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1. INTRODUCTION

The first-order logic is one of the most important élasses in
symbolic logic from both theoretical and practical points of view.
Mechanical theorem proving in the logic was founded on resolution
principle by J.A.Robinson.

There are many refinements of resolution, by which we can
check completely and effectively the unsatisfiability of given
sets of clauses, for example, semantic resolution, lock resolu-
tion, linear resolution and so on. ( A clause is a disjunction
of literals. A set of clauses corresponds to a formula in Skolem
standard form. ) Also efficient refinements of resolution, name-
ly,unit resolution and input resolution, have been proposed, al-
though we cannot check the unsatisfiability of all the unsatis-
fiable sets of clauses by them. In them completeness is traded
for efficiency. An input resolution is a resolution in which one
of the two parent clauses is a  given clause. A unit resolution
is a resolution in which a resolvent is obtained by using at
least one unit parent clause, or a unit factor of a parent clause.

The problem to find out whether or not NP=P is very impor-
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tant but is left unsolved. As the unsatisfiability problem for
given propositional formulas in conjunctive normal form (CNF)
is NP-complete, NP=P holds if it can be decided in deterministic
polynomial time by a (complete) resolution whether or not the
given propositional formula in CNF is unsatisfiable. Unit res-
olution has such a characteristic as follows: The problem of de-
termining whether there exists a refutation (proof) of-unit reso-
lution from the given propositional formula in CNF is P-complete.
In this paper we will introduce a resolution layered with
input resolutions (a Restricted Linear resolution, in short RL
resolution) which retains the characteristic of unit resolution
and by which we can check a refutation from more sets of clauses

than unit resolution.

2. DEFINITIONS AND FUNDAMENTAL PROPERTIES

Definitions and fundamental properties about the first-order
logic are given according to [3]. Definitions for a 'term', an
'atom', a 'literal', and a 'well-formed formula (formula, wff)'
are used as usual.

Definition 2.1 An interpretation of a wff ¢ in the first-order

logic consists of a nonempty domain p, and an assignment of

values to each constant, function symbol, and predicate symbol

occuring in ¢ as follows: (1) To each constant, we assign an el-
ement in p. (2) To each n-place function symbol, we assign a
mapping from p" to p. (3) To each n-place predicate symbol, we

assign a mapping from D" to {T,F}.

-2 -
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For the interpretation of a wff over a domain D, the evalu-
ation of the wff follows the usual rules.

Definition 2.2 A wff ¢ is satisfiable if and only if there

exists an interpretation I such that ¢ is evaluated to 7 in I.
A wff G is unsatisfiable if and only if there exists no interpre-
tation in which ¢ is evaluated to T.

Definition 2.3 Awff ¢ is said to be in a prenex normal form if

and only if the wff ¢ is in the form of (szz)*“(ann)(M) where
every (Qixi)' 2=1,...,n, is either (in) or (axi)’ and ¥ is a
formula'containing no quantifiers. (lel)...(ann) is called the
prefix and ¥ is called the matrix of the wff ¢G.

Every wff can be transformed into the prenex normal form,
where the matrix is in a conjuncti&e normal form.

Definition 2.4 (Skolem standard form) Let a wff ¢ be already in

a prenex normal form (Q]xl)...(ann)M, where ¥ is in a conjunc-
tive normal form. Suppose Qr is an existential quantifier in the
prefix for <=1,...,n. If in the prefix no universal quantifier
appears before Qr' we choose a new constant ¢ different from
other constants occuring in ¥, replace all x, appearing in M by
¢, and delete (err) from the prefix. If QS ,...,QS are all the

1 m

universal quantifiers appearing before Qr' 1551<32<m <sﬁ&g we

choose a new m-place function symbol f different from other func-
ton symbols, replace all x, in M by f(xs STy s s T ), and

: 1 2 m
delete (err) from the prefix. After the above process is ap-

8

pliedrto all the existential quantifiers in the prefix, the last
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formula we obtain is a Skolem standard form of the wff G. The
constants and functions used to replace the existential variables
are called Skolem functions.

