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An extention of AKTH-theory to locally compact groups

by  Nobuhiko TATSUUMA

1. Let ;a,G,OZ} be a C*-system. That is, Ol is a C*-algebra,
G is a locally compact group, and G 3g I—,O(g EQT( ) is a con-
tinuous homomorphism. Consider an (A -invariant state @& on OL s
and the unitary representation T'K ,Ug,}e ,Ri of G deduced by
GNS-construction.
For any A,B€0l , put f,5(8) = w (B D(g(A)) - w(A) wW(B) =
<U_TC(8) 82, T(3)IEL) - (MW &2, Q> <7 (B) &2, 2>  4nd

B'AB(&‘;) . W(NS(A)B) - w(A)w(B) . Then evidently,

3

-1
(1) gAB(g) = fA,B*(g) = fBA(g )

Now we assume the existence ofa morm dense K -invariant

*-subalgebra ﬂco of (Ll , for which the followings are valid.

Put

Fe

i

(function algebra on G algebraically generated by %fABlg

n8eqd, ),
’} = (the uniform closure of ?O) ,
and cu%truct qo and q;as same way from ?F"AB 3 A,B 601/0} .

[Assumption l] 358 closed with respect to complex conjugation.

[Assumptjon 2J For any n2Z1l and Ai’Bjeaz() ( i=1,2, ...),

n n
(2) f (]| =t (g) - ; (g))Ydg = 0.
. T( A.B, -ﬂ— gAjB. ig

J J j J
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[Assumption BJ There exist 1 é p,q<+oo and a non-zero
n
element fo = Zk —D- fA]‘,kBj‘k (Aj,k , Bj,kéOLO) in -fFO
such that (i) £, € L’(®),

n
(11) g, = 2. m g, g5 € 1Ue).
k] J k7i.k
(We use a right Haar measure d g on G).
The purpose of this paper is to show the KMS-property for
C*-svstems which satisfy the above assumptions,
From (1) and [Assumption g the following lemma is direct.
Lemma 1 34 = €¥ ,andfﬁ is closed undar the operation

f(g) F+ £(g™2) .

2. We shall give the formulation of our KMS-property on
C*-systems based on Araki-Kastler-Takesaki-laag's theory.

When G is the additive group R of real numbers, the ordinary
KMS-property is stated as follews.

[KMS] The function ‘4kB(t) = W (B OQ(A)) can be extended
analytically on some strip domain Tt 3 Oiﬁ(t)é@} and

’\f’AB(tﬂ,’p) = wl O(t(A)B) for any t in R and any A,B in L .

In the other hand for an? one-parameter subgroup g(t) of g,
using the Stone's theorem, we can determine its infinitesimal
generator ¢H , as H is a self-adjoint operator on }{_ and

1Ht

e =l ¢

-2 -



Now in cur case, denote by K the kernel in G of the homomor-
phismn g _—chE , then our main result is given as follows.

MAINvTHEOREM. Under the assumptions 1~3% , there exists

an one-parameter subgroup e(t) of G/K , such that
<, HPT R, 7 TRy - <T(B4, v, THRY,
for any 4,B in CZUo ‘
If the Main Theorem is proved)the function
Y = wBE () =< U T &, TEHSEY
has the analytical extension
Pleeis) = < U, V282, 52 (5982
and Plerd) = KTBHSL, U,y TDEL> = WA ) ()B).
This shows that the subsystem fUL, R, “g(t)} is just a KMS-C*-

system as originally defined.

3. k At first we discuss under slightly more general situation
and prove a useful Proposition 1.
Let . FO be a set of bounded uniformly)contjnuous functions

on Gy and F Dbe the uniform closure of F For any f & ¥, put

0
6; = [s€6 5 flggy) = f(g), Vo e Gf ana °r,rer %t OF “ferr ¢
Lemma 2. GV:GF , and GF is a closed subgrcup of G.
¢
Proof.Because f is continuous, Gf is closed. Hence GF’ GF

c -
are closed.

-1 -1
i P - - —
For any kl‘k2er’ g eG, f(kl kzg;) = f(kl(kl kzg)) = f(kag) =

f(g). Thus k—lk & G,., therefore G_. and G_, G are subgroups.
172 f f F FO
Cbviously GF(GFQ s If GF:FGFO there exists gleGFO and * GFo
. .. 3 " v
That is, s Af ¢F and f(glga) # f(p;2) and for ?eFC, ?(glg) =



$(g). Cn the other hand,¥¢70,3f €F  such that |Jf - a2,
Put £= |f(gyg,) - £(gy)| . then |flgyg,) - £(zy) & |f(eye,) - Plae,)
That is contradiction.

