Canonical Linear Transformation
on Fock Space with an Indefinite Metric

K.R.Ito

Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606, Japan.

Abstract: We first construct a Fock space with an indefinite metric < , >=(,0), where 0 is a unitary and hermitian operator. We define a 0-selfadjoint (Segal's) field $\Phi_{\varphi}(f)$ which obeys the canonical commutation relations (CCR) with an indefinite metric. We consider a transformation $\Phi_{\varphi}(f) \rightarrow \Phi_{\varphi}(Tf)$ (T=real linear) which leaves the CCR invariant. We investigate the implementability of T by an operator on the Fock space.

Let $\mathcal{H}_{\mathbf{i}}$ (i=+,-) be Hilbert spaces equipped with usual positive definite hermitian inner product (,)_i. Let $\mathcal{H} = \mathcal{H}_{+} \oplus \mathcal{H}_{-}$ be a Hilbert space equipped with the inner product (,)= $\Sigma_{\mathbf{i}}$ (,)_i. Let P_{\pm} be selfadjoint projections onto \mathcal{H}_{\pm} . Then the Hilbert space equipped with an hermitian inner product < , >=(, φ) with φ = P_{\pm} - P_{-} is called a "Hilbert space with an indefinite metric".

Let $\, S_n^{} \,$ be the usual (n-fold) symmetrization operator on the n-fold tensor product space $\otimes_n^{} \mathcal{H}$,and let

$$\mathcal{Z}^{(n)} \equiv S_n[\otimes_n^{\mathcal{H}}]$$

is also given by

where $\mathcal{F}(\mathcal{H}_+)$ and $\mathcal{F}(\mathcal{H}_-)$ are Fock spaces constructed from \mathcal{H}_+ and \mathcal{H}_- respectively. For an operator A on \mathcal{H} , define $\Gamma(A)$ by

$$\Gamma(A) \mathcal{F}^{(n)} \subset \mathcal{F}^{(n)}$$
,
$$\Gamma(A) [\mathcal{F}^{(n)} = A \otimes \dots \otimes A \quad (n-times).$$

Then $\theta \equiv \Gamma(\varphi)$ is again an unitary and hermitian operator on $\mathcal F$. We define an indefinite sesquilinear form in $\mathcal F$ by

$$<$$
 , $> = (\theta)$

The adjoint of A with respect to < , > is denoted by $A^{(\Theta)}$ and equals $\Theta A^{*\Theta}$.

Definition 1: (1) For $f \in \mathcal{H}$, the creation operator $a^*(f)$ is defined by

$$a^{*}(f) : \chi^{(n)} \rightarrow \chi^{(n+1)}$$

$$\psi \qquad \psi$$

$$\phi \mapsto \sqrt{n+1} S_{n+1}[f^{\otimes \phi}].$$

(2) For $f \in \mathcal{H}$, define the θ -selfadjoint (Segal's) field by

$$\Phi_{\varphi}(\mathbf{f}) = \frac{1}{\sqrt{2}} [\mathbf{a}^*(\mathbf{f}) + [\mathbf{a}^*(\mathbf{f})]^{(\theta)}]^{-1}$$

where - denotes the closure.

Since $[a^*(f)]^{(\theta)} = [a^*(\varphi f)]^*$ with $\varphi = P_+ - P_-$, $\varphi \varphi$ is a normal operator. $\{\Phi_{\varphi}(f)\}$ obey the CCR with an indefinite metric:

$$[\Phi_{\varphi}(f), \Phi_{\varphi}(g)] = i \text{ Im} \langle \overline{f}, g \rangle = -i \text{ Re } (\overline{f}, \mathcal{Y}Jg)$$

where \overline{f} is the complex conjugation of f and $J=\sqrt{-1}$ is a multiplication operator of i.

Definition 2: (1) An invertible real linear transfomation T is called φ -symplectic if it satisfies

$$T^{(\varphi)}JT=J$$

where $T^{(\varphi)} = \varphi T^* \varphi$ and T^* is the adjoint of T with respect to Re (,) in \mathcal{H} . (If T is complex linear, then this adjoint is equivalent to the usual adjoint with respect to (,) in \mathcal{H} .)

