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A duality theorem for iterated infinite cyclic coverings

by

Akio Kawauchi

This paper will derive a dual structure immanent in a
manifold by establishing a duality analogous to the classical
Poincaré duality for iterated infinite cyclic covers of a compact
manifold. An application will be done in Section three. Spaces
and maps will be considered in the piecewise~linear category,

unless otherwise stated.

1. Preliminaries
Let X° be a compact, connected, piecewise-linear n-
manifold and suppose we are given a sequence X(N)>'X(N-l>>-"'
> 1P x (Vs (O30 (yon that for each i, i =1,2,..,8-1,
X(i+1)>'X(i) is the composite of X(i+l)>-i(i)>-x(i), where

X(i)>-X(i) is a finitely sheeted (possibly irregular) connected

covering and X(l+l)>-X(i)

is an infinite cyclic connected
covering (,that is, a regular connected covering whose covering
translation group is infinite cyclic). We use the notation §
for a finitely sheeted connected cover of a space Y throughout

the paper.
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1.1 Definition. For k < 0 f(k) 4is the class of

arbitrary spaces. f(1) 1is the class of connected spaces with
finitely generated fundamental groups. For k > 2, f(k) is the
class of connected spaces Y with Tfl(Y) finitely generated
and such that the integral group ring Zz[ T(l(Y)] is Noetherian
and Hi(?;Z) is a finitely generated left Z[ T(l(Y)]-—module for
i < k-1 and Hk(Y;Q) is a finitely generated left Q[ TC,(Y)]-
module. (Throughout the paper, Y denotes-the universal cover of

a space Y.)

1.2 Lemma. 'Kl(X(N)) is finitely presented, if it is

finitely generated.

This follows rapidly from Lemma 1,3 below - and the
induction on N [by considering X(N)xsm for a large m, if

possible].

1.3 Lemma. Let n > 5. If -mi(x(l7) is finitely

1

generated, then there is a map @: X3 -8~ such that for a point

peSl ﬁo-l(p) is a connected compact(piecewise-linear, proper

)

such that the natural

bicollared) submanifold of X%

homomorphism T(l( (Q'l(p)) > '[Yl(X(l)) is an isomorphism.

Proof. Let X(l) is obtained from a simplicial map
@l:X > Sl. For a non-vertex point peSl %Il(p) is a compact

submanifold of X(l). Since Ttl(X(l))

is finitely generated,
from an argument of J. Stallings[/2] we can assume that %il(p)
is connected. Next, since n > 5, we can kill the kernel of

Ttl( @il(p)) > T(l(X(l)) by a surgery by an argument of M.A,

-2 -
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Gutiérrez[ilj. Thus we have a map @:X >-Sl homotopic to ?l
such that er(p) is connected compact submanifold of X(l)
and 'Kl( Q"l(p)) >-Tfl(X(l)) is a monomorphism. An argument of
L.P.Neuwirth[ & ], then, implies that this monomorphism must be

an isomorphism. This completes the proof.

By Lemma 1.2, if X\Me& £(1), then ﬂi(X(N)) is
finitely presented. So, one may note that the class f(k) is
closely related to the finiteness condition studied in detail by

C.T.C.Wall[/3] at least for manifolds of the type of X(N).
It seems difficult to know whether or not the integral
group ring of a group is Noetherian. A partial result on this

is as follows:

1.4 Lemma., Let GO be a subgroup of a group G with

finite index or with infinite cyclic quotient group. If Z[Go]

is left Noetherian, then Z[/G} is left Noetherian.

Proof. If G/G0 has a finite index, Z[G] can be
considered as a finitely generated left module over Z[Go]. Since
Z[Go] is left Noetherian, it follows immediately that 2z{G] is
left Noetherian. If G/GO is infinite cyclic, then Z[G] can
be considered as a polynomial ring with negative exponents and
with right coefficients in Z[Go]. Then it follows that 2Z[G] is

~ left Noetherian by using the proof of the Hilbert basis theorem.
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2. A duality theorem

We will state our duality theorem individually on the

iterated number N of infinite cyclic coverings.

Duality Theorem O(Poincare Duality). Suppose x(0) is

orientable. There is a duality

n;JO): Hi(i(O),gi(O);z) ~ H _ ﬁ(o);z) for all i.