Lemma %, If there is a non-trivial function fU of zero at ¢©

in F,, then the subgroup G and G_ = G are compact,
U fO Fo F
Proof. If Gf is not compact, there exists a secuence ik;CGf
0 ¢
such that ki—bm. Therfore for some gOeG s, &nd for all j

; . Y= . 'Thi t i ! i .
G £ fu(go, fo(kng) This contradicts to the assumption for fo

Corollary 1. In such a case, Lp(QF\G) is imbedded into LP(G)

as a space of functions which are constant on G_-left cosets.

F
Hereafter we write H = GF.
Lemma 4. If a uniformly continucus function f on G belongs
to LP(G) for some p<te0 3 £ is zero at €9,
Proof. If f 4dis not zero at oO , there exists a sequence

ikjj C G and a>C such that kj-poo, lf(kj)‘ > a for any jJ.
Uniform contjhujty of f asserts the existence of a compact neigh-
borhood V of e ,such that 'f(g‘l) - f(gz)'<a/2 for anyvgl,ga
such that glggle V. Since kj«boo, if it is necessary , taking
a subseguence, we can assume ij/\Vk[ =¢g (3 #4). Thus,

L‘f(g)‘ P g2 %‘vx:j.)f(g)l Pa ngZkajflf(kj)l -(a/2)]Pa g2

g (a/2)P Z }A(V) =00. That is contradiction.
hi

Corollary 2. Any f éB(G) ﬂLp(G) (p&too) is zero at 6o .
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Here ®(G) is the ring 'of functions generated by f(U:v,u 73
( W runs unitary representatiocns of G, and v,u run vectors of

spaces of representation &« ).

Proposition 1. Assume that the above FO satisfies the follwings,
(1) FO is a function algebra, that is , closed under the

cperations 4 , X and scalar multiplication.

(i1) F, is invarjant under right translation§, that is , for

¢
any f in F. and anvy g,, the function (R_ f)(g) = f(gg,) of g is
C 1 £y 1
in F.
css 4 -
(iii) The unjfom closure F of F. is closed with respect

9]

to complex conjugation.
(iv) There exist an fO (# 0) in FO and p<Ew,such that foé-ﬂP(G).

Then there exists a natural number n.  and the set

N
1 n . -_—
Fl:{% ij'dgi(fo) i N=l,2,.000, gjé G, S”je-FO@Cl}

in Fo/\ Ll(H\G) , is dense in L1LU(H\g) for l_<_Vq<+oo ,and is

(1]

dense in L:b(H\Q) f continuous function of zero atee on H\G}

with uniform norm.
' n 1l 0°
Proof., If we put n =[pl+ 1, (fo) € L'(G)N L (G),therefore

FiC FoN Ll(H\G){\L"‘ (E\G). Thus replacing f " to f. ,we can

) 1o
consider f_g 1 (m\e) and F, C mern 1®me) < 14(E\G) for

1§Vq<+°° . And by Lemma 4 , F,C L‘:(H\G). Moreover we consider

N
2
F, -fZJ.'. R, 51T 5 N=1,2,., ;rjg-e,ﬁ’jeF@ Clj .

In general F} 4.F , but by the assumption (iii) F2 < F, since
2

R_f ' ~ -G .
gi o and therefore Rg ]fol (Hg_fo)(Rg fo) are in F,

b h| 3
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 Lemma 5. ForV¥9e F,,Vi> 0,1V < +0 ,there exists fe F, such
that | ¢ - ] <& .
Proof. Let ¢ = Z] (?j'ﬁz?o)Rg“foero Here ?jfi;—foe F,
so there exist f ' £F, such that’ [’(fjﬁ;';?o - fj|]°°<(£/N [EN o)

moe 19 - Zeg, o, <P T - £yl 5, ol
=Z"?J§_g:]—f(_, - fj“oo “ fO“p< c -

By the reason of Lemma 5 , it is enough to show that F2 is

dense in LY(H\G) and L (H\G) .
lemma 6. F, is (i) a subring of F , (ii) closed with
respect to complex conjilgation, (iid) invariant to right translations,
(iv) F,C Ll(G) N LZ(G) ,so its elements are zero at €0,
(v) separates any two points fg\i £ E’Z in H\G.
2
thus (i) is evident. The fact that Rg‘”(‘f are realvalued, and the

