An extention of AKTH-theory to locally compact groups

by Nobuhiko TATSUUMA

1. Let $\{\alpha, G, \alpha\}$ be a C*-system. That is, \mathcal{M} is a C*-algebra, G is a locally compact group, and $G \ni g \mapsto \alpha_g \in \mathcal{M}(\mathcal{M})$ is a continuous homomorphism. Consider an \mathcal{M} -invariant state ω on \mathcal{M} , and the unitary representation $\{\mathcal{K}, \mathcal{U}_g, \mathcal{H}, \Omega\}$ of G deduced by GNS-construction.

For any $A, B \in \mathcal{O}$, put $f_{AB}(g) = \omega(B \bowtie_{g}(A)) - \omega(A) \omega(B) = \langle U_{g} \pi(A) \Omega, \pi(B^{*}) \Omega \rangle - \langle \pi(A) \Omega, \Omega \rangle \langle \pi(B) \Omega, \Omega \rangle$ and $g_{AB}(g) = \omega(\bowtie_{g}(A)B) - \omega(A)\omega(B)$. Then evidently, $g_{AB}(g) = f_{A^{*}B^{*}}(g) = f_{BA}(g^{-1}).$

Now we assume the existence of a norm dense $ilde{x}$ -invariant *-subalgebra $\mathcal{N}_{\mathbb{Q}}$ of \mathcal{OL} , for which the followings are valid.

Put

 \mathcal{F}_{C} = (function algebra on G algebraically generated by $\{f_{AB}\}$

 $A,B \in \mathcal{O}_{O}$),

 ${\mathcal F}$ = (the uniform closure of ${\mathcal F}_0$),

and costruct g_{0} and g as same way from $\{g_{AB}, A, B \in \mathcal{N}_{0}\}$

[Assumption 1] is closed with respect to complex conjugation.

[Assumption 2] For any $n \ge 1$ and $A_j, B_j \in \mathcal{O}_O$ (j=1,2, ...),

(2)
$$\int_{G} \left(\prod_{j}^{n} f_{A_{j}B_{j}}(g) - \prod_{j}^{n} g_{A_{j}B_{j}}(g) \right) dg = 0.$$

[Assumption 3] There exist $1 \leq p, q \iff$ and a non-zero

element
$$f_0 = \sum_{k}^{n} \prod_{j} f_{A_{j,k}B_{j,k}}$$
 $(A_{j,k}, B_{j,k} \in \mathcal{A}_0)$ in \mathcal{F}_0 such that (i) $f_0 \in L^p(G)$,

(ii)
$$g_0 = \sum_{k=1}^{n} \prod_{j=1}^{n} g_{A_{j,k}B_{j,k}} \in L^q(G).$$

(We use a right Haar measure d g on G).

The purpose of this paper is to show the KMS-property for C^* -systems which satisfy the above assumptions.

From (1) and [Assumption] the following lemma is direct. Lemma 1 $\mathcal{F} = \mathcal{G}$, and \mathcal{F} is closed under the operation $f(g) \longmapsto f(g^{-1})$.

2. We shall give the formulation of our KMS-property on C*-systems based on Araki-Kastler-Takesaki-Haag's theory.

When G is the additive group ${\mathbb R}$ of real numbers, the ordinary KMS-property is stated as follows.

[KMS] The function $\Psi_{AB}(t) = \omega(B \alpha_t(A))$ can be extended analytically on some strip domain $\{t; 0 \le \beta\}$ and $\Psi_{AB}(t+i\beta) = \omega(\alpha_t(A)B)$ for any t in $\mathbb R$ and any A,B in α .

In the other hand for any one-parameter subgroup g(t) of G, using the Stone's theorem, we can determine its infinitesimal generator iH , as H is a self-adjoint operator on $\mathcal H$ and

$$e^{iHt} = U_{g(t)}$$
.

Now in our case, denote by K the kernel in G of the homomorphism $g \longrightarrow \alpha_{\sigma}$, then our main result is given as follows.

MAIN THEOREM. Under the assumptions $1\sim3$, there exists an one-parameter subgroup g(t) of G/K , such that

If the Main Theorem is proved the function

 $\gamma(t) = \omega(\mathrm{B} \, \mathsf{A}_{\mathrm{g}(t)}(\mathrm{A})) = \langle \, \mathrm{U}_{\mathrm{g}(t)} \pi(\mathrm{A}) \, \Omega, \, \pi(\mathrm{B}^*) \, \Omega \, \rangle$ has the analytical extension

 $\gamma(t+is) = \langle U_{g(t)} | e^{sH/2} \pi(A) \Omega, e^{sH/2} \pi(B^*) \Omega \rangle$ and $\gamma(t+i) = \langle \pi(B^*) \Omega, U_{g(t)} \pi(A) \Omega \rangle = \omega(\alpha_{g(t)}(A)B).$ This shows that the subsystem $\{ \Omega, R, \alpha_{g(t)} \}$ is just a KMS-C*-system as originally defined.

3. At first we discuss under slightly more general situation and prove a useful Proposition 1.

Let F_O be a set of bounded uniformly continuous functions on G, and F be the uniform closure of F_O . For any $f \in F$, put $G_f = \left\{g \in G \; ; \; f(gg_1) = f(g_1), \forall g_1 \in G\right\}$ and $G_{F_O} = f \in F_O$, $G_f = f \in F_O$.

Lemma 2. $G_F = G_F$, and G_F is a closed subgroup of G.

Proof. Because f is continuous, G_f is closed. Hence G_F , G_F are closed.

For any $k_1, k_2 \in G_f$, $g \in G$, $f(k_1^{-1}k_2g) = f(k_1(k_1^{-1}k_2g)) = f(k_2g) = f(g)$. Thus $k_1^{-1}k_2 \in G_f$, therefore G_f and G_F , G_F are subgroups.

Chyonoly $G_F \subset G_{F_O}$, If $G_F \neq G_{F_O}$ there exists $g_1 \in G_{F_O}$ and $g_2 \in G_{F_O}$ and $g_3 \in G_{F_O}$ and $g_4 \in G_{F_O}$.