(2) $T_{\pm} = \frac{1}{2} [T \pm JTJ^{-1}]$. Especially anti-linear part T_{-} is called the off-diagonal part of T.

Our purpose is to investigate an operator which is expected to implement $U_T\Phi_{\varphi}(f)U_T^{-1}=\Phi_{\varphi}(Tf)$, and to investigate the new vacuum $\Omega_T=U_T^{-1}\Omega$. Here $\Omega\in \mathcal{F}^{(0)}=\mathbb{C}$ is the Fock vacuum. Since $\Phi_{\varphi}(f)\to\Phi_{\varphi}(Tf)$ leaves the CCR invariant, one may expect that U_T is a 0-unitary (bijective 0-isometric) operator.

Definition 3: (1) T is called 0-unitarily implementable if there is a 0-unitary (bijective 0-isometric) operator $U_{T} \text{ which implements } U_{T} \Phi_{\varphi}(f) U_{T}^{-1} = \Phi_{\varphi}(Tf).$

(2) T is called weakly θ -unitarily implementable if there exist a θ -isometric (not necessarily bounded) operator $\mathbf{U}_{\mathrm{T}}^{-1}$ and a cyclic vector $\Omega_{\mathbf{T}} \in \mathcal{F}$ such that

$$U_{\mathfrak{m}}^{-1} P(\Phi_{\boldsymbol{\varphi}}(f)) \Omega = P(\Phi_{\boldsymbol{\varphi}}(Tf)) \Omega_{\mathfrak{m}},$$

where $P(\Phi_{\varphi}(f))=P(\Phi_{\varphi}(f_1),\ldots,\Phi_{\varphi}(f_n))$ is any polynomial of $\{\Phi_{\varphi}(f_1)\}$. (3) T is called Θ -unitarily quasi-implementable if the Fredholm determinant $\det[1+T_-^{(\varphi)}T_-]$ uniformly converges to a non-vanishing finite value in $(0,\infty)$.

When $\mathcal{Y}=1$ (namely when 0=1), three notions in this definition coincide each other [1,3,4]. For the implementability, the author proved [1]:

Theorem 1: T is Θ -unitarily implementable if and only if T is Hilbert-Schmidt and $[T,\varphi]=0$. In this case U_T is a unitary operator commuting with Θ .

Theorem 2: Let $U_{\eta}^{-1}\Omega = \Omega_{\eta} \in \mathcal{F}$. Then

(i) $T_{\epsilon}H.S.$ (H.S. denotes the Hilbert-Schmidt class),

(ii)
$$(-\infty,0]$$
 is in the resolvent set of $T_+^{(\varphi)}T_+=1+T_-^{(\varphi)}T_-$.

In order to obtain a sufficient condition, we propose a φ -polar decomposition of T, namely a decomposition of T in terms of a φ -selfadjoint operator and a φ -unitary operator.

Theorem 3: Let a $\mathcal G$ -symplectic operator T satisfy the conditions in Theorem 2. Then T has a decomposition

T=UH.

where U is a φ -unitary operator (which commutes with J) and H is a φ -selfadjoint φ -symplectic operator with its spectrum in the right half plane.

Definition 4: \mathscr{G} -selfadjoint \mathscr{G} -symplectic operator S is called a generalized \mathscr{G} -scaling if S leaves K and JK invariant where \mathscr{H} =K \oplus JK and \oplus referes the orthogonality with respect to both Re(,) and Re< , > .

A generalized φ -scaling S takes the following form on K \oplus JK:

$$\begin{pmatrix} h & 0 \\ 0 & h^{-1} \end{pmatrix}$$

Here ChC=h=h, where C is a complex conjugation operator:

$$K = \{x \in \mathcal{H} : Cx = x\}$$
.