Definition 2.5 A clause is a disjunction of literals. We shall

regard a set of literals as synonymous with a clause. A one-
literal clause is called a unit clause. A clause containing no
literals is called the empty clause and denoted as 0, which is
always false for any interpretation.

A set S of clauses is regarded as a conjunction of all
clauses in S, where every variable in § is considered governed
by universal quantifiers.

Theorem 2.1 [3] Let S be a set of clauses that represents a

standard form of a wff ¢. Then ¢ is unsatisfiable if and only if
S is unsatisfiable.

Definition 2.6 A substitution is a finite set of the form {tl/vz,

...,tn/vn}, where every v, is a variable, every ti is a térm dif-
ferent from Y and no two elements in the set have the same var-
iable after the stroke symbol. The substitution that consists of
no elements is called the empty substitution and is denoted.i.

Let 6={t1/01,...,tn/vn} be a substitution and ¥ be an ex-
pression of a wff. Then Ef is an expression obtained from EF by
replacing simultaneously each occurrence of the variable v 1% 44
n, in E by the term ¢.. EP is called an instance of E.

The composition of substitutions are defined in [3]. We

adopt it.
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Definition 2.7 A substitution @ is a unifier for a set{Ez,..
Ek} if and only if £ f=E,f=...=Ef The set {Ez,...,Ek} is said
to be unifiable if there is a unifier for it.

Definition 2.8 A unifier § for a set {EZ""’ER} of expressions

is a most general unifier if and only if for each unifier § for
the set there is a substitution A such that f=6A.

If w is a finite nonempty unifiable set of expressions, then
there is an algorithm to obtain a most general unifier for Ww.

Definition 2.9 If two or more literals (with the same sign) of a

clause ¢ have a most general unifier §, then (6 is called a fac-
tor of ¢. If C¢ is a unit clause, it is called a unit factor of (.

Definition 2.10 Let ¢, and (¢, be two clauses (called parent

1 2
clauses) with no variables in common. Let LJ and]ﬁzbe two literals
in ¢, and ¢ respectively. If L, and ~L_, have a most general

1 2’ ’ 7 2
unifier 4§, then the clause (CZS—Lzé) (026—L26)is called a binary
resolvent of 01 and 02. The literals L] and L2 are called the
literals resolved upon.

Definition 2.11 A resolvent of (parent) clauses (¢, and (¢, is one

1 2
of the following binary resolvents: (1) a binary resolvent of
CZ and C2, (2) a binary resolvent of 01 and a factor of 02, (3) a
binary resolvent of a factor of 01 and 02, (4) a binary resolvent
of a factor of ¢, and a factor of'CZ.

Definition 2.12 Given a set S of clauses, a (resolution) deduc-

tion of ¢ from S is a finite sequence ¢ 02,...,0 of clauses

1° k

such that each Ci is either a clause in § or a resolvent of clauses
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preceding Ci’ and Ck=0. A deduction of O from S is called a ref-
utation, or a proof of S.
Theorem 2.2 [3] A set S5 of clauses is unsatisfiable if and only

if there is a deduction of the empty clause 0O from S.

pefinition 2.13 A clause (¢ subsumes a clause D if and only if

there is a substitution 6 such that ¢6€p. D is called a
subsumed clause.

Definition 2.14 If 4 is an atom, then the set {A,~A} is called a

complementary pair. A clause is called tautology if it contains
a complementary pair.

pefinition 2.15 A refinement of resolution to guarantee that the

empty clause can always be derived from an unsatisfiable set of
clauses is called complete.

In this paper we treat an incomplete resolution and assume
without any mention that any resolvent cannot be a tautology in

the resolition.

3. FUNDAMENTAL PROPERTIES ABOUT UNIT AND INPUT RESOLUTIONS

Definition 3.1 [4] An input resolution is a resolution in which

one of the two parent clauses is an input clause. An input de-
duction is a deduction in which every resolution is an input res-
olution. An inpu£ refutaton is an input deduction of O ..