That is, $g_1 \in G_{F_O}$ and $g_2 \in G_{F_O}$ and for $g_3 \in G_{F_O}$ and $g_4 \in G_{F_O}$.

$$\begin{split} & \mathcal{G}(g). \text{ On the other hand, } \xi > 0, \exists \mathcal{G}_1 \in \mathbb{F}_0 \text{ such that } \left\| f - \mathcal{G}_1 \right\| \leq \xi/2, \\ & \text{Put } \mathcal{E} = \left| f(g_1 g_2) - f(g_2) \right| \text{ , then } \left| f(g_1 g_2) - f(g_2) \right| \leq \left| f(g_1 g_2) - \mathcal{G}(g_1 g_2) \right| \\ & + \left| \mathcal{G}(g_1 g_2) - \mathcal{G}(g_2) \right| + \left| \mathcal{G}(g_2) - f(g_2) \right| \leq \xi/2 - \xi/2 = \left| f(g_1 g_2) - f(g_1) \right|. \end{split}$$
 That is contradiction.

Lemma 3. If there is a non-trivial function f_0 of zero at ∞ in F_0 , then the subgroup G_{f_0} and $G_{F_0} = G_F$ are compact.

<u>Proof.</u> If G_{f_0} is not compact, there exists a sequence $\{k_j\} \subset G_{f_0}$ such that $k_j \rightarrow \infty$. Therfore for some $g_0 \in G$, and for all j $0 \neq f_0(g_0) = f_0(k_j g_0)$. This contradicts to the assumption for f_0 .

Corollary 1. In such a case, $L^p(G_F\backslash G)$ is imbedded into $L^p(G)$ as a space of functions which are constant on G_F -left cosets.

Hereafter we write $H = G_{F}$.

Lemma 4. If a uniformly continuous function f on G belongs to $L^p(G)$ for some $p < + \omega$, f is zero at ∞ .

<u>Proof.</u> If f is not zero at ∞ , there exists a sequence $\{k_j\} \subset G$ and a>0 such that $k_j \to \infty$, $|f(k_j)| > a$ for any j. Uniform continuity of f asserts the existence of a compact neighborhood V of e , such that $|f(g_1) - f(g_2)| < a/2$ for any V_{g_1,g_2} such that $g_1g_2^{-1} \in V$. Since $k_j \to \infty$, if it is necessary, taking a subsequence, we can assume $V_{k_j} \cap V_{k_j} = \emptyset$ ($j \neq \ell$). Thus,

$$\int_{\mathbf{G}} |f(g)|^{p} dg \ge \sum_{j} \int_{V_{\mathbf{k}_{j}}} |f(g)|^{p} dg \ge \sum_{j} \int_{V_{\mathbf{k}_{j}}} [|f(\mathbf{k}_{j})| - (a/2)]^{p} dg \le \sum_{j} \int_{V_{\mathbf{k}_{j}$$

 $\geq (a/2)^p \sum_j \mu(v) = \infty$. That is contradiction.

Corollary 2. Any $f \in \mathcal{B}(G) \cap L^p(G)$ (p<+ ∞) is zero at ∞ .

Here $\mathcal{B}(G)$ is the ring of functions generated by $1 < U_g^{\omega} v, u > 3$ (ω runs unitary representations of G, and v, u run vectors of spaces of representation ω).

Proposition 1. Assume that the above F_O satisfies the follwings.

- (i) F_0 is a function algebra, that is , closed under the operations + , \times and scalar multiplication.
- (ii) F_0 is invariant under right translations, that is , for any f in F_0 and any g_1 , the function $(R_{g_1}f)(g)=f(gg_1)$ of g is in F_0 .
- (iii) The unifom closure \mathbf{F} of $\mathbf{F}_{\mathbf{O}}$ is closed with respect to complex conjugation.
 - (iv) There exist an $f_0 \neq 0$ in F_0 and p., such that $f_0 \in L^p(G)$. Then there exists a natural number n and the set

$$F_{1} = \left\{ \sum_{j}^{N} \boldsymbol{\varphi}_{j} \cdot R_{g_{j}} (f_{0})^{n} ; N=1,2,..., g_{j} \in G, \boldsymbol{\varphi}_{j} \in F_{0} \oplus c \right\}$$

in $F_O \cap L^1(H \setminus G)$, is dense in $L^0(H \setminus G)$ for $1 \leq \bigvee q < +\infty$, and is dense in $L_c^\infty(H \setminus G) \equiv \{$ continuous function of zero at ∞ on $H \setminus G \}$ with uniform norm.

$$F_{2} = \left\{ \sum_{j}^{N} \mathcal{Y}_{j} \cdot R_{g_{j}} \mid f_{C} \mid^{2} ; N=1,2,\ldots, g_{j} \in G, \mathcal{Y}_{j} \in F \oplus C1 \right\}.$$

In general $F_2 \notin F_0$, but by the assumption (iii) $F_2 \subset F$, since $R_{g_j} f_0$ and therefore $R_{g_j} |f_0|^2 = (R_{g_j} f_0)(R_{g_j} f_0)$ are in F.

Lemma 5. For $\forall 9 \in \mathbb{F}_2, \forall \xi > 0, 1 \le \forall p \le +\infty$, there exists $f \in \mathbb{F}_1$ such that $\| 9 - f \|_p < \xi$.

Proof. Let $\mathbf{g} = \sum_{j}^{N} (\mathbf{g}_{j} \cdot \overline{\mathbf{R}}_{g_{j}} \mathbf{f}_{0}) \mathbf{R}_{g_{j}} \mathbf{f}_{0} \in \mathbf{F}_{2}$. Here $\mathbf{g}_{j} \overline{\mathbf{R}}_{g_{j}} \mathbf{f}_{0} \in \mathbf{F}_{1}$, so there exist $\mathbf{f}_{j} \cdot \mathbf{g} \in \mathbf{F}_{0}$ such that $\|\mathbf{g}_{j} \overline{\mathbf{R}}_{g_{j}} \mathbf{f}_{0} - \mathbf{f}_{j}\|_{\infty} < (\mathbf{E}/N \| \mathbf{f}_{0}\|_{p})$.

Thus $\|\mathbf{g} - \sum_{j} \mathbf{f}_{g_{j}} \mathbf{f}_{0}\|_{p} < \sum_{j} \|\mathbf{g}_{j} \mathbf{f}_{0} - \mathbf{f}_{j}\|_{\infty} \|\mathbf{R}_{g_{j}} \mathbf{f}_{0}\|_{p} = \sum_{j} \|\mathbf{g}_{j} \mathbf{R}_{g_{j}} \mathbf{f}_{0} - \mathbf{f}_{j}\|_{\infty} \|\mathbf{f}_{0}\|_{p} < \mathbf{E}$.

By the reason of Lemma 5 , it is enough to show that F_2 is dense in $L^q(H\backslash G)$ and $L_c^{\bullet \bullet}(H\backslash G)$.