Proof. F_ is the ideal of F generated by /] = fRFlfolz; e G} ,

assumption (iii) in Proposition 1, give (ii). (iii) is direct

. . . . 2
result of right invariant properties of F, , F and A - Rglfc,‘

are in Ll(G) and F is in Lp"(G), hence (iv) is true. At last,
if fo(gl) # fo(gz) then (v) is true for such g1185- And if
0 # fo(glgo) = fO(ng()) for some &g in G, by the definition of

H = G, there exists a ¥ e&F such that ?(gl) # ?(gz), thus

N

Al
gl ’ Q? °

Y-RrR_|f lz separates these
8y ©

Corollary 3. For Y@e 17(1\6),Y€>0,there exists feF, such
. . . o0
that “‘f’ - fu-o< ¢ , that is, F, is dense in L} (BE\G).
Proof, Consider the one point compactification space X of

H\G. We apply the Stone-Weierstrass's theorem to F, @& ¢l on Cc(x).

Thus we get f; = f + al€F @€ and || ¢ - £, ]|, < /2, But 4 is zero
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at © and fe€F, is too. Hence [al< (£€/2), and |9 - tll. &
NF- £l + (E/2)<E.

Since CO(H\G) = {continucus functions on H\G with compact supoorts}
is dense in LP(E\G) (p<oo), the following Lemma 7 gives directly
a proof of Proposition 1. .

Lemma 7. For Ve C (H\G),¥€>0,¥p<+oo, there exists
f € F, such that ¢ - fﬂp<£..

Proof. Put C = [@] (support of CF ), a = H(C) (measure of
C) and M = "(F"oé Using the regularity of Haar measure, there -
exists a relative compact open set U containing C such that
%(U) < 2a. Moreover we can take a ')LQCO(H\G) such that

Fe) =1 for g€cC, and =0 for z¢U, oL Y@ <L1 Ve eo.

By Corollary 3, take fler such that

NP - £ lle< § < min( 1, £(2Pta 4 1)7V/P),
Put m = JG-Ulfl(g)lp dg, anda 0< §<min( 1, £/, Pn~1/P).
Again by Corollary 3, take kfzé F, such that I - £l O and
put £ = £30f, o Then |Pe) - £(g)] = |P(e) - £;(e)f,(g)| is less
than  |9(e) - £ ()| + |1~ £,(0)| |5, (@] < P+ T + PI<2f for gec,
L@ 5] < POIY Y +3)< P(14§)<2P for geu -,
£, ()] |f2(g)| <|fl(g)|§< j’m"l/p[fl(g)] for g ¢ U
Thus  ||¥ - fupp =jG |9(2) - £(g)|P d & =]c" T +/ 4 <
< 2P%P M) 4 2P PP H(u-0) 4 fpm-l G__U]fl(g),p dg<
<@ y1)PPg EP.

L, Now we return to our problem concerning to the C*-svstenm

fﬁl, G,O(} o We apply Provosition 1 twice, at first to the case
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= d I > - = -
FO }O and second to the case FU go

Lemma 8. In both cases, GFO ( = K) are same one and compact
normal subgroup of G. '
Proof. If F, = Fr, K=G3{O=G} , and if Fy = g
K=G¢U=Gg9 ButbyLemmal,g.—.:'F, thus G3==G% °
For Vkek, f, (kg) = f,.(g), that is, for V¥geG and Va,B €@,
< U0, 7 (8) 52, M(B*)GL D = <u, 7t (8) 52, T(B*)SL”
Thus Ukv = v, forvve}e s This shows Uk = I , therefore K
is the kernel of this representation, hence normal. EXssumn*jon 3]
and Lemma % , Corollary 2 assure the compactness of K.
Based on Lemma &, replacing the factor group K\g to G,

hereafter we can assume K = §e} . Moreover we take Pg = [max(p,q]fl

and replace rPo , g,?o to fO e in Assumption 3. Thus we can
A

¢} 0
e 11 @) N L.

assume that fo, go
: — -1
Lemma 9. (go = 3f1(g;) 3 fﬁ?o} = ?fl(g ) 3 fléy;o} °
Proof. Since aa is *-invariant, by (1) we obtain the result.