~ i(
This is widely known, since X(O) is compact.

X(l) is orientable. If

Dualitv Theorem 1. Suppose

Hi(X(l),BX(l);Z) is finitely generated abelian for i <m and

dimQHm+l(X(l),3X(l);Q) < +00 , then there is a duality

) D 0z ) = w @2

for all i<m and for i = m+l this map is a monomorphism.

This is a simple version of a known result. (See[<4].)

An outline of the proof is as follows: Let N;TDN;+i>"‘
and N;:>N;+i3 “** be the neighborhoods of the two ends of X(l)
as in .[4.] or [§]. Let ﬁ; 2 ﬁ;+i7 *** and ﬁ; > ﬁ;+i) <o
be thellifts, which are still the neighborhoods of ends of i(l)
, Since i(l) has still two ends. (See D.B.A.Epstein[ 1 ].) Using
these neighborhoods, from an analogous method of [4] or [&]
we obtain that |

WKL), i g(1) A%(1), : 141 2 (1) ~Np (1) i e
nw=’s HH(X'7,9X' 75 2) i; i, B (XX UNpUNq,Z)

— 4 -
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. ] nix(1) )
_ H2+1(X(1),3X<1);Z) ~ Hn-l-i(x(l);z) is an isomorphism

for i <m and a monomorphism for i = m+l. This completes the
outlined proof.
(2)

Duality Theorem 2. Suppose is orientable and

X(l)é f(m+2) and ax(l) has at most finitely many components

A

each of which is in f(m+1l). If H.(X(ZzaX(Z);Z) is finitely
i

generated abelian for i <m and dimQHm+l(X(2),3X(2);Q) < 400

then there is a duality

.(§(2);Z)

2L WGP 25 )

for 2all] i <m and for i =m +1 this map is a monomorphism,

To prove Duality Theorem 2, we use the following lemma:

2.1 Lemma. Let n >6 and 1 <k < (n-3)/2. Suppose
X(l)é f(k) _and EX(l) has at most finitely many components each
of which is in f(k-1). Then there is g proper map @: X(l) > Rt
such that for a point pé&Rl %;l(p) = M _is a compact connected
(piecewise-linear proper bicollared) submanifold with BX(l)UM
connected and such that T (M) 37r1<x(1)) and T (3M) §ﬂi(3x(l))
i =0,1 (if k > 2) and such that for any cover (%Kl),éi(l)dﬁ)

of  (x(1) axLyy Hi("i(l),ai(l)uﬁk O with integral coefficients

for i <k-1 or i<k=1 and with rational coefficients for

L I~

i = kx > 2. Furthermore, we can have Hi(M) > Hi(i(l)) with

integral coefficients for i < k-1 or i<k =1 and with

rational coefficients for i = k > 2. For k > 2, H,(al) %Hi(a“i(“)
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with integral coefficients for i < k-2 or i < k-1=1 and with

rational coefficients for i = k-1 > 2,

1

Proof. By Lemma 1.3 there is a map @l:X > S© such that

El(Pl) is a compact connected submanifold of X(l) with
SX(l)U@Il(pl) connected and "ltl((q'il(pl))%ﬂl(x(l)) and
(1)

only finite components, each components of X must intersect

with @zl(pl). For k > 2 first apply Lemma 1.3 for each component
of %11 et £ x(1) > B! ve a 1ift of Q. Note that G l(p)=
%il(pl) for a 1lift pée RT of D, - The rest of the proof follows
from Lemma 2.2 below and the following simple assertion: If
Hi('i(l),’r?f)_—. 0 and Hi'_l(a’fc(l),gﬁ)= 0, then Hi(’f(l),'ai’(l)uﬁ)= 0.
This follows from the homology exact sequence of the triple
FLX WG 5 . 1n fact, |
B, G s m, G 0%l > 8, 60X, b
I i
' : (1) %
0 H, (X', 30
i
0

Hence Hi(r}\’:(l),'és'((l)Uﬁ) = 0.