<u>Lemma 6.</u> F_2 is (i) a subring of F, (ii) closed with respect to complex conjugation, (iii) invariant to right translations, (iv) $F_2 \subset L^1(G) \cap L^\infty(G)$, so its elements are zero at ∞ ,

(v) separates any two points $\hat{g}_1 \neq \hat{g}_2$ in H\G.

<u>Proof.</u> F_2 is the ideal of F generated by $\Lambda \equiv \left\{R_g | f_0 |^2; g \in G\right\}$, thus (i) is evident. The fact that $R_g | f_0 |^2$ are real-valued, and the assumption (iii) in Proposition 1, give (ii). (iii) is direct result of right invariant properties of F_0 , F and Λ . $R_g | f_0 |^2$ are in $L^1(G)$ and F is in $L^{\infty}(G)$, hence (iv) is true. At last, if $f_0(g_1) \neq f_0(g_2)$ then (v) is true for such g_1, g_2 . And if $0 \neq f_0(g_1g_0) = f_0(g_2g_0)$ for some g_0 in G, by the definition of G and G is a property of G. There exists a G in G in G is a property of G and G is a property of G in G in G and G is a property of G in G in G and G is a property of G in G

Corollary 3. For $\forall \varphi \in L_c^{\bullet}(H\backslash G), \forall \ell > 0$, there exists $f \in F_2$ such that $\| \varphi - f \|_{\bullet} < \xi$, that is, F_2 is dense in $L_c^{\bullet}(H\backslash G)$.

<u>Proof.</u> Consider the one point compactification space X of H\G. We apply the Stone-Weierstrass's theorem to $F_2 \oplus Cl$ on C(X). Thus we get $f_1 = f + al \in F_2 \oplus Cl$ and $\| \varphi - f_1 \|_{\infty} < \mathcal{E}/2$. But φ is zero

at φ and $f \in \mathbb{F}_2$ is too. Hence $|a| < (\frac{\varepsilon}{2})$, and $||\varphi - f||_{\varphi} \le ||\varphi - f_1||_{\varphi} + (\frac{\varepsilon}{2}) < \varepsilon$.

Since $C_O(H\backslash G) = \{\text{continuous functions on } H\backslash G \text{ with compact supports}\}$ is dense in $L^p(H\backslash G)$ (p< ∞), the following Lemma 7 gives directly a proof of Proposition 1.

Lemma 7. For $\forall \varphi \in C_0(H\backslash G), \forall \varepsilon > 0, \forall p < +\infty$, there exists $f \in F_2$ such that $\| \varphi - f \|_p < \varepsilon$.

Proof. Put $C = [\varphi]$ (support of φ), $a = \mu(C)$ (measure of φ) and $M = \|\varphi\|_{\infty}$ Using the regularity of Haar measure, there exists a relative compact open set φ 0 Containing φ 0 Such that $\mu(\varphi) < 2a. \quad \text{Moreover we can take a} \quad \psi \in C_0(H \setminus G) \text{ such that}$ $\psi(\varphi) = 1 \quad \text{for} \quad \varphi \in C, \text{ and } = 0 \text{ for} \quad \varphi \notin V, \quad 0 \leq \psi(\varphi) \leq 1 \quad \forall \varphi \in G.$ By Corollary 3, take $f_1 \in F_2$ such that

 $\|\varphi - f_1\|_{\infty} < \beta < \text{Min}(1, \ \mathcal{E}(2^{p+1}a + 1)^{-1/p}).$ Put $m = \int_{G-U} |f_1(g)|^p \ d \ g$, and $0 < \delta < \text{Min}(1, \beta/(M+\beta), \beta m^{-1/p}).$ Again by Corollary 3, take $f_2 \in F_2$ such that $\|\psi - f_2\|_{\infty} < \delta$ and put $f = f_1 \cdot f_2$. Then $|\varphi(g) - f(g)| = |\varphi(g) - f_1(g)f_2(g)|$ is less than $|\varphi(g) - f_1(g)| + |1 - f_2(g)| |f_1(g)| < \beta + \delta (M + \beta) < 2\beta$ for $g \in C$, $|f_1(g)| |f_2(g)| < \beta (|\psi(g)| + \delta) < \beta (1 + \delta) < 2\beta$ for $g \in U - C$, $|f_1(g)| |f_2(g)| < |f_1(g)| \delta < \beta m^{-1/p} |f_1(g)|$ for $g \notin U$. Thus $\|\varphi - f\|_p^p = \int_G |\varphi(g) - f(g)|^p \ d \ g = \int_C \# + \int_{U-C} \# + \int_{G-U} \#$

Thus $\| \Psi - f \|_{p}^{r} = \int_{G} |\Psi(g) - f(g)|^{r} dg = \int_{G} (f_{1}(g))^{r} dg < 2^{p} \int_{G-U} |f_{1}(g)|^{p} dg < (2^{p+1}a+1) \int_{G} (g^{p+1}a+1) \int_{G} (g^{p+1}a+1$

4. Now we return to our problem concerning to the C*-system $\{0, 4, 6, 4\}$. We apply Proposition 1 twice, at first to the case

 $F_0 = \mathcal{F}_0$ and second to the case $F_0 = \mathcal{F}_0$.

Lemma 8. In both cases, $G_{F_{\tilde{U}}}$ (= K) are same one and compact normal subgroup of G.

Proof. If $F_0 = \mathcal{F}_0$, K = G $\mathcal{F}_0 = G\mathcal{F}$, and if $F_0 = \mathcal{G}_0$, $K = G\mathcal{G}_0 = G\mathcal{G}$, But by Lemma 1, $\mathcal{G} = \mathcal{F}$, thus $G\mathcal{F} = G\mathcal{F}$.

For $\forall k \in K$, $f_{AB}(kg) = f_{AB}(g)$, that is, for $\forall g \in G$ and $\forall A, B \in \mathcal{O}_O$,

 $\langle U_k U_g \pi(A) \Omega, \pi(B^*) \Omega \rangle = \langle U_g \pi(A) \Omega, \pi(B^*) \Omega \rangle$

Thus $U_k v = v$, for $\forall v \in \mathcal{H}$, This shows $U_k = I$, therefore K is the kernel of this representation, hence normal. [Assumption 3] and Lemma 3, Corollary 2 assure the compactness of K.