Is H in Theorem 3 always similar to a generalized 9-scaling S

through suitable φ -unitary operator V ? (This holds if φ =1 [1,3,4].)

$$H=VSV^{-1}$$
.

If this is the case, we have a decomposition

under the conditions of Theorem 2, where $V_{\bf i}$ are ${\mathscr G}$ -unitary. But V seems unbounded in general.

For a generalized \mathscr{S} -scaling S, we can obtain rather concrete theorems [1]. It sometimes suffices to consider generalized \mathscr{S} -scalings for physical applications [1,2].

Theorem 4: For a generalized φ -scaling S, if S_ ϵ H.S., and if α_r =selfadjoint part of φ -selfadjoint operator h^{-2} >0, then

- (i) both S and S⁻¹ are weakly θ -unitarily implementable.
- (ii) The overlap between $~\Omega~\mbox{and}~\Omega_{\mbox{\scriptsize S}}~$ is given by

$$|\langle \Omega, \Omega_{S} \rangle| = \det^{-1/4} [1 + S_{-}^{(\varphi)} S_{-}]$$

= $\det^{-1/4} [1 + \frac{1}{4} (h - h^{-1})^{2}].$

This is non-vanishing finite.

Theorem 5: In Theorem 4, if inf $\text{spec}(\alpha_{\mathbf{r}})\!<\!0$, then the vector Ω_{S} which satisfies

$$<\Omega_{S}$$
, $P(\Phi_{\varphi}(f))\Omega_{S}>=<\Omega$, $P(\Phi_{\varphi}(Sf))\Omega>$

cannot be in the Fock space: $\|\Omega_{S}\| = \infty$.

As is well known, when $\mathcal{Y}=1$, the necessary and sufficient condition for T to be unitarily implementable is $T_{\epsilon}\in H.S.$ Then for $\mathcal{Y}=1$, the overlap of the vacua does not vanish if and only

if T is unitarily implemented. In fact when φ =1, we have $T=U_1SU_2$ where U_i are unitaries commuting with J. Further since transformations $\Phi_{\varphi=1}(f) \to \Phi_{\varphi=1}(U_i f)$ are implemented by unitaries $\Gamma(U_i)$ on the Fock space, we have $U_T=\Gamma(U_1)U_S\Gamma(U_2)$. Then $\Omega_T=\Gamma(U_2)^{-1}\Omega_S$ and $(\Omega,\Omega_T)=(\Omega,\Omega_S)$.

For given S, let $T=V_1SV_2$ where V_i are φ -unitaries. Then $S_i \in H.S. \longleftrightarrow T_i \in H.S.$

and

$$\det[1+S_{\underline{\boldsymbol{\gamma}}}^{(\varphi)}S_{\underline{\boldsymbol{\gamma}}}]=\det[1+T_{\underline{\boldsymbol{\gamma}}}^{(\varphi)}T_{\underline{\boldsymbol{\gamma}}}].$$

Since $\Gamma(V_1)$ are not bounded operators, T is not necessarily weakly θ -unitarily implementable even if S is weakly θ -unitarily implementable. But the above equation means that the formal overlap $\det^{-1/4}[1+T_-^{(\varphi)}T_-]$ is an invariant quantity under φ -unitaries. Furthermore if $\varphi \neq 1$, $\det^{-1/4}[1+S_-^{(\varphi)}S_-]$ can converge to a non-vanishing (finite) quantity even if $S_-\notin H$. S. Then Definition 3 (3) implies that the formally defined overlap is non-vanishing (finite), which is equivalent to the unitarily implementability of S when φ =1.