2.2 Lemma. Let 2 <k < (n-3)/2 _and (Ve (k). Assume
T\'l((f—l(p))’::ﬂ'l(x(l)) for a proper map f>: X(l) > gl with (f—l(p)

a_compact connected submanifold. Then there is a proper map

¢ (D 5 Rl homotopic to ¢ by a homotopy with compact support

such that (P'_l(p) is a compact connected submanifold and '

Wl(ﬁ'-l(P)‘)k—‘tl(X(l)) and Hi(?(’(l), ,‘;'—l(p)) = 0 with integral

coefficients for i < k-1 and rational coefficients for i = k.

-6 -
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Moreover we can have Hi(a?-l(p))*:;Hi(X(l)) with integral

coefficients for i < k-1 and rational coefficients for i = k.

Proof. Hi(i(l), Q;—l(p)) = 0 follows from a surgerical
argument of L.C.Siebenmann[/C]. [ First, note that HQ(X(I),ﬁkl(p))
= Hy (T, )+ By (XL, 7H0)) = (X, TR+ T (X, §7H())
is a finitely generated Z[TII(X(I%]—module ( or Q[TEi(X(l))J_
module for k = 2), where .§(1)='§;U'§; with -i+ﬂ i;='§’l(p).
Hence by killing the generators, we may have a proper map
@l: X(l) >-Rl homotopic to % by a homotopy with compact support
such that @7Il(p) is a compact connected submanifold and
T (67 e =T x) ana B,&Y,$71(p)) = 0. Similar for
i > 2.] Next, note that T,(x'1),§™L(p)) = 0 with Z coefficients
for i < k-1 and Q coefficients for i=k , and -Wk+l(X(l),(P'_l(p))

= Hk+1(i'(l), @' "L(p)) with Q coefficients by the relative
Hurewicz isomorphism theorem (modulo torsion). Consider the exact
sequence of the following part: Hk(_(l), qb-l(p)) > Hk_l(éb"l(p))
iy Hk_l(i(l)) > 0. Since Hk_l(@"l(p)) is finitely generated
" over Z[ﬂi(x(l))J and Z[ﬂi(X(l))J is Noetherian, we obtain
(l))].

that Ker i, 1is finitely generated over Z[ﬂi(X Since
=(1) &.,-1 T Ta-1 = 7,1 -1

H (X, @77 (p))= B (X, " (p))+ H(X_, ¢ 7" (p)) =T (X ,%" " (p))
-+1[k(X_,?'-l(p)), we can kill the generators of Xer i, by a
surgery and hence we can assume that the map 'Hk(X(l),§'_l(p)) =
Hk(ji(l?-q;"l(p)) > Hk_l@"l(p)) with Z coefficients is a trivial

h hism. This implies that i,:H_ . (+"1(p);2)=m, . (X1);2)
~homomorphism. This implies that i,:H (% p);Z)=H_(X*7752),
With Q coefficients, the same argument is applicable for the

. . =(1) @-1 =, -1 ' +(1
following part: H_ (XM @ 71(p)) = (% (p)) B 1 x)> 0.
Thus we can assume Hk(qy—l(p);Q)C:Hk(i(l);Q). This completes the
-7 -
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proof.

By applying Lemma 2.2 for QX(l) ( if k > 2) and then

for X(l), we complete the proof of Lemma 2.1.

2.3. Proof of Duality Theorem 2. First consider the case

that n>6 and m+2 < (n-3)/2. By Lemma 2.1 we have
Hi(x(?),aX(Z)UM(l))=O with Z coefficients for i < mtl and

Q coefficients for i = m+2. By using a covering translation of

X(l), hhoeaé a‘copy M' -of M in X(l)7so that MM M =06, M .

£(1)

and M!' separate into three parts.‘Letu V be the compact

part and N , N_ be the others. (See Fig. 1.)

Fig. 1

1)

Note that X( can be covered by ascending compact manifolds

VO CVlCV2CV3C such that each Vi is separated by two
copies of M obtained by covering translations of X(l). For
m+2 > 1 we hote thaf M,}V, N+ and N_ are connected and have
the fundamental groups isomorphic to Ttl(X(l)) by inclusions.
Since Hi(i(2),3i(2)Uﬁ(l))=O, from the Mayer-Vietoris sequence we

obtain that
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. . "~ 2 A(2) —_~ 'y l A(2) A(2) A(l) ,‘(l
§:tx@,0x2)) ~ @) @B