Based on Lemma 8, replacing the factor group K\G to G, hereafter we can assume $K = \{e\}$. Moreover we take $p_0 = [\max(p,q)]+1$ and replace $f_0^{p_0}$, $g_0^{p_0}$ to f_0 , g_0 in Assumption 3. Thus we can assume that f_0 , $g_0 \in L^1(G) \wedge L^\infty(G)$.

Lemma 9. $g_0 = \{f_1(g); f_1 \in \mathcal{F}_0\} = \{f_1(g^{-1}); f_1 \in \mathcal{F}_0\}$.

Proof. Since \mathcal{O}_0 is *-invariant, by (1) we obtain the result.

Proposition 1 leads us to the following lemma.

Lemma 10. The following spaces are dense in L $^p(G)$ (1 \leq / p $< \infty$) and in L $_c^{\infty}(G)$. N

$$\mathcal{F}_{1} = \left\{ \sum_{j=1}^{N} f_{j}(R_{g'_{j}}f_{0}) ; N=1,2,..., g'_{j} \in G, f_{j} \in \mathcal{F}_{0} \oplus \mathfrak{C}_{1} \right\},$$

$$\mathcal{G}_{1} = \left\{ \sum_{j=1}^{N} g_{j}(R_{g'_{j}}g_{0}) ; N=1,2,..., g'_{j} \in G, g_{j} \in \mathcal{G}_{0} \oplus \mathfrak{C}_{1} \right\}.$$

Now define a map S from \mathcal{F}_1 onto \mathcal{G}_1 by S: $\mathcal{F}_1 \ni \sum_{\mathbf{k}}^N \prod_{\mathbf{j}}^n f_{\mathbf{A}_{\mathbf{j}},\mathbf{k}^B\mathbf{j},\mathbf{k}} \longmapsto \sum_{\mathbf{k}}^N \prod_{\mathbf{j}}^n g_{\mathbf{A}_{\mathbf{j}},\mathbf{k}^B\mathbf{j},\mathbf{k}} \in \mathcal{G}_1$.

Lemma 11. (i) The map S is welldefined. That is, for $\forall f_1 \in \mathcal{F}_1$, Sf₁ does not depend on the form $f_1 = Z \prod_{A_j, k} f_{A_j, k}$.

(ii) As a map defined on dense space in $L^p(G)$ (resp. $L_c^{\bullet \bullet}(G)$, S is closable.

<u>Proof.</u> Summing up the relations (2) in [Assumption 2], we obtain for any f_1 , f_2 in \mathcal{H}_1 ,

(3) $\int_{G}^{1} f_{1}(g) f_{2}(g) d g = \int_{G}^{1} (sf_{1})(g) (sf_{2})(g) d g.$ If f_{2} runs over \mathcal{F}_{1} , sf_{2} runs over \mathcal{F}_{1} . Thus if $f_{1} \equiv 0$,

 $\int_{G} (Sf_{1})(g)k(g) dg = 0 \text{ for } k \in \mathcal{F}_{1}. \text{ Because } \mathcal{F}_{1} \text{ is dense in } L^{1}(G), \quad Sf_{1} = 0. \text{ This shows, S is well defined.}$

Next if $f_1 \rightarrow 0$ and $Sf_1 \rightarrow f_3$ in $L^p(G)$ (resp. $L^{\infty}_c(G)$), since $\mathcal{F}_1 \subset L^q(G)$ ((1/p)+(1/q)=1) (resp. $L^1(G)$), the left hand side of (3) tends to zero, and the right hand side tends to

 $\int_{G} f_{3}(g)Sf_{2}(g) dg \text{ for any } f_{2} \text{ in } \mathcal{F}_{1}. \text{ Again by the denseness of } g_{1} = \left\{Sf_{2}; f_{2} \in \mathcal{F}_{1}\right\} \text{ in } L^{\sigma}(G) \text{ (resp. in } L^{1}(G)), f_{3} \text{ must be zero.}$

Corollary 4. For any f_1 , $f_2 \in \mathcal{F}_1$,

(4) $\langle sf_1, \overline{sf}_2 \rangle = \langle f_1, \overline{f}_2 \rangle$

Proof. A direct result of (3).

Let T_2 (resp. T_∞) be the closure of S as an orerator on $L^2(G)$ (resp. $L_c^\infty(G)$), and $D_2 \equiv D(T_2)$ (resp. $D_\infty = D(T_\infty)$) be the domains of T_2 (resp. T_∞).

Lemma 12. For $\forall \varphi \in D_2$, $\forall \varphi \in D_\infty$, $\forall \varphi \in D_2$ and $T_2(\forall \varphi) = T_\infty(\psi) \cdot T_2(\varphi)$.

Proof. Let $\mathcal{H}_1 \ni f_j \longrightarrow \varphi$, $Sf_j \longrightarrow T_2(\varphi)$ in $L^2(G)$, and $\mathcal{H}_1 \ni k_j \longrightarrow \psi$, $Sk_j \longrightarrow T_\infty(\psi)$ in $L_c^\infty(G)$, then $\mathcal{H}_1 \ni (k_j f_j) \longrightarrow \psi , \varphi$, $(Sk_j)(Sf_j) \longrightarrow T_\infty(\psi)T_2(\varphi)$ in $L^2(G)$. By **the** definition of S, $(Sk_j)(Sf_j) = S(k_j f_j)$ for $\forall k_j, f_j \in \mathcal{H}_1$. Thus we get the result.

Lemma 13. S commutes with right and left translations R, Lg.

(We use the notatins, $R_g f(g_1) = f(g_1g)$ and $L_g f(g_1) = f(g^{-1}g_1)$.)

<u>Proof.</u> It is enough to show that S commutes with R_g , L_g on generators $\{f_{AB}\}$ of \mathcal{F}_1 . And

$$(L_{g_1}^{R}g_2^{f}AB)(g) = \omega (B \propto_{g_1}^{g_1} - L_{gg_2}(A)) - \omega (A)\omega (B)$$

$$= \omega (Q_{g_1}(B) Q_{g_2}(A)) - \omega (Q_{g_2}(A))\omega (Q_{g_2}(A))\omega (Q_{g_2}(B))$$

$$= f \propto_{g_2}^{g_2}(A), Q_{g_1}(B)^{(g)},$$

in just same way

$$(L_{g_1}^{R_{g_2}}g_{AB})(g)^{=g} \propto_{g_2} (A) \propto_{g_1} (B)^{(g)}$$
. Therefore

$$S(L_{g_1}^{g_2} + L_{g_2}^{f_{AB}})(g) = S(f_{X_{g_2}}(A) \times (B))(g) = g_{X_{g_2}(A)} \times (g_{1}(B))(g)$$

$$= (L_{g_1}^{g_2} + L_{g_2}^{g_2} + L_{g_1}^{g_2} + L_{g_1}^{g_2} + L_{g_2}^{g_2} + L_{g_1}^{g_2} + L_{g_1}^{g_2} + L_{g_2}^{g_2} + L_{g_1}^{g_2} + L_$$