(Sketch of the proof of Theorem 4)

Let $K=K_{+}\oplus K_{-}$ $(K_{\pm}=P_{\pm}K)$ and let $\{e_{\underline{i}}\}$ be complete orthonormal basis in K with respect to both Re(,) and Re< , >. We use the following unitary transformation W :

$$\begin{split} & \mathbb{W} \mathcal{F} = L^{2}(\mathbb{Q}; \mathrm{d}\mu_{0}) \,, \\ & \mathbb{Q} = \mathbb{R}^{\infty} \,, \quad \mathrm{d}\mu_{0} = \, \mathbb{I}_{\mathbf{i} = 1}^{\,\,\,\,\,\,\,} \, \exp[-\mathrm{q}_{\mathbf{i}}^{2}] \frac{\mathrm{d}\mathrm{q}_{\mathbf{i}}}{\sqrt{\pi}} \,\,, \\ & \mathbb{W}\Omega = 1 \,, \\ & \mathbb{W}[\Phi_{\varphi}(\mathrm{e}_{\mathbf{i}})] \mathbb{W}^{-1} = \left\{ \begin{array}{ccc} \mathrm{q}_{\mathbf{i}} & \mathrm{e}_{\mathbf{i}} \in \mathrm{K}_{+} \\ -\mathrm{i}\mathrm{q}_{\mathbf{i}} & \mathrm{e}_{\mathbf{i}} \in \mathrm{K}_{-} \,\,, \end{array} \right. \end{split}$$

$$W[\Phi_{\varphi}(Je_{\mathbf{i}})]W^{-1} = \begin{cases} -i\partial/\partial q_{\mathbf{i}} + iq_{\mathbf{i}} & e_{\mathbf{i}} \in K_{+} \\ -\partial/\partial q_{\mathbf{i}} + q_{\mathbf{i}} & e_{\mathbf{i}} \in K_{-} \end{cases}.$$

Note that

$$[a^*(e_i)]^{(\theta)} = \frac{1}{\sqrt{2}} [\Phi_{\varphi}(e_i) + i\Phi_{\varphi}(Je_i)]$$
.

Since the transformed vacuum should satisfy

$$[\Phi_{\varphi}(S^{-1}e_{\underline{i}})+i\Phi_{\varphi}(S^{-1}Je_{\underline{i}})]\Omega_{S}=0,$$

$$<\Omega_{S},\Omega_{S}>=1,$$

we have [1]

$$\Omega_{S} = [\det(\alpha)]^{1/4} \exp[-\frac{1}{2}(q,(\alpha-1)q)]$$

where

$$(q,\alpha q)=\Sigma_{ij} q_i \alpha_{ij} q_j$$

and

$$\alpha_{ij} = (e_i, \psi^* h^{-2} \psi e_j), \psi = P_+ + iP_-.$$

Remark that α is a \mathscr{G} -selfadjoint symmetric matrix.

Under the conditions of Theorem 4, we can prove that $\Omega_S = \Omega_S(q) \epsilon L^2(Q, d\mu_0) = \mathcal{F} \quad \text{and the cyclicity of } \Omega_S \text{ [1]. Further}$

$$\Omega_{S^{-1}} = [\det(\alpha^{-1})]^{1/4} \exp[-\frac{1}{2}(q,(\alpha^{-1}-1)q)].$$

Let $\alpha=\alpha_r+i\alpha_i$ where α_r and α_i are selfadjoint real matrices (this follows from the properties of α). If α_r is positive (then strictly positive since α_r-1 is H.S.), since

$$(\alpha^{-1})_{r} = (\alpha_{r} + \alpha_{1} \alpha_{r}^{-1} \alpha_{1})^{-1},$$

 $(\alpha^{-1})_{1} = -\alpha_{r}^{-1} \alpha_{1} (\alpha_{r} + \alpha_{1} \alpha_{r}^{-1} \alpha_{1})^{-1},$

then $(\alpha^{-1})_r$ is again a (strictly) positive operator. Thus $\Omega_S^{-1}\in\mathcal{F}$. The θ -isometricity of U_S^{-1} follows from

$$<\Omega_{S}$$
, $P(\Phi_{\varphi}(f))\Omega_{S}$ > $=<\Omega$, $P(\Phi_{\varphi}(Sf))\Omega$ >

which is proved in [1]. Finally

$$\langle \Omega, \Omega_{S} \rangle = \langle \Omega_{S}, \Omega \rangle = \int \Omega_{S}(q) d\mu_{0} = \det^{-1/4}[1 + S_{-}^{(\varphi)}S_{-}].$$

From the above proof, the reader can guess that $\alpha_{\bf r}^{}>0$ is needed to ensure $\|\,\Omega_{S}^{}\|<\!\infty$.