3, (32 x @My ~ 1 x(2), 5x(2))

with Z coefficients for i <m and Q coefficients for i = m+l.
Further the coboundary §&§ is injective for i = m+l with 2
coefficients. By excision, we have H(§(2){ai(Z)Uﬁil)Uﬁflzz)'=

-5 w2y, where H= H* or H,. Since Hi(i(z),éi(z);z)
is finitely generated abelian for i < m and dimQHm+1(§(2),3ﬁ(2)
1Q) < 400 , Hi(g(l),QG(l);Z) is finitely generated abelian for

i<m+l and dimQHm+2(v(1),av(1);Q) < +00. Since x'2)

(1)

is
orientable,

have AL .5i*@'D) vl ~ &

is orientable. lHence by Duality Theorem 1 we
7(1), . <

n—2—i(v 32) forn 1)5 m

and for i = m+l this map is a monomorphism, where }JJ“ <

B v igy o x@) x@urDuntt)iz). we shal1 show

that Qﬁﬁl):Hi+l(i(2),ai(z)Uﬁil)Uﬁfl);Z)ﬁt H (§(2);z) for

n-2-i
i<mn and for i = m+l +this map is a monomorphism., Let V! be
such that V'DV and V' is a compact manifold separated by two
copies of M by covering translations. Further let N;, N' be
two components of c1(X'Y)-V') such that N/ CN, and N!'CN_
and let A = ¢l(V'-V). Consider the following commutative diagram
(L < m):

L) 9k DR 3 542D 532, (VD))
| = >
it (1) 39Dy & i+l (0 (1) 20 pa5(1) )5 i+l (5, (1) 55.(2),

-9 -
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AW ~ 7w O
L= %’A}L > \51 ~

' 7(1 i 70 (1) 7 (1)
B, (V) B, ) —w w0 )

This shows that the inclusion i: V(l)C V‘(l) induces an
(L. syoq (1), .

N9 1(V iZ)=~H _,_ 1(V‘ ;2). Using

lin_ H, (v 1:2) 2 1,(x(?);2), we obtain that the inclusion

v
3: V(

isomorphism i,: H
l)C X(Z) must induce an isomorphism j*:Hn_z_i(V(l);z)A‘;

H (X(z) :Z). For i = m+l an analogous discussion shows that

n-2-1i

(V(l) 12) = H (X(2)'Z) is a monomorphism,[Use -

J*:Hn 3—-m ~3-m .
additional facts of Lemma 2.1 that H (N(l), N'(l)-z)_H (’aN(l)

BN'(l) ;Z) = 0 to prove that Hm+2(V'(l) A(l)USV(l) 12) > Hm+2(V'(l)
3V'(l) Z) 1is injective.] Therefore,combined with ;;(1),:
pi+tl (V(l) 'BV(l);Z) > H o (v(l);z), we have that ﬂ)'.‘L(l):
l"’1(}((2) QX(Z)UfT(l)UN(l)'Z) > H z_i(fc(?);z) is an isomorphism
for i<m and is a monomorphism for i = mtl. Let 25(2) be
the image of }x(l) via boundary homomorphlsm Az H l X(Z),'BJE(Z)U
N(l)UN(}),Z) >H, (x(z),ax(Z);z) ( of the Mayer-Vietoris
sequence ). The composite Hi(}z(z),ai(z);z) i Hiﬂ'()z(z), )E(z)U
ﬁil)U&El);Z) Q&Z)Hn_2~i(§(2);z) is given by the map ﬂ%z).
Thus we have a desired result for the case that n > 6 and
m+2 < (n-3)/2. For the case that n 36 or m+2 3} (n-3)/2, choose
a sufficiently large integer k such that n+k > 6, m+2 <(n+k-3)

/2 , and consider S(k)XX(Z)

njxl({”

. From the above argument, the map
1t (s¥xx(2) s*x2x(2), 5y g

(2).
n+k-2- l(SkXX 32)

I | Il
1O(s¥;z)xut (x(2) 3x(2), ) Hk(Sk;Z)XHn_z_i(f((z) 32)
- 10 -



is an isomorphism for i < m and a monomorphism for i = m+l.

