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Canonical Linear Transformation

on Fock Space with an Indefinite Metric

K.R.Ito
Research Institute for Mathematical Sciences

Kyoto University, Kyoto 606, Japan.

Abstract: We first construct a Fock space with an
indefinite metric < , >=( ,0 ), where 0 1s a unitary:
and hermitian operator. We define a O—selfadjéint
(Segal's) field ¢4,(f) which obeys the canonical
commutation relations (CCR) with an indefinite
metric. We consider a transformation ¢,(f)->%,(Tf)

( T=real linear ) which leaves the CCR invariant.
We investigate the implementability of T by an ope-

rator on the Fock space.

Let in (i=+,-) be Hilbert spaces equipped with usual posi-
tive definite hermitian inner product ( , )i' Let }f=%;®ﬁi be a
Hilbert space equipped with the inner product ( , )=Zi( s )i.
Let P: be selfadjoint projections onto}ft. Then the Hilbert
space equipped with an hermitian inner product < , >=( ,¥ ) with
¢=P+-P_ is called a "Hilbert space with an indefinite metric".
Let Sn be the usual (n-fold) symmetrization operator on the

n-fold tensor product space ®dK ,and let
Zn) - 5 [ e
n n

be the n-particle ( Fock ) space. The total Fock space

o«

- (n)
F= 0 n=0 *
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is also given by
| Fet o FH)
where 7(!(;) and A(X.) are Fock spaces cqnstruéted from X,
and #_ respectively. For an operator A on X , define T (A)
by ,
rea) AMc A
r(a)[AM=pe.. .04 (n-times).

Then O=T (#¥) is again an unitary and hermitian operator on & .

We define an indefinite‘sesquilinear form in & by

<,>=(

@ ).

3

0

The adjoint of A with respect to < , > 1is denoted by A( )
*
and equals ©OA ©

*
Definition 1: (1) For f€/4 , the creation operator a (f)

is defined by

a*(f) :ﬁ(n) +Z(n+l)

w w .

¢ + Vn+l‘Sn+1[f®¢].

(2) For fé€X , define the O-selfadjoint (Segal's) field by

* * 0).-
b (£)= g{a" (r)+[a (£)1(%)]
where - denotes the closure.
* ¢] * *
Since [a (f)]( )=[a ¥f£)] with ?=P+—P_, % is a normal
operator. {%,(f)} obey the CCR with an indefinite metric:
[2,(£), %%(g)I=1 Im<F,g> =-1 Re (F,#Jg)

where T is the complex conjugation of f and J=/-1.1s a multi-

plication operator of i.
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Definition 2: (1) An invertible real linear transfomation

T is called ¥ -symplectic if it satisfies
T(y)JT=J

where T<¢)=¢Tﬁ? and T* is the adjoint of T with respect to
Re ( > ) in X . ( If T is complex linear, then this.adjoint is
equivalent to the usual adjoint with respect to ( , ) in Z2,)
(2) Ti = —%—[T iJTJ—l]. Especially anti-linear part T_ is called
the off-diagonal part of T.

Our purpose is to investigate an operator which is expec-
ted to implement Updy(f)Uzl=0y(Tf), and to investigate the
new. vacuum QT=U519 . Here Qéfao)=c is the Fock vacuum.

Since Qy(f)+®¢(Tf) leaves the CCR invariant, one may expect

that UT is a O-unitary ( bijective ©O-isometric ) operator.

Definition 3: (1) T is called O-unitarily implementable
if there is a O-unitary ( bijective O-isometric ) operator
R =1_
UT which implements UTQV(f)UT =0y (Tf) .
(2) T is called weakly @-unitarily implementable if there exist

a O-isometric ( not necessarily bounded ) operator UTl and a

eyclic vector QTG? such that
UZTB(8(£))Q=P(2y (T£)) 0y,

where P(gjf))=?(¢¢(fl),...,¢¢(fn)) is any polynomial of {g}fi)}.
(3) T is called O-unitarily quasi-implementable if the Fredholm

determinant det[l+T£¢)T_] uniformly converges to a non-vanishing

finite value in (0,«).

