hat{\mathbf{x}}^{(2)};\mathbf{Z}),~~\hat{\boldsymbol{\mu}}_k^{(2)}$ can be written as $[\mathbf{S}^k]\mathbf{x}\hat{\boldsymbol{\mu}}^{(2)},$ where $[\mathbf{S}^k]$ is a fundamental class of \mathbf{S}^k and $\hat{\boldsymbol{\mu}}^{(2)}\in\mathrm{H}_{n-2}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)};\mathbf{Z}),$ where identity $(1\mathbf{x}\mathbf{u})\Pi([\mathbf{S}^k]\mathbf{x}\hat{\boldsymbol{\mu}}^{(2)})=[\mathbf{S}^k]\mathbf{x}(\mathbf{u}\hat{\boldsymbol{\mu}}\hat{\boldsymbol{\mu}}^{(2)})$ for all $\mathbf{u}\in\mathrm{H}^i(\hat{\mathbf{x}}^{(2)},\hat{\partial}\hat{\mathbf{x}}^{(2)};\mathbf{Z}),$ we have an isomorphism $\hat{\boldsymbol{\mu}}^{(2)}:\mathrm{H}^i(\hat{\mathbf{x}}^{(2)},\hat{\partial}\hat{\mathbf{x}}^{(2)};\mathbf{Z})\approx\mathrm{H}_{n-2-i}(\hat{\mathbf{x}}^{(2)};\mathbf{Z}),~i\leq m$

and a monomorphism for i = m+1. This completes the proof.

For $N \geq 3$ some further restrictions on $X^{(N)}$ are needed. Duality Theorem N $(N \geq 3)$. Suppose $\hat{X}^{(N)}$ is orientable and $X^{(N-1)} \in f(m+N)$ and $\partial X^{(N-1)}$ has at most two components such that each component $B^{(N-1)}$ of $\partial X^{(N-1)}$ is in f(m+N-1) and the inclusion $B^{(N-1)} \subset X^{(N-1)}$ induces an isomorphism $\pi_1(B^{(N-1)}) \approx \pi_1(X^{(N-1)})$. If $H_1(\hat{X}^{(N)}; Z)$ and $H_{i-1}(\partial \hat{X}^{(N)}; Z)$ are finitely generated abelian for $i \leq m+N-3$ and $\dim_{\mathbb{Q}} H_{m+N-2}(\hat{X}^{(N)}; Q) \iff \text{and } \dim_{\mathbb{Q}} H_{m+N-3}(\partial \hat{X}^{(N)}; Q) \iff \text{and } \dim_{\mathbb{Q$