( X denotes the cross product.) Since H Q(SkXX(Z) k¥3X(2);Z)

+
=Hk(Sk;Z)XH (A(z) x(2), i2), ‘ﬁé2) can :ekwrltten as [Sk]xjgz),
where [Sk] is a fundamental class of Sk and ;d2)€5Hn_2(§(2),
3§(2);Z). Using the identity (1Xu)H([S ] }52)) [Sk]X(uﬂ}Lz))
for all 116E§K§(2) ai(z)'Z), we have an isomorphism

N2t (12) 332 2) ~

o l(X(Z) 32), i< m

and a monomorphism for i = m+l. This completes the proof.

For N >3 some further restrictions on X(N> are needed,

Duality Theorem N (N >3). Suppose X(N) is orientable

and X(N_lkf f(m+N) and QX(N‘I) has at most two components such

that each component B(N-l) (N-1)
(N-1), y(N-1)

of 23X is in f(m+N-1) and the

(N-1),

inclusion,.B induces an isomorphism ‘Ki(B

TTI(X(N'I)) If H (x(N) ;2) and H,_ (ai(N);z) are finitely

generated abelian for i<m+N-3 and dim.H X(N);Q) <+ and dim

Q-2 2 S22 S
H o N- 3(QX(N),Q) <+o00, then there is a duality ﬂﬁSN): Hl(X(N),
ox(M 2y ~ x™,2) for i<m and for i = m+l this

n-N-i
map is a monomorphism,

Proof. Note that X(N—l)é f(m+N) implies (l) € f(m+N)
by using Lemma 1.4. By a similar discussion of 2.3 we can
assume that the dimension n of X is sufficiently large so
that n 2'6 and m+N < (n-3)/2. We proceed the proof by induction
on N. Let N =3 and first suppose X = . Since X(l)é f(m+3),
it follows from Lemma 2.1 that H,(M)= Hi(i(l)) with Z coefficients
for i < mt2 and Q coefficients for i=m+3. Hence ( 2) € f(m+3)
implies M(I%Ef(m+3). Let x(1) N_UVUN, “as in 2.3, where 3V=
MUM', Consider the following part of Mayer-Vietoris sequénce:

- 11 -
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g, D V) = 5 @HED 4w, (7)) = 5 (%?)), since
l), M'(l)é f(m+3) and X(a)éf(m+3), we have V(l)é.f(m+3). By
Lemma 2.1 H,,,(V(®)3v(2))m 3, 5(2) y 5(2)) 2 5 x03))
ana HX(x(3))Z g+ (x(3) ﬁ(z)UN(Z)) 1+1(€(2), v(2)y  ith

w

?

- Z coefficients for i < m+l and Q coefficients for i=m+2, In

G2 572,

particular, H Z) is finitely generated abelian for

i<m and dimQH v(2) 3 (2):9) <400, By Duality Theorem 2,

m+2(
ﬂ)£(2):Hi+l(‘}(2),'9‘}(2);z) - Hn—3—i(v(2).;z) is an isomorphism for
i<m and a monomorphism for i = m+l. According to an analogous
method of 2.3, this implies that Mu¢2): wi*1(x(3), ﬁ(z)uﬁ(z)»Z)

- Hn 3 l(X(B) :Z) is an isomorphism for i < m and a monomorphism
for i=m+l. Let }L )éH 3(X(3) Z) be the image of }—L(Z) by

3: B _,(x3) §2un(2)z) - H_ (X(3),z) Then, the nap

#3>_H G03), n)NHm(X(s) *(2)UN<2> ) K2 G352y

is an isomorphism for i< m.. and a monomorphlsm for i = m+l.

n-3-i

Next consider the case that 9X £ §. Take the double D(X(z)) of
(2). Our assumptlon implies that D(X(z))éf(m+3) [Note that
1£9%2) 15 connected, then T (0(x(?))) = T (x(?)), ana if
EX(2) has two components, then T[ (D(X(Z))) =TC (X(2))xz ] Using
that H. (D( x(3 )),u) is flnltely generated abellan for i <m

and dim.H (D(X(3),Q) < 400, from the case of manifolds w1th

Q m+l
empty boundary }ﬁg): at(nx(3hz) = Hn_B;i(D(X(j));Z) is an
isomorphism for i < m and a monomorphism for i = m+l. Note |
that x(3) is a retract of D(X(B)) We have the following

commutative diagram:

- 12 -
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0=tz B i) 5 wlpz?)) = etx¥)=o0

A ~ . /\I
l/(\/iﬁ) l[\ 8) \\/n/k(i)

o=, x® su o 0GB))sa o

n-3-1
, where ﬁ'(B) is another copy of X(B) in D(X(3)) and the
top and bottom sequences are exact. Let i < m. The middle vertical
map ‘Qﬂé3) is an isomorphism, and hence the right vertical map
is surjective and the left vertical map is injective. (Let ;&3)
be the image of /AT()” by H__ (D(X(3 )32) > H__ (D(i(”),f{'(”
;2) = n—3( (3),3X(3);Z).) Also, consider the following commutative

diagram:
pi1(3x(3)) & gi(x(3) ax(3))—i2 gix(3)) A& 4iaz(3),

ng%)nwp) ‘LQPO) LOAO) Ln@&n

7 (3) ;H
(x ) n-4-1i

2(3)\2
(9X )—>H n=3-1i

, where the top and bottom sequences are exact and the map

no(3),xi-10x(3),2) > &

n -3-1i n-3-1i

n-3- l(aX(B) Z) is an isomorphism for

i<m and a monomorphism for i = m+l by the case of manifolds with
empty boundary. Since 1‘1}1(3):Hi(x(3),gx(3);z) > Hn_B_i(X(B);Z)
is a monomorphism for i < m, it follows that H}A3)'Hi( (3)° Z)

>H 5_i (X(B) 3X<3) ;Z) 1is a monomorphism and hence an isomorphism

for i < m. By the five lemma, this implies that H}A(B):H (x(3)

BX(3);Z) = H (X(B) ;Z) is an isomorphism for i < m. This

n-3-1i
map is also a monomorphism for i = m+l, since H}gngm+l(D(X(35;Z)

—=H

n—}—(m+l)(D(X(3));Z) is injective. This completes the proof of

- 1% -
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N = 3.

By assuming Duality Theorem N-1, we must show Duality
Theorem N. However, the proof is quite parallel to the proof of

N =3 and left to the reader. This completes the proof.

3. An application

Consider a closed, connected n-manifold x? satisfying
the following (1) and (2):

(1) WEl(X) admits a tower of subgroup '“i(X)z Gy > Gy
>...>6,={1} such that for each i, i=1,2,...,r, G; 1/G; has
a finite index or is an infinite cyclic group,

(2) TTi(X), 2 <i< (n-1)/2, is finitely generated

abelian and, when n is even, dimQ'“:n/z(XX&Q < +00.

The class of such manifolds X is denoted by 7T{;

3.1 Definition. Let X€&77%. Tc_l(x) is said to have
rank R, if infinite cyclic quotient groups occur at R times
in a tower of TFl(X).

We must prove

3.2 Lemma. R does‘not depend on a choice of towers of

T (x).

3.3 Definition. @= Q(X) =n - R is called the

(topological) Kodairs dimension of X“€ m

- 14 -
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We shall show the following:

3.4 Theorem. QJ is a non-negative integer except for one,

%3.5. Proof. of Lemma 3.2 and Theorem 3.4. First note

that z[ﬂi(x)] is Noetherian by Corollary 1.5. We apply Duality
Theorem N (N > 0). Let n be even, say, n = 2n', For all i <

n'-R we have H (%;2)a H (X;2). When i < n'-R, n-R-i >

n-R-i
n-R - (n'-R) =n - n' = n'., Thus, Hi(X;Z) is finitely generated
abelian for 1 > n', hence for g8l11 i, Let n' be odd, say,

n = 2n'+l. For all i < n'-R, we have HY(X;2) >~ H (X;2).

n-R-i
When i < n'-R, we have n-R-i > n-R-(n'-R) = n-n' = n'+l, Thus,
Hi(i;z) is finitely generated abelian for i > n'+l, hence for
all 1. As a result, for each n > 1 +there is a duality

.(X;2) for all 4i. This implies that R does

i_
HN(X;2) ™~ B _p s

not depend on any choice of towers of T(l(X). By taking i = O,
Q= n-R > 0. Since X is simply connected, Q # 1. This completes

the proof.

We further state individually results for X in 77})

on each Kodaira dimension Q.