Lemma 14. For $\forall \varphi \in D_2$, $\forall \psi \in L^1(G) \wedge L_c^{\infty}(G)$, the function $\langle R_g \varphi, \psi \rangle$ is in D_{∞} and

(5)
$$T_{\boldsymbol{\varphi}}(\langle R_{g}\boldsymbol{\varphi}, \boldsymbol{\gamma} \rangle) = \langle R_{g}T_{2}\boldsymbol{\varphi}, \boldsymbol{\gamma} \rangle.$$

Proof. For Vf & F1,

$$\langle R_{g}f, \psi \rangle = \int_{G} f(g_{1}g) \overline{\psi(g_{1})} dg_{1} = \lim \sum_{j=1}^{N} f(g_{j}g) \overline{\psi(g_{j})} |\Delta_{j}|$$

$$= \lim \sum_{j=1}^{N} (L_{g_{j}}-1) f(g) \overline{\psi(g_{j})} |\Delta_{j}|.$$

Because of uniform continuity of f, ψ and integrability in our case, this integral converges uniformly in $g \in G$. Moreover

$$S(\sum_{g_j}(L_{g_j}^{-1}f)(g)\widehat{\gamma(g_j)}|\Delta_j|) = \sum_{g_j}(L_{g_j}^{-1}(Sf))(g)\widehat{\gamma(g_j)}|\Delta_j|.$$

Thus $\sum_{f(g_jg)} \overline{\psi(g_j)} |\Delta_j|$ and $\sum_{f(g_jg)} \overline{\psi(g_j)} |\Delta_j|$ converge to $\langle R_gf, \psi \rangle$ and $\langle R_gSf, \psi \rangle$ in $L_c^{\infty}(G)$ respectively. This shows the results for such a f.

Next for $\forall \varphi \in D_2$, let $\mathcal{H}_1 \ni f_j \longrightarrow \varphi$, $Sf_j \longrightarrow T_2 \varphi$ in $L^2(G)$, then $\langle R_g f_j, \psi \rangle$ and $\langle R_g Sf_j, \psi \rangle$ converge to $\langle R_g \varphi, \psi \rangle$ and

 $\langle R_g T_2 \mathcal{G}, \psi \rangle$ in $L_c^{\infty}(G)$ respectively. That is, the proof is obtained. Corollary 5. For $\forall \mathcal{G} \in \mathcal{F}_1$, $\forall \psi \in L^1(G) \cap L_c^{\infty}(G)$, $\langle R_g - 1 \psi, \overline{\mathcal{G}} \rangle \in D_{\infty}$, and $T_{\infty}(\langle R_g - 1 \psi, \overline{\mathcal{G}} \rangle) = \langle R_g \mathcal{S} \mathcal{G}, \overline{\psi} \rangle$ (Here $\overline{\mathcal{G}}$, $\overline{\psi}$ show the complex conjugations of \mathcal{G} , ψ respectively.) Proof. Indeed, $\langle R_g - 1 \psi, \overline{\mathcal{G}} \rangle = \langle R_g \overline{\mathcal{G}}, \psi \rangle = \langle R_g \mathcal{G}, \overline{\psi} \rangle$. From assumptions, $\mathcal{G} \in \mathcal{F}_1$ and $\overline{\psi} \in L^1(g) \cap L_c^{\infty}(G)$, so lemma 14 leads us to the results.

- 5. Now we have to discuss the Katz-Takesaki operator on G, and the relation to the above operator T_2 . We define a unitary operator on $L^2(G) \otimes L^2(G)$ (called the Katz-Takesaki operator) by
 - (4) $W(f_1 \otimes f_2)(g_1, g_2) = f_1(g_1g_2)f_2(g_2)$.

This operator is closely related with duality theorem as follows.

<u>Proposition 2.</u> The operators $U \equiv R_g$ of the right regular representation of G, satisfy

(5) W(U�U) = (I�U)W 。

And conversely, for any non-zero bounded operator U satisfying (5), there exists unique element g in G such that $R_g = U$.

For the proof of Proposition 2 , we refer ${\mbox{\mbox{$\mbox{$\bf I$}}}}$

However for our discussion, we don't need this proposition directly, but the following which is deduced from it.

Proposition 3. For any closed operator T on $L^2(G)$ such that

(6) $W(T \otimes T) = (I \otimes T)W$,

there exist an element g_{0} in G and an one parameter subgroup g(t) of G with infinitesimal generator iH, such that

$$T = g_0 e^H ,$$

(Here we denote the closure of algebraic tensor product of two closed operators A and B on $L^2(G)$ by $A \otimes B$.)

<u>Proof.</u> Put $T^*T = A$, then A is a self-adjoint positive definite operator satisfying

(8)
$$W(A \otimes A) = (I \otimes A)W .$$
Consider the projection P onto the space $\mathcal{H} = (A^{-1}(0)) = \overline{Range(A)}$, then by (8) $P \neq 0$, and

$$(9) W(P \otimes P) = (I \otimes P)W .$$

Proposition 2 assures that P is unitary, therefore P = I. That is $\mathcal{H} = \binom{2}{G}$, and we can define The self-adjoint **opera**tor $H = (1/2)\log A$ satisfying

(10)
$$W(H \otimes I + I \otimes H) = (I \otimes H)W$$
.

Direct calculations show that for $\forall t \in \mathbb{R}$, $U(t) = e^{\frac{t}{t}Ht}$ is a bounded operator in Proposition 2. Hence we obtain an one-parameter subgroup g(t) in G and

(11)
$$U(t) = R_{\sigma(t)} \qquad \text{for } \forall t \in \mathbb{R} .$$

On the other hand, the **bound**ed operator $Te^{-H} = U$ satisfies (5) too. Again Proposition 2 gives an element g_{C} in G such that $R_{C} = U$. This completes the proof.

We shall call that these operators given in Proposition 3 admissible. In after propositions, we show that the our operator \mathbf{T}_2 is admissible.

At first we must remark the following.

Lemma 15. Using any fixed complete orthonormal system $\{\mathcal{G}_{\omega}\}$ in $L^2(G)$, the Katz-Takesaki operator is expanded as follows.