(Sketch of the proof of Theorem 5)

Since α is a \mathscr{G} -selfadjoint operator, α takes the following form on $JK_{\bot} \oplus JK$:

$$\begin{pmatrix} (\alpha_{r})_{++} & i(\alpha_{i})_{+-} \\ i(\alpha_{i})_{-+} & (\alpha_{r})_{++} \end{pmatrix}, \quad \alpha_{ij} = P_{i} \alpha P_{j}.$$

First assume that $f \in JK_+$ be an eigenvector of α_r belonging to the eigenvalue $-\lambda < 0$. Since $\Phi_{\varphi}(f)$ is selfadjoint,

$$\|\exp[i\Phi_{\varphi}(f)]\|=1.$$

Note

$$<\Omega_{S}$$
, $\exp[i\Phi_{\varphi}(f)]\Omega_{S}>=<\Omega$, $\exp[i\Phi_{\varphi}(Sf)]\Omega>$

=exp[
$$-\frac{1}{4}$$
]=exp[$\frac{\lambda}{4}$ ||f||²].

If $\lambda > 0$, the right hand side can be made arbitralily large, which contradicts

$$|\langle \Omega_{S}, \exp[i\Phi_{\varphi}(f)]\Omega_{S}\rangle| \leq ||\Omega_{S}||^{2}\langle \infty|$$
.

The case of $f \in JK$ is similarly dicussed.

Our theory can be applied for quantum electrodynamics-type models where $\mathcal{F}(\mathcal{H}_{-})$ is the Fock space of the gaugeon (ghost particle which has a negative norm) and $\mathcal{F}(\mathcal{H}_{+})$ is the Fock space of physical particles (photon, etc.). In these

models, the Hamiltonian H is expected to be 0-selfadjoint (namely H0 is selfadjoint). As a simple example, let H be 0-selfadjoint and bilinear with respect to creation and annihilation operators. Let H be diagonalized [1,2] by a transformation defined by $\Phi_{\varphi}(f) + \Phi_{\varphi}(Tf)$ for any $f \in \mathcal{H}$. Then Ω_T is the physical vacuum of the Hamiltonian. If T is weakly 0-unitarily implementable, then $\rho_T(\ldots) = <\Omega_T, \ldots \Omega_T>$ is a normalized 0-selfadjoint linear functional on the field algebra, which typically appears in QED-type models. ρ_T is called a Lorentz state in [2].

Theorem 5 implies that the linear functional $\boldsymbol{\rho}_T$ defined by

$$\rho_{\text{T}}(\,\text{P}(\,\Phi_{\boldsymbol{\varphi}}(\,\text{f}\,)\,) = <\Omega\,,\, \text{P}(\,\Phi_{\boldsymbol{\varphi}}(\,\text{Tf}\,)\,)\,\Omega>$$

cannot be a continuous state in general on the C*-algebra generated by $\{\exp[i\Phi(f)]; f^{\epsilon}\mathcal{H}\}$, where $\Phi(f)$ is the selfadjoint Segal's field.

The converse problem, namely to obtain a representation (or T) from the expectation values, is the problem which must be solved to construct a QED-type model in a mathematically rigorous way [2]. This corresponds to a generalization of the GNS-construction. This will be discussed someday.

-References-

- [1] K.R.Ito, "Canonical Linear Transformation on Fock Space with an Indefinite Metric", RIMS-preprint (1977) to appear in Publ.RIMS.
- [2] K.R.Ito, "Construction of (QED),", RIMS-Preprint (1977).

- [3] A.Klein, Trans.Amer.Math.Soc. 181(1973)439.
- [4] B.Simon, "Bogolyubov Transformations", Princeton Preprint (1972), unpublished.