If there exists an input refutation from S, then § is ;said input
refutatable.

Definition 3.2 [4] A unit resolution is a resolution in which a

resolvent is obtained by using at least one unit parent clause,

-6 -
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or a uﬁit factor of a parent clause. A unit deduction is a de-
duction in which every resolution is a unit resolution. A unit
refutation is a unit deduction of 0. If there exists a unit re-
futation from S, then S is said unit refutatable.

Theorem 3.1 [4] There is a unit refutation from a set S of clauses

if and only if there is an input refutation from S.

Definition 3.3 The set of clauses Suc((C) is. defined for a clause

¢ as follows: SucO(C)=C, Sucn(C)z{DfI pe is a unit clause, D€
suc™ 1 (c)y{Res(p,c )| c, is a unit clause, D€suc™ l(c)}, Suc(c)-

%o n
Ji Sue (C) .

0

The next theorems can be easily obtained.

Theorem 3.2 Let S be a set of clauses {S],...,Sm}. If there is

a unit or input refutation from S and Si, subsumes Si’ then there

~is a unit or input refutation from the set of clauses {SJ""’
: ]
5;_ 755 ,si+1,...,sm}.

Theorem 3.3 Let Cz, Corecs and ¢y be unit clauses. Let Res(CO,
—_ — - — 14 !
CZ)~BZ, HQS(Bi—Z’Ci)“Bi for <=2,...,k, and Bk— . If CZ . 02,...,

! 3 ) —

and Ck are any permutation of 01, 02,..., and Ck’ Res(CO,CJ )=
] [ ') — ' P = '

B,', and Res(B, ,',C.')=B ' for i=2,...,k, then B, ' should be .

A procedure is shown to provide an input refutation from the
given set of clauses, based on the property described in the
proof of the equivalence of unit and input resolutions in [4}.
The procedure is a little different from that in TPU[4]. Theorem
3.2 guarantees that even if the clause subsumed by another clause
is deleted from the unit or input refutatable set or its re-

-7 -
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solvents, there exists a unit or an input refutation from the re-
maining set. It is concluded from Theorem 3.3 that the unit
clause having been resolved against all the other clauses is not
necessary in the following procedure. The procedure is continued
as long as the number of generated resolvents does not exceed the
fixed limit or the functon-depth which the parent unit clause has
is not deeper than the fixed one.
procedure 1 ( A procedure to provide an input refutation )

The following notations are used in the procedure.
g: the given set of clauses. Let S={S],S2,...,Sm}.

SO: the set of unit clauses. SO is a queue. Initially SO is the

set of unit clauses in S and unit factors from S (The order 1is

arbitrary).

S ': a queue of clauses corresponding to S that is, correspond-

0 0’

ing to a unit clause (¢ in SO’ there is at least one element Si 50'

such that ¢ is in Suc(Si).
m
Nz: allowable number of JQJ#W(Si) for the procedure to be contin-

ued, where W(Si) is a subset of Suc(si) and 1s set to Si at first

(# denotes the cardinality).
m

N allowable number of igg#W(Si) for the procedure to be contin-

22
ued before the function-depth test will be given to unit clauses.

Ngz allowable function-depth that a unit clause may have.

Pd: pushdown stack.

The procedure is as follows. ¥ N

IRy and NS are set to

fixed numbers.
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Step 1 Set k=i%%#W(Si)‘

Step 2 If k is greater than NJ, terminate: any refutation
is not found. Otherwise, go to the next step.

Step 3 If SO is empty, terminate: any refutation does not
exist. Otherwise, go to the next step.

Step 4 Set the top clause of.SOto Cx'

Step 5 Push down on P4 the clause Siéso' such that sz
Suc(Si).

Step 6 Set 7I=0.

Step 7 Set j=1.

Step 8 If j is greater than m, go to the next step. Other-
wise, go to Step 12.