Proposition 1 leads us to the following lemma.
Lemma 10. The followine spaces are dense in LY(G) (1< ¥p<oo )

and in L:"(G)

k3

°N

. - / . -
iZ fj('Rg,.fO) P N=1,2,..., g€ty fjéj'-roaa ci},

i 3
N
— B - —_ ' fal
91 = {%. gj(RH%go) 3 N=1,2,..., g5€0G, gjeqo@ﬂj .

Now define a map S from %1 onto 91 _by

N .n N n
S }192;-“ fy, .5, ™2 ; Fa Bj,ké%r’

b Jyk7i.k k isk
Lemma 11. (i) The map S is welldefined. That is, for

Ve e? , 8f does not depend on the form f =Zn-f .
1 1 1 1 A, B.
Jhak i,k
-8 -



(ii) As a map defined on dense space in LP(a) (resp.
L‘C"’ (@), S is closable.
Proof. Summing up the relations (2) in [Assumptn’on ZJ , we

obtain for any fl, f2 in jﬁl’

(3) [ £ (8)f,(8) d & = /G SERGICAIORES

If f2 runs over Sﬁi, Sf2 runs over e?i. Thus if fl = 0,

fG (Sfl)(g)k(g) dg=20 forvkégl. Because gl is den5§ in
Ll(G), sf; £ 0. This shows, § is welldefined.
Next if £, —=0 and Sf; —= £, in LP(G) (resp. L (@),
since ﬁlc LNG) ((1/p)+(1/9)=1) (resp. Ll(G)), the left hand
side of (3) tends to zero, and the right hand side tends to

); fB(g)Sfe(g) d g for any f2 in jfl. Again by the denseness of

. R 1
€¥1 = fsf2 3 £, Ggﬁlf in L2(G) (resp. in L7(G)), f3 must be zero.

Corollary 4. For any fl’ f2 IS jﬁl’
%) <sfl, Sf2> = <fl, f2> o

Proof. A direct result of (3).

Let T2 (resp. Too) be the closure of S as an orerator on
L°(G) (resp. L2°()), and D, = D(T,) (resp. D= D(Teo)) be the
domainsof T, (resp. Too )» ,

Lemma 12. ForV(fe,-Da,V'\}’é Deoy ¥+f €D, and

T, ( YeP)=T(y¥) T(F).
Proof. Let )fl_afj —9, Sfj —sz(‘f) in L2(G), and
%5 K —Y, Skj—-’Tw(}L) in 1°°(G), then ﬁla(kjfj)-——'—%&f’,
(Skj)(Sfj)-—r—Too(ﬁb)Tz(?) in LZ(G). Bv the definition of S,
(Skj)(Sfj) = S<kjfj) for ij,fje j%l' Thus we get the result.

Lemma 13. S commutes with right and ieft translations Rp‘Lg°

>
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-1
{ We use the notatins, Rgf(gl) = f(glg) and Lgf(gl) = f(g gl).)
Proof. It is enough to show that S commutes with Rg’Lg
on generators ifAB§ of 9?1. _And

Iy = O( -] -
(LgleafAB)(g) w(B - 1%2@)) w (AW (B)
=ou<t>(g (B) D(g(D(gZ(A)))-M( o(g (A))W(Ngl(B))

1
= f (g),
O(gz(A), Ngl(B)

in just same way

2

(L R

g1 gZEAB)(P;)= g D(gp(A)o(gl(B)(g). Therefore

S(Lg R, fAB)(g)=s(f ) (g)

1

g)=g
) gZ(A) b(gl(B) Ngjz(A)D( gl(B)

=(L_ R_g )(=(L_Rr_ sf, )(g).
71 g, AB # B, AB

Lemma 14, For ¥ @gD,, Y} € L'(ONALT (6), the function
< RE?, f*? is in Dgg and
(5) T (<R .Q, ¥>) = <RI, P V7 .

Proof, For Vfe ?1,

———

—_— N
[ f(g8) ¥(g)) 4 gy = lim Zf(g_ig)'y-‘(g;i) )Aj|
G j J .

J
lim 2% (L,-1 f)(g)'Y‘(g;j.) lAjlo
j .Jj J
Because of uniform contfnuity of £, 'Y* and integrability in our case,

<R, S

]

this integral converges uniformly in g &G. Moreover

SO Z (1,1 £)(8) Ve 185]) = ZUL -1 () ¥ (g1 A -
‘j . u . Jj .