When £=1 ( namely when 0=1), three notions in this defini-

tion coincide each other [1,3,4]. For the implementability, the
author proved [1]:



Theorem 1l: T is @unitarily implementable if and only if

7 is Hilbert-Schmidt and [T,#]1=0. In this case U, is a unitary

T
operator cammuting with e.

Theorem 2: Let U,I,1S2=QT€?. Then
(1) T_ ¢H.S. (H.S. denotes the Hilbert-Schmidt class),

(11) (-=,0] is 1in the resolvent set of Ti?)T+=1+T£?)T_ .

In order to obtaln a sufficient condition, we proposelé'x
¢-polar decomposition of T, namely a decomposition of T in

terms of a ¥-~-selfadjoint operator and a ¥$-unitary operator.

Theorem 3: Let a ¢=symp1ectic operator T satisfy the con-
ditions in Theorem 2. Then T has a decomposition

T=UH,

where U is a ¢-unitary operator ( which commutes with J ) and
H 1s a ¢-selfadjoint ¥ -symplectic operator with its spectrum

in the right half plane.

Definition 4: ¢-selfadjoint ¥-symplectic operator S is called
a generalized ¢-scaling if S leaves K and JK invariant where
K =K&JK and @ referes the orthogonality with respect to both

Re( , ) and Re< ,"> .

A generalized ¥-scaling S takes the following form on KeJK:

(C.5)

Here ChC=H=h, where C is a.complex conjugation operator:

K={xe X ; cx=x} .

Is H in Theorem 3 always similar to a generalized $-scaling S

.
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through suitable ¢ -unitary operator V ? ( This holds if #=1

[1,3,41.)

H=vsv-1.

If this is the case, we. . . have a decomposition

T=VlSV2

under the conditions of Theorem 2, where Vi are ¢-unitary. But

V seems unbounded in general.

For a generalized $-scaling S, we can obtain rather
concrete theorems [1]. It sometimes suffices to consider gene-
ralized $-scalings for physical applications [1,2].

Theorem 4: For a generalized #-scaling S, if
S_€H.S., and if o

n"2 >0, then

- zselfadjoint part of ¢-selfadjoint operator

(1) both S and st are weakly ©-unitarily implementable.
(11) The overlap between £ and QS is given by
|<Q,QS>|=det-l/u[l4S£?)S~]

=det™ /414 —%—(h—h—l) 3.

This is non-vanishing finite.

Theorem 5: In Theorem R; if inf spec(ar)<0, then the

vector QS which satisfies

<0gP(2,(£))0g>=<Q, P(2p(SE)) 0>
cannot be in the Fock space: HQSH=w.

As is well known, when ¥#=1, fhe necessary and sufficient
condition for T to be unitari1y>implementable is T _€H.S. Then

for ¥#=1, ﬁhe overlap of the vacua does not vanish if and only

-5-
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if T is unitarily implemented. In fact when ¥ =1, we have
T=U SU2 where U are unitaries commuting with J. Further since
transformarlons % l(f)—> 1(U f) are implemented by unitaries
(U ) on the Fock space, we have UT=F(U1)UST(U2). Then
g%—r(U )" Q and (Q, QT) (Q, Q ).
For given S, let T=VlSV2 where Vi are ?—unitaries. Then
S.€H.S. <> T €H.S.
and
det[1+s)s_1=aet[141¥)r 1.
Since P(Vi) are not bounded operators, T is not necessarily
weakly O-unitarily implementable even if S is weakly ©-unitarily
implementable. But the above equation means that the formal
overlap det'1/4[1+T£¢)T_] is an invariant quantity under
¢-unitaries. Furthermore if ¥#1, det” [l+S(¢)S ] can converge
to a non—vanishing ( finite) quantlty even 1f S_gH.S. Then
Definition 3 (3) implies that the formally defined overlap

is non-vanishing ( finite ), which is equivalent to the uni-

tarily implementability of S when ¢=1.