 $\mathrm{H}_{\mathbf{i}}(\overline{\mathrm{M}}^{(1)}\cup\overline{\mathrm{M}}^{\mathbf{i}^{(1)}}) \to \mathrm{H}_{\mathbf{i}}(\overline{\mathrm{N}}^{(1)}_{+}\cup\overline{\mathrm{N}}^{(1)}_{-}) + \mathrm{H}_{\mathbf{i}}(\overline{\mathrm{V}}^{(1)}) \to \mathrm{H}_{\mathbf{i}}(\overline{\mathrm{X}}^{(2)}). \text{ Since }$ $M^{(1)}$, $M^{(1)} \in f(m+3)$ and $X^{(2)} \in f(m+3)$, we have $V^{(1)} \in f(m+3)$. By Lemma 2.1 $H_{i+1}(\hat{\mathbf{Y}}^{(2)}, \hat{\ni}\hat{\mathbf{Y}}^{(2)}) = H_{i+1}(\hat{\mathbf{X}}^{(3)}, \hat{\mathbf{N}}_{+}^{(2)} \cup \hat{\mathbf{N}}_{-}^{(2)}) \stackrel{\geq}{\approx} H_{i}(\hat{\mathbf{X}}^{(3)})$ and $H^{i}(\hat{\mathbf{X}}^{(3)}) \stackrel{\mathcal{E}}{\approx} H^{i+1}(\hat{\mathbf{X}}^{(3)}, \hat{\mathbf{N}}_{+}^{(2)} \cup \hat{\mathbf{N}}_{-}^{(2)}) = H^{i+1}(\hat{\mathbf{Y}}^{(2)}, \hat{\mathbf{Y}}^{(2)})$ with Z coefficients for $i \leq m+1$ and Q coefficients for i=m+2. In particular, $H_{i+1}(\hat{V}^{(2)}, \partial \hat{V}^{(2)}; Z)$ is finitely generated abelian for $i \le m$ and a monomorphism for i = m+1. According to an analogous method of 2.3, this implies that $(\hat{x}^{(2)}: H^{i+1}(\hat{x}^{(3)}, \hat{N}_{\perp}^{(2)} \cup \hat{N}^{(2)}; Z))$ \rightarrow $H_{n-3-i}(\hat{X}^{(3)};Z)$ is an isomorphism for $i \leq m$ and a monomorphism for i=m+1. Let $\hat{\mu}^{(3)} \in H_{n-3}(\hat{X}^{(3)}; Z)$ be the image of $\hat{\mu}^{(2)}$ by $\begin{array}{ll} \partial \colon \operatorname{H}_{n-2}(\hat{\mathbf{x}}^{(3)}, \hat{\mathbf{N}}_{+}^{(2)} \cup \hat{\mathbf{N}}_{-}^{(2)}; \mathbf{Z}) & \to \operatorname{H}_{n-3}(\hat{\mathbf{x}}^{(3)}; \mathbf{Z}). \text{ Then the map} \\ \cap \hat{\boldsymbol{\mu}}^{(3)} \colon \operatorname{H}^{\mathbf{i}}(\hat{\mathbf{x}}^{(3)}; \mathbf{Z}) & \overset{\mathcal{E}}{\approx} \operatorname{H}^{\mathbf{i}+1}(\hat{\mathbf{x}}^{(3)}, \hat{\mathbf{N}}_{+}^{(2)} \cup \hat{\mathbf{N}}_{-}^{(2)}; \mathbf{Z}) & \overset{\cap \hat{\boldsymbol{\mu}}^{(2)}}{\longrightarrow} \operatorname{H}_{n-3-\mathbf{i}}(\hat{\mathbf{x}}^{(3)}; \mathbf{Z}) \end{array}$ is an isomorphism for $i \leq m$ and a monomorphism for i = m+1. Next consider the case that $\partial X \neq \emptyset$. Take the double $D(X^{(2)})$ of $X^{(2)}$. Our assumption implies that $D(X^{(2)}) \in f(m+3)$. [Note that if $\Im X^{(2)}$ is connected, then $\pi_1(D(X^{(2)})) = \pi_1(X^{(2)})$, and if $\partial X^{(2)}$ has two components, then $\pi_1(D(X^{(2)})) = \pi_1(X^{(2)})XZ$.] Using that $H_{i}(D(\hat{X}^{(3)});Z)$ is finitely generated abelian for $i \leq m$ and $\dim_{\Omega} H_{m+1}(D(\hat{X}^{(3)};Q) < +\infty$, from the case of manifolds with empty boundary $\bigcap_{D}^{\hat{\mu}(3)}: H^{i}(D(\hat{x}^{(3)}); Z) \longrightarrow H_{n-3-i}(D(\hat{x}^{(3)}); Z)$ is an isomorphism for $i \leq m$ and a monomorphism for i = m+1. Note that $\hat{X}^{(3)}$ is a retract of $D(\hat{X}^{(3)})$. We have the following commutative diagram:

$$0 \rightarrow H^{1}(\hat{X}^{(3)}, \partial \hat{X}^{(3)}) \rightarrow H^{1}(D(\hat{X}^{(3)})) \rightarrow H^{1}(\hat{X}^{(3)}) \rightarrow 0$$

$$\downarrow \hat{\mu}_{D}^{(3)} \qquad \qquad \downarrow \hat{\mu}_{D}^{(3)} \qquad \qquad \downarrow \hat{\mu}_{D}^{(3)}$$

$$0 \to_{H_{n-3-i}}(\hat{x}^{(3)}) \to_{H_{n-3-i}}(D(\hat{x}^{(3)})) \to_{H_{n-3-i}}(\hat{x}^{(3)}, \partial \hat{x}^{(3)}) > 0$$

, where $\hat{X}^{(3)}$ is another copy of $\hat{X}^{(3)}$ in $D(\hat{X}^{(3)})$ and the top and bottom sequences are exact. Let $i \leq m$. The middle vertical map $\Omega_D^{(3)}$ is an isomorphism, and hence the right vertical map is surjective and the left vertical map is injective. (Let $\hat{\mu}^{(3)}$ be the image of $\hat{\mu}_D^{(3)}$ by H_{n-3} $(D(\hat{X}^{(3)});Z) \geq H_{n-3}(D(\hat{X}^{(3)}),\hat{X}^{(3)};Z)$; $Z = H_{n-3}(\hat{X}^{(3)},\partial\hat{X}^{(3)};Z)$.) Also, consider the following commutative diagram:

 $H_{n-3-i}(\partial\hat{x}^{(3)}) \xrightarrow{i_*} H_{n-3-i}(\hat{x}^{(3)}) \xrightarrow{j_*} H_{n-3-i}(\hat{x}^{(3)},\partial\hat{x}^{(3)}) \xrightarrow{\partial} H_{n-4-i}(\partial\hat{x}^{(3)})$, where the top and bottom sequences are exact and the map $(\partial\hat{\mu}^{(3)}) : H^{i-1}(\partial\hat{x}^{(3)}; Z) \Rightarrow H_{n-3-i}(\partial\hat{x}^{(3)}; Z) \text{ is an isomorphism for } i \leq m \text{ and a monomorphism for } i = m+1 \text{ by the case of manifolds with empty boundary. Since } (\hat{\mu}^{(3)}) : H^{i}(\hat{x}^{(3)}, \partial\hat{x}^{(3)}; Z) \Rightarrow H_{n-3-i}(\hat{x}^{(3)}; Z)$ is a monomorphism for $i \leq m$, it follows that $(\hat{\mu}^{(3)}) : H^{i}(\hat{x}^{(3)}; Z)$ is a monomorphism and hence an isomorphism for $i \leq m$. By the five lemma, this implies that $(\hat{\mu}^{(3)}) : H^{i}(\hat{x}^{(3)}, \partial\hat{x}^{(3)}; Z)$ of $H_{n-3-i}(\hat{x}^{(3)}; Z) : H_{n-3-i}(\hat{x}^{(3)}; Z) :$

N = 3.

By assuming Duality Theorem N-1, we must show Duality Theorem N. However, the proof is quite parallel to the proof of N=3 and left to the reader. This completes the proof.

3. An application

Consider a closed, connected n-manifold X^n satisfying the following (1) and (2):

- (1) $\mathbb{T}_1(X)$ admits a tower of subgroup $\mathbb{T}_1(X) = \mathbb{G}_0 > \mathbb{G}_1$ $> \dots > \mathbb{G}_r = \{1\}$ such that for each i, i=1,2,...,r, $\mathbb{G}_{i-1}/\mathbb{G}_i$ has a finite index or is an infinite cyclic group,
- (2) $\Pi_i(X)$, $2 \le i \le (n-1)/2$, is finitely generated abelian and, when n is even, $\dim_Q \Pi_{n/2}(X) \otimes Q < +\infty$.

The class of such manifolds X is denoted by \mathfrak{M} .

3.1 <u>Definition</u>. Let $X \in \mathcal{M}_2$. $\mathcal{H}_1(X)$ is said to have rank R, if infinite cyclic quotient groups occur at R times in a tower of $\mathcal{H}_1(X)$.

We must prove

- 3.2 Lemma. R does not depend on a choice of towers of $\mathcal{H}_1(\mathbf{X})$.
- 3.3 <u>Definition</u>. P = P(X) = n R is called the (<u>topological</u>) <u>Kodaira dimension</u> of $X^n \in \mathcal{M}$.

We shall show the following:

- 3.4 Theorem. P is a non-negative integer except for one.
- that $Z[\pi_1(X)]$ is Noetherian by Corollary 1.5. We apply Duality Theorem N $(N \geq 0)$. Let n be even, say, n = 2n'. For all $i \leq n'-R$ we have $H^{\dot{1}}(\overline{X};Z) \approx H_{n-R-\dot{1}}(\overline{X};Z)$. When $i \leq n'-R$, $n-R-\dot{1} \geq n-R-(n'-R)=n-n'=n'$. Thus, $H_{\dot{1}}(\overline{X};Z)$ is finitely generated abelian for $i \geq n'$, hence for all i. Let n' be odd, say, n = 2n'+1. For all $i \leq n'-R$, we have $H^{\dot{1}}(\overline{X};Z) \approx H_{n-R-\dot{1}}(\overline{X};Z)$. When $i \leq n'-R$, we have $n-R-\dot{1} \geq n-R-(n'-R)=n-n'=n'+1$. Thus, $H_{\dot{1}}(\overline{X};Z)$ is finitely generated abelian for $i \geq n'+1$, hence for all i. As a result, for each $n \geq 1$ there is a duality $H^{\dot{1}}(\overline{X};Z) \approx H_{n-R-\dot{1}}(\overline{X};Z)$ for all i. This implies that R does not depend on any choice of towers of $\pi_1(X)$. By taking i=0, $Q=n-R\geq 0$. Since \overline{X} is simply connected, $Q \neq 1$. This completes the proof.