Step 9 If 7 is ¢, go to the next step. Otherwise, go to
Step 11.

Step 10 Pop up Si from Pd.

Step 11 Set SO=SO-Cx' Go to Step 2.

Step 12 Set W(Sj)=W(Sj)—{C] CéW(Sj), ¢, subsumes C].

step 13 set k=k-#{c| CeH(S;), €, subsumes c}.

Step 14 If k is greater than V¥ go to the next step.

2!
Otherwise, go to Step 16.
Step 15 If the function depth in the clause in Cx is

greater than ¥ go to Step 18. Otherwise, go to the next step.

37
Step 16 Compute {Res(Cx,C)[ CGW(Sj)}.
Step 17 1If {Res(Cx,C)l CGW(Sj)} is empty, go to Step 18.
Otherwise, go to Step 19.
Step 18 Set j=j+1. Go to Step 8.

- 9 -
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Step 19 1If O is in {Res(cx,c)[ CéW(Sjﬂ% go to the next step.
Otherwise, go to Step 22.

Step 20 Push down Si on Pd.

Step 21 Obtain an input refutation using clauses in the
order of Pd ( Clauses which cannot be parent clauses are to be
skipped ).

Step 22 Set I=1.

Step 23 Set W(Sj)=W(Sj)U{Res(Cx,C)I ceW(sj)}.

Step 24 Execute Procedure (1.1) (subsumption test).

Step 25 Set k=k+#(}?es_(0x,0)l CGW(SJ.J —#{Clauses deleted by
the subsumption test}. '

Step 26 Execute Procedure (1.2). Go to Step 18.

Procedure (l1.1): For given j, delete from W(Sj) the clause
subsumed by another clause in W(Sj).

Procedure (1.2): For given j, select unit clauses in{fRes(
Cx,C)[CGW(Sj)}- {clauses deleted by Procedure (l.l)}rand‘unit
factors from the set. Next add those unit clauses and unit fac-
tors to S

and add Sj to S Sj being corresponded to the

0’ 0’!

clauses added to 50.
The next theorem is obtained  from the proof of the equiv-
alence of unit and input resolutions.

Theorem 3.4 Given an input refutatabie set of clauses, there

exists an input refutation where the top clause is the one on the

top of Pd in Procedure 1, and only clauses on Pd are used.

- 10 -
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Definition 3.4 For an input refutatable set S5 of clauses we
denote as I(S) the set of clauses which are used in an input

refutation which has the clause on the top of Pd in Procedure 1.

Example 3.1 Let S={p1,prsz,ﬂpr~p2Vp3,ppZVp4,pp1U~p2V,p3}. S
is input refutatable. r»pzup4 is not on P4, and I(S)={p1,np1Vp2,
“pzv”pzvps’”pzv”pzvfps} :

Theorem 3.5 Let a set S of clauses be input refutatable. For

any clause (¢, in I(S), there exists an input refutation with top

0
clause (C ..

0
4, RESOLUTION LAYERED WITH INPUT RESOLUTIONS
We introduce a restricted linear resolutionv(in short, RL
resolution), which will be got as a layered resolution with input
resolutions.
Definition 4.1 Given a set S of clauses and a clause (¢, in S, an

0

RL (resolution) deduction of Sn with top clause 00 is a deduction

of the linear form of resolutions in which

(a) For 2=0,1,...,n-1, Ci+1 is a resolvent of Ci (called a

center clause) and'Bi (called a side clause), and each Bi is

+1 +1
either in S, or in the set M(C as defined in (b). Cn is in MC.
(b) (1) CO is in MC. (2) If Ci is in MC and j (greater than <)
is the least integer satisfying the following condition, then Cj

is also in MC. Cj is said to be adjacent to Ci'

(Condition) (a) Ci=CjVC, where ¢ is a unit clause ( (a)' (C.2C.