(12)
$$W(f_1 \otimes f_2)(g_1, g_2) = \sum_{\alpha} \mathscr{I}_{\alpha}(g_1) < R_{g_2} f_1, \mathscr{I}_{\alpha} > f_2(g_2).$$

Proof. By only calculation of the expansion.

Lemma 16. $W(\mathcal{H}_1 \otimes \mathcal{H}_1)$ is in the domain of $I \otimes T_2$ and

(13)
$$(1 \otimes T_2) \forall (f_1 \otimes f_2) = \forall (sf_1 \otimes sf_2) \quad \text{for } \forall f_1, f_2 \in \mathcal{H}_1.$$

<u>Proof.</u> By Schmidt's orthogonalization, we can take all \mathscr{H} 's in (12) from $L^1(G) \wedge L_c^{\infty}(G)$. Then by Lemmata 12 and 14, the function $\mathscr{H}(g_1) < R_{g_2} f_1$, $\mathscr{H}_A > f_2(g_2)$ are in $D(I) \otimes D(T_2) < D(I \otimes T_2)$ (The domain of $I \otimes T_2$), and

(14)
$$(I \otimes T_2)(\mathscr{G}_{\mathbf{x}}(g_1) < R_{g_2}f_1, \mathscr{G}_{\mathbf{x}} > f_2(g_2)) =$$

$$= \mathscr{G}_{\mathbf{x}}(g_1)T_{\mathbf{x}}(< R_{g_2}f_1, \mathscr{G}_{\mathbf{x}})(T_2f_2)(g_2)$$

$$= \mathscr{G}_{\mathbf{x}}(g_1) < R_{g_2}T_2f_1, \mathscr{G}_{\mathbf{x}} > (T_2f_2)(g_2).$$

Moreover, $\sum_{\mathcal{A}} \mathcal{A}_{\mathbf{A}}(\mathbf{g}_{1}) < \mathbf{R}_{\mathbf{g}_{2}} \mathbf{f}_{1}$, $\mathcal{A}_{\mathbf{A}} > \mathbf{f}_{2}(\mathbf{g}_{2})$ and $\mathbf{A}_{\mathbf{G}}(\mathbf{g}_{2}) > \sum_{\mathcal{A}} \mathcal{A}_{\mathbf{G}}(\mathbf{g}_{1}) < \mathbf{R}_{\mathbf{g}_{2}} \mathbf{f}_{1}$, $\mathcal{A}_{\mathbf{A}} > \mathbf{f}_{2}(\mathbf{g}_{2}) = \sum_{\mathcal{A}} \mathcal{A}_{\mathbf{G}}(\mathbf{g}_{1}) < \mathbf{R}_{\mathbf{g}_{2}} \mathbf{f}_{2} \mathbf{f}_{1}$, $\mathcal{A}_{\mathbf{A}} > \mathbf{f}_{2}(\mathbf{g}_{2}) = \sum_{\mathcal{A}} \mathcal{A}_{\mathbf{G}}(\mathbf{g}_{1}) < \mathbf{R}_{\mathbf{g}_{2}} \mathbf{f}_{2} \mathbf{f}_{1}$, $\mathcal{A}_{\mathbf{A}} > \mathbf{f}_{2}(\mathbf{g}_{2}) = \sum_{\mathcal{A}} \mathcal{A}_{\mathbf{G}}(\mathbf{g}_{1}) < \mathbf{R}_{\mathbf{g}_{2}} \mathbf{f}_{2} \mathbf{f}_{1}$, $\mathcal{A}_{\mathbf{A}} > \mathbf{f}_{2}(\mathbf{g}_{2}) = \sum_{\mathcal{A}} \mathcal{A}_{\mathbf{G}}(\mathbf{g}_{1}) < \mathbf{R}_{\mathbf{g}_{2}} \mathbf{f}_{2} \mathbf{f}_{1}$, $\mathcal{A}_{\mathbf{A}} > \mathbf{f}_{2}(\mathbf{g}_{2}) = \sum_{\mathcal{A}} \mathcal{A}_{\mathbf{G}}(\mathbf{g}_{1}) < \mathbf{R}_{\mathbf{g}_{2}} \mathbf{f}_{2} \mathbf{f}_{1}$, $\mathcal{A}_{\mathbf{A}} > \mathbf{f}_{2}(\mathbf{g}_{2}) = \sum_{\mathcal{A}} \mathcal{A}_{\mathbf{G}}(\mathbf{g}_{1}) < \mathbf{R}_{\mathbf{g}_{2}} \mathbf{f}_{2} \mathbf{f}_{1}$, $\mathcal{A}_{\mathbf{A}} > \mathbf{f}_{2}(\mathbf{g}_{2}) = \sum_{\mathcal{A}} \mathcal{A}_{\mathbf{G}}(\mathbf{g}_{1}) < \mathbf{R}_{\mathbf{g}_{2}} \mathbf{f}_{2} \mathbf{f}_{1}$, $\mathcal{A}_{\mathbf{A}} > \mathbf{f}_{2}(\mathbf{g}_{2}) = \sum_{\mathcal{A}} \mathcal{A}_{\mathbf{G}}(\mathbf{g}_{1}) < \mathbf{R}_{\mathbf{g}_{2}} \mathbf{f}_{1} \mathbf{f}_{2} \mathbf{f}_{2} \mathbf{f}_{2} \mathbf{f}_{2}$, and $\mathbf{A}_{\mathbf{G}}(\mathbf{g}_{1}) < \mathbf{R}_{\mathbf{g}_{2}} \mathbf{f}_{2} \mathbf{f}_{1} \mathbf{f}_{2} \mathbf{$

Next we shall show that $(S\otimes I)W^{-1}(\mathcal{F}_1\otimes\mathcal{F}_1)$ is in $D(I\otimes T_2)$. Indeed by Corollary 4 and the fact $\mathrm{Sf}_1\in\mathcal{G}_1\subset L^1(G)\cap L_c^\infty(G)$, if we select the C.O.N.S $\{\mathcal{G}_i\}$ as $\overline{\mathcal{G}_i}\in\mathcal{F}_1$, $<\mathrm{R}_g$ -1 (Sf_1) , $\mathcal{G}_i>\in\mathrm{D}_\infty$ and hence $\mathcal{G}_i(g_1)<\mathrm{R}_{\mathcal{F}_2}$ -1 (Sf_1) , $\mathcal{G}_i>f_2(g_2)\in\mathrm{D}(I\otimes T_2)$.