Thus Zf(gj.g)‘/’(gi) lAil and s(Zf(gjg)'Y’(gi)lAjl) converge to
T $ oo $ i s
<Rgf, ’\}/) and <RgSf,’YJ7 in LC(G) respectively. This shows the
results for such a f.
Next for V?eD let 9‘ 3 f --'59 Sf, —»T in LZ(G)
2" 1?15 » SIy Ty 4 5

then < Rgfj’ Y and <Rg5fj’ 4> converge to < Rg?,"/f> and

- 10 -
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<R?:T257,’Y’> in LZD(G) respectively. That is,the proof is obtained.
‘ 1
Corollary 5.  For Vyeﬁl, V'y & L (@) N Loco (3,
<RV, P> €Dy , and T o (< R 1P T gF<ReSY, ¥
(Here 55, AF show the complex conjugations of ”,‘Y respectively.)
Proof.  Indeed, <Rg-1'y», ¢ > = <Rg'§,0f) = <Rg7, >,

From @ssumotions, 97&% 1 and '\f’é Ll(g) N L:o (G) , so lemma 14

leads us to the results.

5. Now we have to discuss the Katz-Takesaki operator on G,
and the relation to the above operator TZ. We define a unitary
operator on Lz(G)e’LZ(G) ( called the Katz-Takesaki operator ) by

T = .

(4) W ®1,) (g 48,) = £ (g85)1,(8,)

This operator is close[y related with duality theorem as follows.

" Proposition 2. The operators U = Rg of the right regular
representation of G, satisfy
(5) W(U®U) = (I®UIW .

And conversely, for any non-zero bounded operator U satisfying

(5), there exists unique element g in G such that Rg = U.

For the proof of Proposition 2 , we refer [ ].
However for our discussion, we don't need this proposition
directly, but the following which is deduced from it.

Proposition 3. For any clcsed operator T ‘on LZ(G) such that

(€) WT®T) = (I®T)wW ,
there existam element qo in G and an one parameter subgrouvp g(t)

of G with ;ﬂﬁmt&gml W'm(ar' 1H , such that

- 11 =
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(7 T=2g,¢
(Here we denote the closure of algebraic tensor product of two
closed operators A and B on/Lz(G) by A®B. )
Proof. Put T*T =-A, then A is a self-adjoint positive definite
operator satisfying
(8) WA®A) = (I®MW .
Consider the projection P onto the space }(:(A-I(O)) = E;;EETXF,
then by (8) P # 0, and
(9 W(P®P) = (I®PW .
Proposition 2 assures that P is unitary , therefore P = I. That
is ){ =lf(g),and we can define The . self-adjoint operator
H = (1/2)log A satisfying
(10) WH® I + I®H) = (I®@H)W .
Direct calculations show that for ¥ teR , U(t) = e“'Ht is a bounded
operator in Proposition 2. Hence we obtain an one-parameter subgroup
g(t) in G and
(11) UCt) = Ry for VteR .
Un the other hand, the bbunded operator Te_H = U satisfies
(5) too. Again Proposition 2 gives an element g6 in G such that
Rgb= U. This corvletes the proof.
We shail call that these operators given in Proposition 3
“admissible. In after provositicns, we show that the our operator
T2 is admissible.
At first we must remark the following.

Lemma 15. Using any fixed complete orthonormal system fﬁ@j

. 2 .
in L7(G), the Katz-Takesaki operator is expanded as follows.

- 12 -
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(12) W @1, (g 8,) = 2 K (e < B, ST > fale)
Proof, By only calculation of the expansion,

Lemma 16. w(ﬁl@}fl) is in the domain of I&® T, and

(13) (1@7,)4(f,®@ 1) = w(sf,@sf,) for V1,1, &F,.
Proof. By Schmidt's orthogonalization, we can take all ﬁ('s

in (12) from Ll(«f})/\ Lc‘g’° (G). Then by Lemmata 12 and 14, <the function
ﬁ(o )<R fl, Y2 7 f5(g;) are in D(I)® D(T,) C D(IBT,) (The
domain of I@ ), and
(14 (I@T)(fx (8)<R, -t Y t(g5)) =
f(2))T00 (< R, R ,h s ROI(T,E,) (8))
e <R, Tgfl, G > (To15)(8,).
Moreover, Z—ﬁf‘(szl)<R zfl %<>f2(g2) andﬂ_
(I®T )ﬁ[( % (= 1)< Rg?fl, %> fz(ga))=Z§g’((gl)<Rg2Tafl, %>