17 4d
in propositional logic). (k) The literals resolved upon in Css
c . C . or in those factors and the literals subsuming

i+1° 250

- 11 -
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those literals cannot be contained in Cj' (e¢) (1) For the great-
est k (1+12kZ25-1) such‘that Ci is used as By s Ci'cj cannot be
subsumed by the literals resolved upon in Bk+1""’Bj or in those
factors. (2) For each I from Z+1 to j-1, the following condition
nolds; for the greatest k (i+1%k<j-1) such that BZ is used as Bk ’
BZ_Cj cannot be subsumed by the literals resolved upon in Bk+1’
""Bj or in those factors.

An RL deduction of O is called an RL refutation.

From the definition the next property is easily derived.
Theorem 4.1 If Cj in M¢ is adjacent to Ci in M¢ in an RL deduc-
tion, then the literals in Cihcj cannot be the literals resolved
upon and the terms of those literals cannot be operated by any
unification in the deduction of Cj'

Example 4.1 let S={pVq,pV~q,~pYq,spY~q}. There is not a unit or

input refutation from § because no unit clause is in S. An RL

refutation from § is as follows: Let 00=qu, C =9 Cy=ps Co=ndq

and C4=D be center clauses, and let BZ=,qu, Bg=p%~q, Bgzwp%~q,

and B,=q be side clauses, where ( is a resolvent of C; and B,

i+1
for ¢=0,1,2,3. This deduction is an RL refutation, where Cpr 01

and 04 are in MC.

Theorem 4.2 Let Cj be adjacent to Ci in an RL deduction, and

assume that for k=i+1,...,J, C, is a resolvent of (; ., and B, .

K - k
1 1 1 ’ ! ! 1
Then there is an input refutation from {Ci 5Bs g ""’Bj»} with

top clause Ci' corresponding to the RL deduction of Cj' in which

B ..., and Bj’ are side clauses in that order, where

]
i+1 '
- 12 -
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'=B, -C Also

k [
] 1 1 ! ! !
"Bj } is equivalent to I({Ci ’Bi+1 ""’Bj }).

Cilzci—cj is a unit clause and for k=i+1,...,J, B

14 !

Following the above theorem, we conclude that if Cj is adja-
cent to ¢, in an RL deduction , then the other Ck(k<i) in MC can
not be used as a side clause in the deduction of Cj with top
clause Ci'

The following point is important to get an RL refutation.
Let Cj be adjacent to Ci in an RL refutation. Then the literals,
which can be factored into the literals in Cj may be added to the
center clause from some side clause. Even if the factoring is
executed as long as it does not unify the terms in the other lit-
erals than those to be factored, we can obtain the RL deduction
of Cj‘ Thus we use the above factoring in obtaining an Rl refu-
tation.

Theorem 4.3 Let S be an input refutatable set. Then there is an

RL refutation with any unit clause in I(S) as top clause.

Theorem 4.4 Assume a linear deduction of Cj with top clause C,

such that (a) for k=<,<+1,...,J-1, Ck+1 is a resolvent of Ck and
. . — V 2

Bk+1 , and Bk+1 is an input clause or Ci’ (b) Ci Cj ¢ (¢ is a

unit clause), (c) the literals resolved upon in Ci’ci+1""’cj—2’

c or in those factors are not in Cj’ (d) the terms of Cj

J-1

contained in Ci”"’cj are not operated by any unification,

-1

(e) {c.B," (i+12ks5) ) =I({c,B," (i+12k2§)})  for By'=By-C, (i+]

€£k%j) . Then it is an RL deduction.

- 13 -
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Based on the above properties, a procedure to check an RL
refutation is shown. An RL deduction of a clause Cj with a
clause Ci as top clause can be obtained according to Procedure 1.
procedure 2 ( A procedure to test the existence of an RL refu-
tation )

Let Sz{Sl,SZ,...,Sm} be the given set of clauses, where the
clauses in S are arranged in the order of the number of literals
in them. Let the number of literals in Si be f(7) for i=1,2,...,
m. The continuation of the procedure is prescribed by that of
Procedure (2.3) based on Procedure 1. The procedure is as follows.