We further state individually results for X in ${\mathfrak M}$ 0 on each Kodaira dimension ${\boldsymbol \varrho}$.

3.6. $\rho = 0$. In this case, $H_*(\overline{X};Z) = 0$, hence \overline{X} is contractible, and X is $K(\pi,1)$. In particular, $\pi_1(X)$ is torsion-free. If $\pi_1(X)$ is abelian and $n \geq 5$, X is topologically homeomorphic to an n-torus $S^1 \times \cdots \times S^1$. More generally, if $\pi_1(X)$ is a poly-infinite-cyclic group and $n \geq 5$, then according to C.T.C.Wall[/4] \overline{X} is homeomorphic to \mathbb{R}^n and

for any closed n-manifold X' with $\pi_1(X') \approx \pi_1(X)$, any homotopy equivalence X' \to X is homotopic to a topological homeomorphism.

3.7. $\rho = 2$. Then $H_*(\overline{X}; Z) \approx H_*(S^2; Z)$. Hence \overline{X} is is homotopy equivalent to S^2 . Assume $\pi_1(X)$ admits a special tower $\pi_1(X) = G_0 \supset G_1 \supset \cdots \supset G_R \supset \{1\}$ such that for each i, i=1,2,..,R, G_{i-1}/G_{i} is an infinite cyclic group and G_{R} is a finite group. Then G_R is $\{1\}$ or Z_2 . To see this, consider the cover $X^{(R)}$ corresponding to G_R . First, suppose $X^{(R)}$ is orientable. If $G_R \neq \{1\}$, then let Z_p be a cyclic subgroup of G_R and $\hat{X}^{(R)}$ be the corresponding cover. By Duality Theorem R, there is a duality $0=H^1(\hat{X}^{(R)};Z)\approx H_1(\hat{X}^{(R)};Z)=Z_p$, which is a contradiction. [Note that $H_*(\hat{X}^{(R)};Z)$ is finitely generated abelian, since $X^{(R)}$ is homotopy equivalent to a complex of finite type(,i.e., skelton-finite complex).] Hence $G_R = \{1\}$. If $X^{(R)}$ is non-orientable, by the orientable case, the orientation cover of $X^{(R)}$ is simply connected. This implies $G_R = Z_2$. As a simple consequence, if $\pi_1(X)$ is abelian, then $\pi_1(X)$ is isomorphic to Z^{n-2} or $Z^{n-2}+Z_2$.

3.8. $\rho=3$. Since $H_{\star}(\overline{X};Z)\approx H_{\star}(S^3;Z)$, X is homotopy equivalent to S^3 . Assume $\mathcal{H}_1(X)$ admits a special tower $\mathcal{H}_1(X)=G_0>G_1>\cdots>G_R>\{1\}$ as in 3.7. We shall show that every abelian subgroup of G_R is cyclic. Hence G_R has a period > 1. In particular, if $\mathcal{H}_1(X)$ is abelian, then $\mathcal{H}_1(X)\approx Z^{n-3}+Z_m$ $(m\geq 1)$. To see this, first assume $X^{(R)}$ is orientable. Let A be an abelian subgroup of G_R . Let $\hat{X}^{(R)}$ be the corresponding

cover. By Duality Theorem R, we have $H^{i}(\hat{X}^{(R)};Z) \approx H_{3-i}(\hat{X}^{(R)};Z)$ for all i. Since $H_1(\hat{X}^{(R)};Z)$ is a finite group, $H_2(\hat{X}^{(R)};Z)=0$. This implies $H_2(A; Z) = 0$; so, A is cyclic. [Use a cyclic decomposition of A.] Now we must show that necessarily orientable. From a successive use of the Novikov-Siebenmann splitting theorem (See L.C.Siebenmenn[\mathcal{IO}].), we have $S^3XX^{(R)} \cong M^6 \times R^{(R)}$ for a closed 6-manifold M^6 . [Note that the Wall-Siebenmann obstruction $(r(s^3 \times x^{(i)}), i=1,2,...,R, in the$ reduced projective class group $\widetilde{K}_0(Z[\pi_1(S^3xX^{(i)})]$ vanishes, since the Euler characteristic $\chi(S^3)$ of S^3 is 0.] Hence $H_i(S^3 \times X^{(R)})$;Z) = 0, $i \ge 7$. $X^{(R)}$ is non-orientable if and only if $H_6(S^3XX^{(R)})$;Z)= 0. In other words, $H_{i}(X^{(R)};Z) = 0$, $i \geq 4$, and $X^{(R)}$ non-orientable if and only if $H_3(X^{(R)};Z)=0$. Note that there is a duality $\Pi_{\mu}: H^{i}(S^{3}XX^{(R)}; Z_{2}) \approx H_{6-i}(S^{3}XX^{(R)}; Z_{2})$ for all i. As an analogy of a fact shown in 2.3, this duality can be interpretted as $\text{Om}: \text{H}^{i}(\text{X}^{(R)}; \text{Z}_{2}) \Rightarrow \text{H}_{3-i}(\text{X}^{(R)}; \text{Z}_{2})$ for all i. This shows that the Euler characteristic $\chi(X^{(R)};Z_2)$ over the coefficient field Z_2 is 0. We need the following lemma:

3.8.1 Lemma. Suppose a space K has a finitely generated integral homology group H*(K;Z). Then the Euler characteristic of K is independent of a coefficient field which is used.

From this lemma, the usual Euler characteristic(, that is, the Euler characteristic over Q) $\chi(x^{(R)}) = 0$. Suppose $x^{(R)}$ is non-orientable. We count the Betti numbers of $H_{\star}(x^{(R)};Z)$. We have $0 = \chi(x^{(R)}) = \beta_0(x^{(R)}) - \beta_1(x^{(R)}) + \beta_2(x^{(R)}) = 1-0+\beta_2(x^{(R)})$

 \geq 1, which is a contradiction.[Note that $H_1(X^{(R)};Z)$ is a finite group. Therefore, $X^{(R)}$ is orientable.

3.8.2. Proof of Lemma 3.8.1. Since $H_*(K;Z)$ is finitely generated, by the proof of EH. Spanier [//], Lemma 9, p 246, there is a finitely generated free chain complex C chain equivalent to the free geometric chain complex C(K;Z). Then the assertion follows from the Euler-Poincaré formula. In fact, for a field F

$$\begin{split} \chi(\mathbf{K};\mathbf{F}) &= \sum_{\mathbf{i}} (-1)^{\mathbf{i}} \operatorname{dim}_{\mathbf{F}} \mathbf{H}_{\mathbf{i}}(\mathbf{K};\mathbf{F}) \\ &= \sum_{\mathbf{i}} (-1)^{\mathbf{i}} \operatorname{dim}_{\mathbf{F}} \mathbf{H}_{\mathbf{i}}(\mathbf{C};\mathbf{F}) \\ &= \sum_{\mathbf{i}} (-1)^{\mathbf{i}} \operatorname{dim}_{\mathbf{F}} \mathbf{C}_{\mathbf{i}} \otimes \mathbf{F} \end{split}$$

and $\dim_F C_{\hat{\mathbf{1}}}$ is independent of a choice of fields F. This completes the proof.

3.9. Q = 4. In this case \overline{X} is only a simply connected Poincaré 4-complex. \overline{X} is homotopy equivalent to the adjunction space of a 4-cell B^4 to a bouquet $S^2 \vee ... \vee S^2$ by a map $a: \partial B^4 \to S^2 \vee ... \vee S^2$. From this, one can see that the homotopy type of \overline{X} is characterized by the symmetric inner product $H^2(\overline{X};Z) \times H^2(\overline{X};Z) \longrightarrow H^4(\overline{X};Z) = Z$. (cf. J.W.Milnor-D.Husemoller[γ].)

Siebenmann splitting theorem. In particular, if G contains a poly-infinite-cyclic group (of rank R) as a subgroup with finite index (for example, G is abelian), then \overline{X} splits: $\overline{X} \cong MX\mathbb{R}^R$, because $\widetilde{K}_0(\mathbb{Z}[P]) = 0$ for all poly-infinite-cyclic groups P of finite rank. (cf. W.C.Hsiang [3].)

We consider low-dimensional consequences. For example, closed 3-manifolds with abelian fundamental groups are contained in \mathfrak{Mt} . It follows that the possible group as the fundamental groups is \mathbf{Z}^3 , $\mathbf{Z}+\mathbf{Z}_2$, \mathbf{Z} or $\mathbf{Z}_{\mathbf{m}}$. This is also a classical result due to K. Reidemeister[9]. Certainly, the universal cover is contractible (more precisely, \mathbf{R}^3 modulo Poincaré conjecture) or has the homotopy type of \mathbf{S}^2 or \mathbf{S}^3 according as the Kodaira dimension $\mathbf{Q}=\mathbf{0}$ or \mathbf{Z} or \mathbf{J} . Next, for example, consider a closed 4-manifold M with $\mathbf{T}_1(\mathbf{M})=\mathbf{Z}^r$, $\mathbf{r}\geq 5$. [Note that such a manifold M does exist.] As a simple consequence of Theorem 3.4, $\mathbf{T}_2(\mathbf{M})\otimes \mathbf{Q}$ is necessarily infinitely generated over \mathbf{Q} .