3.6. Q= 0. In this case, H,(X;2Z) = O, hence X is
contractible, and X is K(TC,1). In particular, 7tl(x) is
torsion-free. If 7[1(X) is abelian and n > 5, X is
topologically homeomorphic to an n-torus SlX "XSl. More
generally, if Tfl(X) is a poly-infinite-cyclic group and n > 5,

then according to C.T.C.Wall[/fj X is homeomorphic to R and
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for any closed n-manifold X' with 'Ki(X')Q:TTl(X), any homotopy

equivalence X' ~> X is homotopic to a topological homeomorphism,

3.7. P = 2. Then Hy (%;2) = H,(5%;2). Hence ¥ is
is homotopy equivaleht to S2. Assume 'ﬂi(X) admits a special
tower TG, (X) = G5 6y > **" 26,2{1}  such that for each 1,
i=1,2,..,R, G l/G is an infinite cyclio group and GR is a
finite group. Then GR is §l§ or ZZ; To see this, consider
the cover .X(R) corfesponding to GRf First, suppose X(R) ‘is
orientable. If G #$1}, then let Z, be a cyclic subgroup
of 'GR and X(R) be the corresponding cover. By Duality Theorem
R, there is a duality 0=HY(XR),z2)~ & ()E(R)oz)..zp, which is a
contradiction.[Note that Hy, (X(R) ;Z) 1is finitely generated

abelian, since X(R)

is homotopy equivalent to a complex of
finite type(,i.e., skelton-finite complex).] Hence Gp =31} .
If X(R) is non-orientable, by the orientable case, the
orientation cover of X(R)‘ is simply connected. This implies
Gg = Z,. As a simple consequence, if T[l(X)’ is abelian,‘thén

Zn-2

T[l(X) is isomorphic to or z™24y

2.

3.8. p= 3. Since H(X;2)= H*(SB;Z), X is homotopy
equivalent to SB. Assume TTi(X) admits a special tower
T, (X) = Gy 67 "")GRf>{l} as in 3.7. We shall show that
every abelian subgroup of GR is cyclic. Hence GR has a period
> 1. In particular, if Tj(X) is abelian, then T[,(X)= 2”24z

(m>1). To see this, first assume YX(R) is orientable. Let

A be an abelian subgroup of GR. Let X(R) be the corresponding

- 16 -
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cover. By Duality Theorem R, we have HX(x®);z)=m, ,(x(®);z)
).

3-1
for all 1i. Since H X(R);Z) is a finite group, (X( 32)= 0

1 (
This implies HQ(A;Z) = 0; so, A 1is cyclic. [Use a cyclic

(R)

decomposition of A.] Now we must show that X is
necessarily orientable. From a successive use of the Novikov-
Siebenmann splitting theorem (See L.C.Siebenmenn[/C].), we have
soxx(B) = wOxR(R) for a closed 6-manifold MP. [Note that the

Wall-Siebenmann obstruction (S x(3)y, i21,2,..,R, in the

reduced projective class group 'ﬁb(Z[ﬂi(SBXX(l))] vanishes, since

the Euler characteristic 'X(SB) of S50 is 0.] Hence Hi(S%KX(R)

R)

32) = 0, 1> 7. X( is non-orientable if and only if H6(SBXX(R)

Z)= 0. In other words, H.(xR).2) = 0, 1 >4, ana xB) ig
i >

(R).2)=0. Note that there is

non-orientable if and only if H,(X
. - i R R .

a duality (p :H (SBXX( );22)13 H6_i(SBXX( );Zz) for all 1i.

As an analogy of a fact shown in 2.3, this duality can be

interpretted as It :H 1x(R),, ,) = 3_i(x(R);.zz) for all i.

This shows that the Euler characteristic CK(X(R);ZZ) over the

coefficient field 2 is 0. We need the following lemma:

2

3.8.1 Lemma. Suppose a space K has a finitely generated

integral homology group H*(K;Z). Then the Euler characteristic

of K 1is independent of a coefficient field which is used.