Step 1 Set Z=1.

Step 2 If {7 is greter than m, terminate: no RL refutation-
exists. Otherwise, go to the next step.

Step 3 Execute Procedure (2.1) to obtain Ci'

Step 4 1If Ci is empty, go to the next step. Otherwise go
to Step 6.

Step 5 Set i=7+1. Go to Step 2.

Step 6 Select an element (a set of literals) from Ci and
set it to e

Step 7 Execute Procedure (2.2). Set . to {Lji}(lﬁjff(i)).

Step 8 Set j=1.

Step 9 If j is greater than f(<), terminate: an RL refuta-
tion exists. Otherwise, go to the next step.

Step 10 Execute Procedure (2.3) (Test the existence of an

RL deduction).

- 14 -
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Step 11 1If there exists an RL deduction in Step 10, go to
the next step. Otherwise, go to Step 13.

Step 12 Set j=j+1. Go to Step 9.

Step 13 Set (¢.=C.-c¢.. GO to Step 4.

1 7 7

Procedure (2.1): Get the family of all permutations of Si
with literals.

Procedure (2.2): Set the literal in . to th in the order
for j=1,...,f(Z).

Procedure (2.3): Test the existence of an RL deduction of
.V YV, V. % with top clause [ g iV...VL.i; test the ex-

1 2 Jg-1 1 2 J

istence of an input refutation described in Theorem 4.2 where the
2$,..., and Lj_zi

tions,according to Procedure 1. The remaining clauses, from

terms of Lzﬁ, L are not operated by any unifica-

which LZ$VL2$V"'VLj—Z$ is removed and which are resolved in the

input refutation, are in the set as defined in Definition 3.4.

In Definition 4.1 for propositional logic, (a)' C;?Cj is
prefered to (a) Ci=CjV0 where (¢ is a unit clause. For this defi-
nition the next properties are obtained.

Definition 4.2 Let C] and 02 be clauses in propositional logic

such that CZ=02UL for some literal L. Then C

the relation R with CZ'

Theorem 4.5 For any input refutatable set § of clauses in prop-

9 is said to have

ositional logic, there exists an RL refutation from $§ with any
clause in I(S) as top clause where any clause in MC has the re-
lation R with its adjacent one.

- 15 -
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Theorem 4.6 Let S be a propositional set of clauses from which
there exists an RL refutation. Then there exists an RL refuta-
tion where any clause in M(C has the relation R with its adjacent

one.

In the resolutions for propositional logic, no unification
for the terms is necessary. Thus the procedure to get an RL ref-
utation from the propositional set of clauses is easier. It is
given as an algorithm below.

Procedure 3 ( An algorithm to test the existence of an RL refu-

tation from the given propositional set of clauses )
(i)

= =U
Let S {51,32,...,sm}, and ;=YL

¢ for 4=1,...,m. The
algorithm is as follows.

Step 1 Set i=1.

Step 2 Set Z=05

Step 3 Set T=¢.

Step 4 If 4 is greater than m, terminate: no RL refutations
exist. Otherwise, go to the next step.

Step 5 Set Jj=1I1.

Step 6 If j is greater than f(i), go to Step 13. Otherwise,
go to the next step.

Step 7 If Lji is in T, go to the next. Otherwise, go to Step 9.

Step 8 Set j=j+1. Go to Step 6.

Step 9 Execute Procedure (3.1) (Test the existence of an

RL. deduction).

- 16 -
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Step 10 If there exists an RL deduction , go to the next
step. Otherwise, go to Step 8.

Step 11 Set Lj in T.

Step 12 Set I=1. Go to Step 8.

Step 13 If I=1, go to Step 15. Otherwise, go to the next
step.

Step 14 Set <=7Z+1. Go to Step 3.

Step 15 1If T=Si, terminate: an RL refutation exists.
Otherwise, go to the next step.

Step 16 Set 1=0. Go to Step 5.