4. Further discussions

4.1. Although we established the duality theorem with integral coefficients, under the same hypotheses we can have every torsion-free group as a coefficient of the duality. This fact is based on A.Kawauchi[4]. Further, from [4], if our class f(k), $k \ge 1$, is replaced by Wall's class NFk in [/3] and $\dim_{\mathbb{Q}} H_k(\hat{X}^{(N)}, \partial \hat{X}^{(N)}; \mathbb{Q}) \longleftrightarrow \infty$ or $\dim_{\mathbb{Q}} H_k(\hat{X}^{(N)}; \mathbb{Q}) \longleftrightarrow \infty$ or $\dim_{\mathbb{Q}} H_k(\hat{X}^{(N)}; \mathbb{Q}) \longleftrightarrow \infty$ or $\dim_{\mathbb{Q}} H_k(\hat{X}^{(N)}; \mathbb{Q}) \longleftrightarrow \infty$

- $\partial \hat{x}^{(N)};Q) < +\infty$) is replaced by a condition that $H_k(\hat{x}^{(N)},\partial \hat{x}^{(N)};Z)$ (or $H_k(\hat{x}^{(N)};Z)$ or $H_k(\partial \hat{x}^{(N)};Z)$) is finitely generated abelian, then Duality Theorem $N(\geq 1)$ holds for an arbitrary coefficient group.
- 4.2. One can obtain a duality of a type in Kawauchi[5] for iterated infinite cyclic coverings under rather simple hypotheses, but details remain open.
- 4.3. In this paper, we worked in the piecewise-linear category. However, a manofold may be a topological manifold, because given m, it suffices to establish an i-duality, $i \leq m$, of a manifold with a sufficiently large dimension n in contrast with m, and a transverse-regularity of topological manifolds in high-codimension and a surgery on low-dimensional handles in high-dimensional topological manifolds can be done just as piecewise-linear manifolds.

Department of Mathematics, Osaka City University, Osaka , Japan

References

- 1.D.B.A.Epstein; <u>Ends</u>, Topology of 3-Manifolds and Related Topics, M.K.Fort, Jr., Prentice-Hall, 1962, 110-117.
- 2.M.A.Gutiérrez; An exact sequence calculation for the second homotopy of a knot, Proc. A.M.S. 32(1972), 571-577.
- 3.W.C.Hsiang; A splitting theorem and the Kunneth formula in algebraic K-theory, Algebraic K-theory and its Geometric Applications, Lecture Notes No.108, Springer-Verlag, 1969, 72-77.
- 4.A.Kawauchi; A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math. 26(1975), 565-581.
- 5.A.Kawauchi; On quadratic forms of 3-manifolds, Invent. math. (to appear)
- 6.J.W.Milnor; <u>Infinite cyclic coverings</u>, Conference on the Topology of Manifolds, Prindle, Weber and Schmidt, Boston Mass., 1968, 115-133.
- 7.J.W.Milnor-D.Husemoller; <u>Symmetric Bilinear Forms</u>, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73.
- 8.L.P. Neuwirth; Knot Groups, Princeton Univ. Press, Princeton, 1968
- 9.K.Reidemeister; Kommutative Fundamentalgruppen, Monatsh.f.Math. und Physik, 43(1936), 20-28.
- 10.L.C.Siebenmann; The obstruction to finding a boundary for an open manifold of dimension greater than five, Thesis,

 Princeton Univ., 1965.
- 11.E.H.Spanier; Algebraic Topology, McGraw-Hill, 1966.
- 12.J.Stallings; On fibering certain 3-manifolds, Topology of 3-

- Manifolds and Related Topics, M, K. Fort, Jr., Prentice-Hall, 1962, 95-100.
- 13.C.T.C.Wall; Finiteness conditions for CW complexes, Ann. of Math. 81(1965),56-69.
- 14.C.T.C.Wall; The topological space-form problems, Proceedings of Georgia Conference in Topology, J.C. Cantrell and C.H. Edwards, Jr., 1969, 319-331.