From this lemma, the usual Euler characteristic(, that is, the

(R)

Euler characteristic over Q) ‘X(X(R)) = 0. Suppose X is

(R),

non-orientable. We count the Betti numbers of H*(X Z). We

have 0 = ox(x'®)) =§O(X(R)) - gl(X(R)) + gz(x(R)) = 1-0+ B, (x(R))

- 17 -
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> 1, which is a contradiction.[Note that Hi(X(R);Z) is a finite

group. - Therefore, X(R) 1s.orientabie‘

3.8.2. Proof of Lemma 3.8.1. Since H,(K;Z) 1is finitely

generatéd, by the proof ofEH.Spanier[//],Lemma 9, p 246, there
is a finitely generated free chain complex C chain equivalent
to the free geometric chain complex C(X;Z). Then the assertion
follows from the Euler-Poincaré formula. In fact, for a field F
X(K;F) ==, (-1) aingH, (K;F)

=%, (-1 aimg, (05F)

=S, (-1)%aingC ®F
and dimFC§$F is independent of a choice of fields F. This

completes the proof.

3.9. Q= 4. In this case ¥ is only a simply connected
Poincaré 4-complex., X is homotopy equivalent to the adjunction
space of a 4-cell BY to a bouquet s°V ...Vs? by a map
a : B = S2\/...\/82. From fhis, one can see that the homotopy
type of X is characterized by the symmetric inner product

B (X;2)% B2(%;2) - 0¥ (%;2)=2. (cf. J.W.Milnor-D.Husemoller[/ ].)

3.10. Q> 5. X is a simply connected Poincaré Q-complex.
Let precisely T (X)= GyD 5&0? G D 513 vee DO &R =11}
» where for each i, i=0,1,..,R Gi/f}jL has a finite index and
for each i, i=1,2,..,R, éi-l/Gi is an infinite cyclic group.
If the Wall-Siebenmann obétruction’(Y(X(i)) in i%(Z[Gi]) vanishes,
then X is piecewise—linearlybhomeomorphic to thersplittiﬁg
MXRY for a piecewise-linear closed manifold M by the Novikov-
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Siebenmann splitting theorem. In particular, if G contains g
poly-infinite-cyclic group (of rank R) as a subgroup with
finite index (for example, G is abelian), then X splits:

X = MXRR, because 'iO(Z[P]) = 0 for all poly-infinite-cyeclic

groups P of finite rank. (cf. W.C.Hsiang [ J].)

We consider low-dimensional consequences, For example,
closed 3-manifolds with abelian fundamental groups are contained
in Y. It follows that the possible group as the fundamental
23

groups is y 242 Z or Zm‘ This is also z classical result

o
due tc¢ ¥, Reidemeister| 9]. Certainly, the universal cover is
contractible (more precisely, R3 modulo Poincaré conjecture)
or has the homotopy type of 82 or 83 according as the Kodaira
dimension Q= 0 or 2 or 3., Next,for example, consider a closed
4-manifold M with ‘Hl(M) = Zr, r>5, {Note that such a
manifold M does exist.] As a simple consequence of Theorem 3.4,

TEZ(MbDQ is necessarily infinitely generated over Q.

4, Further discussions

4.1. Although we established the duality theorem with
integral coefficients, under the same hypotheses we canr have
every torsion-free groun as a coefficient of the duality. This
fact is based on A.Kawauchi{ 4 ]. Further, from [4 ], if our class
f(k), k> 1, is replaced by Wall's class NFk in [ /3] and

dimQHk(i“‘”,’gi(N);Q) <4 ool or dimQHk(i(N);Q) < +00 or dimH,(
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3§(N);Q)‘<+00) is replaced by a condition that Hk(X(N),'BX(N);Z)
( or Hk(X(N);Z) or Hk(QX(N);Z)) is finitely generated abelian

then Duality Theorem N(>1) holds for an arbitrary coefficient

9
group.

4.2. One can obtain a duality of a type in Kawauchi[ 5 ]
for iterated infinite cyclic coverings under rather simple

hypotheses, but details remain open.

4.3, In this paper, we worked in the piecewise-linear

category. However, a manofold may be a topological manifold ,

because given m, it suffices to establish ah i-duality, i < m,
of a manifold with a sufficiently large dimension n in contrast
with m, and a transverse-regularity of topological manifolds in
high-codimension and a surgery on low-dimensional handles in
high-dimensional topological‘manifolds can be done just as

piecewise~linear manifolds.

Department of Mathematics,Osaka City University,Osaka ,Japan
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