(Tzfz)(gz) converge to wf(fl® f2>(£{’l,p;2) and W(Sfl® Sf2) in

t

1}

LE(G)Q LZ(G) respectively. This gives the results.
Lemma 17. W (¥, @F ) is in the domain of T®T, and
f -1 -1 a
(15) (L@ T )W (£,® £,) = W (1@ 3)(£;®£,) for Vf ‘-‘%1

mlvf"z = fl(gng )fz(gz)t

Thus for W fl’ ?6%1, (s®@I)W™ (f1®f2)(gl’g2) = (S®I)(Rp;51fl(gl)x

Proof. W_l is given bv W (f @f e

T5065)) = (SR=1£)) (M () = (R,m188)) (6D 25(e)) =

2
-1 .
= (Sfl)(glfrz )fg(gE) = 2 % (gﬁ(R%(Sfl), % > (e,

- -1 L —_—
This shows that W (ﬁl@ﬁ’l) is in D(S®I) = D(TP& 1.
Next we shall show that (s@l)w‘l(j‘ilm 921) is in D(I@T,).
+ 1 ~ (]
Indeed by Corcllary 4 and the fact Sf € gl < L (GNLT (@),
if we select the C.0.N.8 J%f as § € F, <R,-L(s1)), B> € Dy

and hence ﬁz((gl)<Rw—l(Sf1), % > fz(g?) & D(I@T?)o
| o5 1 >

'
-]
N
1
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Using (4), (I®T,)( % (g) <R -1(3f)), Fu>1,(g,))
. &5

%(gl)<R sﬁ'{,‘s?l>(3f2)(g2)- %(P‘l)<b(1? f( ), 58, >(s5,)(g,)=
=fe)< R, F T > (37 (s)= Kle) <R, -111, %% > (s1,)(g,)
Obviously f?(g‘l)<}? —l(Sf )y B> Ty (ga) and

Z%’,(gﬁ(R -1f1,<;§,> (s£,)(g,) (=(1®7, )(Z,¢ g1)< Ry1(88)) Fox
Xfa(gz)) ) converge to (S®I)W (fl® f2) and W~ (Il® Sf ) in
LE(G)Q 12(a) respectively. That is, (s®@D)wt (f,@f,)e (18 1T,)
and (IQTz)(SQI)W-l(le £,) = W-l(fI"@Sfe). Combining these, we

cet the wanted results,

Summalizing Lemmata 16 and 17, we conclude,

Proposition 4, The closed operator T2 is admissible.

Now we are in the step to apply Proposition 3 together with

Lemma 13 to our operator T and get,

2’

Lemma 18. There exist an element go with order 1 or 2 and

an one-paramcter subgroup g(t) in the centre Z{(G) of G such that

T, = R_e Here 1H is the infinitesimal generator of R .
2 7o v - g(t)

Proof, The existence of £ and g(t) are an direct results

of the above arguments, so we must show that go and g(t) are in
7(G@) and the order of g, is atmost two.

But becausé (7) sives the polar decomposition of TZ’ and by
Lermma 13, T2 hence ij and eH must commute with R (VggéG).
The relation (%) and the definitions ofjg ﬁ&»dnd S give

<f,, 8f,7=<8f;, f,7 for f ,f € frl. This concludes T, is

2
symmetric. But since R is unitary and ed is positive definite
=0
without kernel, RF must be the form P-(I-P) for some projection P.

%G
- 14 -
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The assertion of Lemma 1& talks about only operators on L7(G).
Hicwever using [Assu"::‘\.ti on EJ , we can extend this to the whole space

2g follows. That 3s, consider the operators on ';(-e,

Hp 1 _

Uy = (/) (3/88)0, oy 1 so s VU= and T = UgGV in which
Z ,e(t) are elenents of G given in Lemma 1&.
‘ p 2 2
Lemma 1¢. &I(B)Q,UF I(A*).Q):ﬂUW V2 TR P T (&)
& 50
for Va s B éOLO
2 : *
Proof. Let ‘f(t) = ot and for ce€(0,®) and AGGQ,
o0°
= (2 f it .
A‘f,C (V"C/‘[‘TE)] d"(t)(A) ‘f(Ct) G
Then it is easv to see TC(a g )RCD(T ) and Ac,: c Rinaka A