Using (4), $(I \otimes T_2)(\mathscr{R}(g_1) < R_{g_2}^{-1}(Sf_1), \mathscr{R} > f_2(g_2)) = \mathscr{R}(g_1) < R_{g_2} \times \mathscr{T}_{\mathcal{R}}(Sf_2)(g_2) = \mathscr{R}(g_1) < S(R_{g_2} \times \mathscr{T}_{\mathcal{R}}), Sf_1 > (Sf_2)(g_2) = \mathscr{R}(g_1) < S(R_{g_2} \times \mathscr{T}_{\mathcal{R}}), Sf_1 > (Sf_2)(g_2) = \mathscr{R}(g_1) < R_{g_2}^{-1}(g_1) < R_{g_2}^{-1}(g_2).$ Obviously $\mathscr{L}(g_1) < R_{g_2}^{-1}(Sf_1), \mathscr{R} > (Sf_2)(g_2) = \mathscr{R}(g_1) < R_{g_2}^{-1}(g_2)$ and $\mathscr{L}(g_1) < R_{g_2}^{-1}(g_1) < R_{g_2}^{-1}(g_2) = (I \otimes T_2)(\mathscr{L}(g_2) < R_{g_2}^{-1}(Sf_1), \mathscr{R} > (Sf_2)(g_2) = (I \otimes T_2)(\mathscr{L}(g_2) < R_{g_2}^{-1}(Sf_1), \mathscr{R} > (Sf_2)(g_2))$ on converge to $(S \otimes I) \otimes S^{-1}(f_1 \otimes f_2)$ and $(I \otimes T_2)(S \otimes I) \otimes S^{-1}(f_1 \otimes f_2) = (I \otimes T_2)(g_2) \otimes S^{-1}(g_2)$ and $(I \otimes T_2)(S \otimes I) \otimes S^{-1}(f_1 \otimes f_2) = (I \otimes T_2)$. Combining these, we get the wanted results.

Summalizing Lemmata 16 and 17, we conclude,

Proposition 4. The closed operator T₂ is admissible.

Now we are in the step to apply Proposition 3 together with Lemma 13 to our operator T_2 , and get,

Lemma 18. There exist an element g_0 with order 1 or 2 and an one-parameter subgroup g(t) in the centre Z(G) of G such that $T_2 = R_{g_0} e^H$, Here iH is the infinitesimal generator of $R_{g(t)}$.

<u>Proof.</u> The existence of g_{0} and g(t) are an direct results of the above arguments, so we must show that g_{0} and g(t) are in Z(G) and the order of g_{0} is atmost two.

But because (7) gives the polar decomposition of T_2 , and by Lemma 13, T_2 hence R_{g_0} and e^H must commute with R_g ($\forall g \in G$). The relation (3) and the definitions of f_1 , f_1 and S give $\langle f_1, Sf_2 \rangle = \langle Sf_1, f_2 \rangle$ for $f_1, f_2 \in f_1$. This concludes T_2 is symmetric. But since R_{g_0} is unitary and e^H is positive definite without kernel, R_{g_0} must be the form P-(I-P) for some projection P.

Hence
$$(R_{S_0})^2 = I$$
, and $g_0^2 = e$.

The assertion of Lemma 18 talks about only operators on $L^2(G)$. However using [Assumption 2], we can extend this to the whole space as follows. That is, consider the operators on \mathcal{H} , $H_C \equiv (1/i)(d/dt)U_{g(t)} \Big|_{t=0}, \ V \equiv e^{Ho} \quad \text{and} \quad T^1 \equiv U_{gC} V \quad \text{in which}$ g_{ij} , g(t) are elements of G given in Lemma 18.

Lemma 19. $\langle \pi(\mathbf{B}) \Omega, \mathbf{U}_{g} \pi(\mathbf{A}^{*}) \Omega \rangle = \langle \mathbf{U}_{gg_{O}} \mathbf{V}^{1/2} \pi(\mathbf{A}) \Omega, \mathbf{V}^{1/2} \pi(\mathbf{B}^{*}) \Omega \rangle$ for $\forall \mathbf{A}$, $\mathbf{B} \in \mathcal{O}_{O}$.

Proof. Let $\mathcal{G}(t) \equiv e^{-t^2}$ and for $c \in (0, \infty)$ and $A \in \mathcal{A}$, $A_{\mathcal{G}, c} \equiv (2c/\sqrt{\pi}) \int_{-\infty}^{\infty} \mathcal{A}_{g(t)}(A) \, \mathcal{G}(ct) \, dt .$

Then it is easy to see $\mathcal{H}(A_{g,c})\Omega\in D(T^1)$ and $A_{g,c}\overset{c\to\infty}\longrightarrow A$ in \mathcal{O} , hence $\mathcal{H}(A_{g,c})\Omega\to\mathcal{H}(A)\Omega$ and $\mathcal{H}(A_{g,c}^*)\Omega\to\mathcal{H}(A^*)\Omega$ in \mathcal{H} . Denote $\mathcal{O}_1\equiv \left\{A_{g,c}\;;\;c\in(0,\infty),\;A\in\mathcal{O}_0\right\}$. Then direct calculations lead us to

 $R_{g_{\mathbb{Q}}} \left(\sum_{n} \frac{1}{n!} \left(\frac{1}{i} \frac{d}{dt} \right)^{n} \left(R_{g(t)} f \right) \Big|_{t=0} \right) (g) = \left\langle U_{g} T^{1} \pi(A) \Omega, \pi(B^{*}) \Omega \right\rangle - \left\langle \pi(A) \Omega, \Omega \right\rangle \left\langle \pi(B) \Omega, \Omega \right\rangle.$