(Sketch of the proof of Theorem 4)

Let K=K+eK_ (K,=P_K) and let {ei} be complete orthonormal
basis in K with respect to both Re( , ) and Re< , >. We use
the following unitary transformation W :

WE=L2(Qzanp),

® o 9,
Q=R , dug= Hi=l exp[ - qi]—;—

- . a e, €K
WLoy (e, ) TW 1 Z o 1o
-iqg e, €X
i 1 s

-6~
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L (-1d/3a, +iq, e, €K,
WLoy(Je, ) IW = { oot

-a/aqi +qi e, € K_ .

Note that

[a*(ei)](@)= ;%F[Qy(ei)+i¢7(Jei)]

Since the transformed vacuum should satisfy
a1 -1 _
[Q?(S ei)+igés Jei)]QS-O,

<Qq,04>=1 ,

we have [1]
ag=laet (0)1Y" expl- —3-(q,(a-1)a)]

where

(q,aq)=2iJ 9304359
and

® -2

aij=(ei,w h wej) s V=P _+iP_.

Remark that o 1is a ?—selfadjoint symmetric matrix.
Under the conditions of Theorem 4, we can prove that

Qg= S(q)éL (Q, duo) =% and the cyclicity of Qg [1]. Further

1/4

Q _1=[det(a' )] exp[——g—(q,(a“ -1)a)].
S

Let a=ar+iai where o, and oy are selfadjoint real -matrices
( this follows from the properties of a). If o is positive

( then strictly positive since ar—l is H.S. ) , since

-1, _ !
(a )r—(ar+aiar ai)

(a-l)i=-a 1a (a +a

r 1 i)

then (a—l)r is again a ( strictly) positive operator. Thus

Qs—léﬁ. The O-isometricity of Ugl follows from

<QS’P(°¢(f))Qs> =<Q,P(2,(Sf))Q>

~7-
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which is proved in [1]. Finally

>=<Q Q>=(Qs(q)duo=det-1/q[1+S£?)S_].

<, Qg S

O

From the above proof, the reader can guess that o,> 0 is

needed to ensure ﬂgsl<” .

(Sketch of the proof of Theorem 5)

Since o is a ¢Lselfadjoint operator,a takes the

following form on JK;&JKb:

((?‘r)++ i(a1)+_) o
1, =P, aP
1(ag)_y (o)) RIS P

- E4

First assume that fé€ JK+ be an eigenveétor of o, belonging

to the eigenvalue -A< 0. Since o,(f) is selfadjoint,

lexpLia,(£)T]=1.

Note

<Qs,exp[1¢?(f)]Qs>=<9,exp[i¢¢(8f)]ﬂ>

=exp[- —%— <Sf,Sf>J=exp[—%foﬂ2] .
If A>0, the right hand side can be made arbitralily large, which
contradicts ,
2
I<QS’¢Xp[i¢P(f)]QS>I; HQSH <o

The case of feJK_ is similarly dicussed.

[

Our theory can be applied for quantum electrodynamics-
type models where ?Kﬂi) is the Fock space of the gaugeon
(ghost particle which has a negative norm ) and‘ZLH;) is the

Fock space of physical particles ( photon, etc.). In these

-8-
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models, the Hamiltonian H is expected to be @-selfadjoint
( namely HO 1is selfadjoint). As a simple example, Iet H be
O-selfadjoint and bilinear with respect to creation and annihi-:
lation operators. Let H be diagonalized [1,2] by a transforme
ation defined by &,(f)>9,(Tf) for any f€). Then 2p is the
physical vacuum of the Hamiltonian. If T is weakly @©-unitarily
implementable, then pT(..)=<QT,..QT> is a normalized O-self-
adjoint linear functional oﬁ the field algebra, which typically
appears in QED-type models. P is called a Lorentz state in
[(2].

Theorem 5 implies that the linear functional P defined
by

pp(P(2,(£))=<0,P(0,(TF))0>

cannot be a continuous state in general on the C*—algebra gene-
rated by {exp[i¢(f)]; feX€} , where &(f) is the selfadjoint
Segal's fdeld.

The converse problem, namely to obtain a representation
( or T ) from the expectation values, is the problem which
must be solved to construct a QED-type model in a mathematically
rigorous way [2]. This corresponds to a generalization of the

GNS-construction. This will be discussed someday.
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