in OL , hence 7C(A<f C)S{—»?UA)SZ and 7!:(;&}* )62 T a*)E2.
in '}eo Denote ﬂll = ?A‘f o} ce (C,00), AéULQ% Then direct

calculaticns lead us to

o

]_ 1 d n v l oy Kk
HO(ZHI = G SR (t)f)’ RIOCE: T2, T(E)L -

nl 1
=KT(W&B L, S KT (B)S2 527 .
Since the convergences of ﬂ (AL =1/ 1):_“I—.i"z t” (Ug(t)'fC(A)LgZ - ()2
and V(A& = %(l/n! )HU T(A)&L are in no:m sense, the convergemce
of the left hand side is uniform in g. Generally % is not contain-
ed in GZL, but all elements of dl are norm limits of elerments of
ac and vice versa. Hence , gA,‘D (447 & dOU a;l) are uniform

liwits of B . 2 5 dm And by (2)

] B,
/( 3( l(ﬁ))fp(ﬁf) a g = (cf' ( )Qf (F"))Sf (43') a g
for VH, B & alua’v’ l’ 267%1'
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Now fﬁlsz‘B £, 1,6, Tz(f fl) (sf, 5 )(st (sf))

373 33
2 N
in L% £
_..._..g;AB(sfl) in L°(a@), thereiorrre ﬁABfl € D2 and TZ(fAB 1) g“BSfl

l) L’AB
J

for ¥ A,RB €0, UOLOO And Lenma 18 assures TE(fABfl) Rno(%:(l/n.‘)

(—‘z\"'(d/dt)n(Rg(t)fAB))(Sfl) for Yae 0Ly, thus gAB=RgO( p= (i/nl1)
s\ 11 n,.
(=2)7(8/at) (R, (11T 5

< UFTIK(A)Q, TR > = < T(BISL U, (452 for Yaed,,

converses in L2 (G)). Therefcre
1) | g

VV s 3 ) 3 h
Re (X . Especially for A,Béﬁlu, A‘f,c}“ P, c éOLl, hence

s 1/2 i /2 * *
<L, v x(A%CI)Q,vl (s, =M Be U, TAy I
1

o}

LY,
Put g = gjc . When ¢ tends to 60, A?’C-—-p-A in OF o, A*e’,c'—’A*’

Tia s T(A)G), and T(aty JE2 —TC(A*) G2 - Taking the 1lirit,

1

we obtein  13m <v+/° 71'_'(A ),Q vl/2 TC(E* ) > =

S >0 P, Ca

> - <7c<B>,Q v -m(A*){Z? Hence
1im 272 (A o) V2 1T ) =1im (-1)13 x
8'2‘:‘“’" T G St ¥, ca 52” i,i= 1 ?

X<V1/27C(A o 5 l/?TC(A ISP
-2 <-1)”*3<7E(A>S?_, vt > - o
'O

i,3=1,2
That is; ?vl/zft(a ?)R}C_,w o
T S7 € nevt/2)s V '"E(A)Q irgo.vl "7£'(Aj, S92, and
<u, PPTwSL, T o

ae,

s1in <U, Vl/27C(A? R, sy, V8>

= < (R L2, v, T(a 82>

is a Cauchy sequence in '}6 y, SO

=z, 5(8) -
or ¢ is norm dense in AL, therefore Ozl is norm dense in (],
2

and fI(A)Q H Aéal} is dense in %too. Thus,

Corocllary 6. There exists a norm dense subalgebra 0[1 in

Ol , and a closed onerator T on F€ such that ?I(A)ﬁ; Aéa,lsc_ p(rh)
4
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[V TH

and <’UHT1 T, T(3*)SLD = <I(B)SZ,U$I(A*)SZ>
for Vgea, Va €O, Vee A .
Lemma 20.  In Lemma 18 , the element g, is eoual to e.
Proof.  Consider two positive definite functions
Y () = <u TR, (D>
o) = <U PR, VTGS,
In Lemma 19, putténg A = B*, we obtain
(17) Y2 =4, (gg) for ¥Ygeq.
But, "{"1(@61)= “{'2(e)=|]'ﬂ'2l[0° = lH’l Nl = "*’l(e) , therefore
< U, T8 TUBS5L - |T®R[? and U, T (B2 TERICP

for ¥Be(l  That is U_= 1, hence

. go is in K = fle} .
RY;
Thus the results of Lemmata 18 - 20 give a proof of ocur
Main theoren.
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