Now $\mathcal{F}_{1} \ni f_{A_{1}B_{1}} f_{1} \longrightarrow f_{AB}f_{1}, T_{2}(f_{A_{1}B_{1}}f_{1}) = (Sf_{A_{1}B_{1}})(Sf_{1}) = g_{A_{1}B_{1}}(Sf_{1})$ \longrightarrow $g_{AB}(Sf_1)$ in $L^2(G)$, therefore $f_{AB}f_1 \in D_2$ and $T_2(f_{AB}f_1) = g_{AB}Sf_1$ for \forall A,B $\in \mathcal{O}_1 \cup \mathcal{O}_0$. And Lemma 18 assures $T_2(f_{AB}f_1) = R_{g_0}(Z_n(1/n!)$ $(-i)^n (d/dt)^n (R_{g(t)}^n f_{AB}))(Sf_1)$ for $\forall A \in \mathcal{O}_1$, thus $g_{AB}^{-1} = R_{g_0} (\sum_{n=1}^{\infty} (1/n!)$ $(-i)^n (d/dt)^n (R_{g(t)} f_{AB}))$ (converges in $L^{\infty}(G)$). Therefore $< U_{\alpha}T^{1}\pi(A)\Omega$, $\pi(B^{*})\Omega> = < \pi(B)\Omega$, $U_{\alpha}\pi(A^{*})\Omega> \text{ for } \forall A \in \mathcal{A}_{1}$, $\forall B \in \mathcal{O}$. Especially for A,B $\in \mathcal{O}_{\mathbb{Q}}$, A φ ,c $^{\mathbb{B}}\varphi$,c $\in \mathcal{O}_{\mathbb{Q}}$, hence $<\mathbf{U}_{\mathrm{gg}_{\mathbf{G}}}\mathbf{V}^{1/2}\pi(\mathbf{A}_{\varphi,c_{\mathbf{I}}})\Omega,\mathbf{V}^{1/2}\pi(\mathbf{B}_{\varphi,c_{\mathbf{Z}}}^{*})\Omega=(\pi(\mathbf{B}_{\varphi,c_{\mathbf{Z}}})\Omega,\mathbf{U}_{\mathbf{g}}\pi(\mathbf{A}_{\varphi,c_{\mathbf{I}}}^{*})>.$ Put $g = g_0^{-1}$. When c tends to ∞ , $A_{g,c} \rightarrow A$ in \mathcal{O} , $A^*_{g,c} \rightarrow A^*$, $\pi(A_{g,c})\Omega \rightarrow \pi(A)\Omega$, and $\pi(A_{g,c})\Omega \rightarrow \pi(A^*)\Omega$. Taking the limit, we obtain $\lim_{c_1^* \to \infty} \langle v^{1/2} \pi(A_{\varphi,c_1}) \mathcal{G}, v^{1/2} \pi(B^*_{\varphi,c_2}) \rangle =$ = $\langle \pi(B) \Re , U_{g_{\Lambda}} - 1\pi(A^*) \Re \rangle$. Hence $\lim_{\substack{c_1 \to \infty \\ c_2 \to \infty}} \| \mathbf{v}^{1/2} \pi(\mathbf{A}_{\mathbf{y}, c_1}) \mathcal{G}_{\mathbf{u}} - \mathbf{v}^{1/2} \pi(\mathbf{A}_{\mathbf{y}, c_2}) \mathcal{G}_{\mathbf{u}}^{2} = \lim_{\substack{i \text{ i. } i=1,2 \\ i \text{ i. } i=1,2}} (-1)^{i+i} \mathbf{x}$ $x < v^{1/2} \pi(A_{q,c}) \Omega, v^{1/2} \pi(A_{q,c}) \Omega > 0$ $= \sum_{i=1,2} (-1)^{i+j} \langle \pi(A) \Omega, U_{\varepsilon_0}^{-1} \pi(A) \Omega \rangle = 0.$ That is, $\{v^{1/2}\pi(A_{\varphi_c})\Omega\}_{c\to\infty}$ is a Cauchy sequence in \mathcal{H} , so $\pi(A)\Omega\in \mathbb{D}(v^{1/2})$, $v^{1/2}\pi(A)\Omega=\lim_{c\to\infty}v^{1/2}\pi(A_{\varphi,c})\Omega$, and $< U_{gg} v^{1/2} \pi(A) \Omega, v^{1/2} \pi(B^*) \Omega > =$ $\lim_{c\to\infty} \langle \mathbf{U}_{\mathrm{gg}_{C}} \mathbf{v}^{1/2} \pi(\mathbf{A}_{\mathbf{g},c}) \Omega, \mathbf{v}^{1/2} \pi(\mathbf{B}_{\mathbf{g},c}^{*}) \Omega \rangle$ $= \langle \pi(B) \Omega, U_g \pi(A^*) \Omega \rangle = g_{AB}(g)$.

 \mathcal{A}_{C} is norm dense in \mathcal{A} , therefore \mathcal{O}_{1} is norm dense in \mathcal{A} , and $\left\{\pi(\mathtt{A})\varOmega_{\mathrm{C}}:\mathtt{A}\in\mathcal{A}_{\mathrm{1}}\right\}$ is dense in \mathcal{H} too. Thus, $\underline{\mathtt{Corollary}\ 6.}\qquad \mathtt{There}\ \mathtt{exists}\ \mathtt{a}\ \mathtt{norm}\ \mathtt{dense}\ \mathtt{subalgebra}\ \mathcal{O}_{\mathrm{1}}\ \mathtt{in}$ \mathcal{O}_{C} , and a closed operator \mathtt{T}^{1} on \mathcal{H} such that $\left\{\pi(\mathtt{A})\varOmega_{\mathrm{C}}:\mathtt{A}\in\mathcal{A}_{\mathrm{1}}\right\}\subset\mathtt{D}(\mathtt{T}^{\mathrm{1}})$

and
$$\langle U_g T^1 \pi(A) \Omega, \pi(B^*) \Omega \rangle = \langle \pi(B) \Omega, U_g \pi(A^*) \Omega \rangle$$

for $\forall g \in G, \forall A \in \mathcal{O}_1, \forall B \in \mathcal{O}_2$.

<u>Lemma 20.</u> In Lemma 18, the element $g_{\hat{O}}$ is equal to e.

Proof. Consider two positive definite functions

$$\psi_{1}(g) = \langle \overline{U_{g} \pi(B) \Omega}, \pi(B) \Omega \rangle,$$

$$\psi_{2}(g) = \langle \overline{U_{g} V^{1/2} \pi(B^{*}) \Omega}, V^{1/2} \pi(B^{*}) \Omega \rangle.$$

In Lemma 19, putting $A = B^*$, we obtain

Thus the results of Lemmata $18-20\,\mathrm{c}$ give a proof of our Main theorem.

[Acknowledgement]. Professors H.Araki, D.Kastler, M.Takesaki gave to the author their idea to use general duality theorem for proving the KMS-property of a C*-system. The author wishes to express his thanks to thire hospitality and kind discussion, especially to Prof. D. Kastler who gave the opportunity of discussion in Ellmau.

Reference

[1] N. Tatsuuma: A duality theorem for locally compact groups, J. Math. Kyoto Univ., $\underline{6}$ (1967), 187 - 293.