Procedure (3.1l): Test the existence of an RL deduction of
T with TVLji as top clause; test the existence of an input refu-
tation described in Theorem 4.2 according to Procedure 1. The
remaining clauses, from which 7 is removed and which are resolved
in the input refutation, are in the set>as defined in Definition

3.4.

An RL deduction is a linear deduction layered with input
resolutions. A deduction which is not linear is defined below as
an extension of an RL deduction.

Definition 4.3 If ¢ is a unit clause or the empty clause, an RL

PYRIR
Sm:C). An RL1 deduction of ¢ from {51,52,...,Sm} for ¢ being a

deduction of ¢ from {51,82,...,Sm} is defined as RL(S,,S

unit clause or the empty clause is defined as follows. It is

denoted as RLJ(SJ,SZ,...,Sm:C).

- 17 -
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(a) BL(SZ,SZ,...,Sm:C) is also RLJ(SJ,S .,Sm:C).

PR

(b) If there hold RLZ(SZ,Sg,...,Sm:Li) and RLZ(SZ,S oS

22" -1’

L.yS:, 154455 :C) where L. is a unit clause, then there holds
127 1+1 m 7

RLJ(SJ,S S :C).

PRI
(c) The deduction defined with (a) and (b) recursively is an RL1
deduction.

An RL1 deduction of 01 is called an RL1 refutation.

As Procedure 2 and 3 can be applied to obtain RL deductions
of unit clauses, a procedure to determine whether there exists an
RL1 refutation from the given set of clauses can be constructed.

Procedure 4 ( A procedure to test the existence of an RL1 refu-

tation )

Let S={Sl,52,...,5 } be the given set of clauses, where S.=
m 7

7

L1$UE2$V...VLf(i) for 2=1,2,...,m. Consider the sets of clauses
520 corresponding to S for <=1,2,...,m. In}tlally set Si0=¢ for
each 7. The procedure is as follows. Its continuation is pre-

scribed by those of Procedure (4.1), (4.2) and (4.3).

Step 1 Set <=1.

Step 2 Set 1=0.

Step 3 'Set S'=9.

Step 4 If 4 is greater than m, go to the next 'step. - Other-
wise, go to Step 8.

Step 5 If 1=0, terminate: no RLl refutations exist. Other-
wise, go to the next step.

- 18 -
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Step 6 Set i=1.

Step 7 Set I=0.

Step 8 Set j=1.
Z

 Step 9 If Lj is not in 5., go to Step 12. Otherwise, go

0"
to the next step.

Step 10 Execute Procedure (4.1) (Test the existence of an
input refutation).

Step 11 1If there exists an input refutation, terminate: an
RL1 refutation exists. Otherwise, go to the next step.

Step 12 Set j=j+1.

Step 13 1If j is greater than f(Z), go to the next step.
Otherwise, go to Step 9.

Step 14 1If Si=Si0 as a set of literals, go to the next step.
Otherwise, go to Step 16.

Step 15 Set i=i+1. Go to Step 4.

Step 16 Execute Procedure (4.2) (Test the existence of an
RL refutation).

Step 17 1If there exists an RL refutation, terminate: an RL1
refutation exists. Otherwise, go to the next step.

Step 18 Set j=1.

Step 19 1If Lji is in SiO’ go to Step 25. Otherwise, go to
the next step. |

Step 20 Execute Procedure (4.3) (Test whether there exists
an RL\deduction of Lji).

Step 21 If there exists an RL deduction of Lji,vgo to the
next step. Otherwise, go to Step 25.
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Step 22 Set Lji.to be in Sio'

Step 23 Set I=1.

Step 24 Set s'=s'ULji.

Step 25 Set j=j+1.

Step 26 If j is greater than f(Z), go to Step 15. Other-
wise, go to Step 19.

Procedure (4.1): For given 7 and j, determine whether there
exists an input refutation from S' with Lji as top clause,
according to Procedure 1.

Procedure (4.2): For given %, determine whether there
exists an RL refutation from S' with Si as top clause, according
to Procedure 2 or 3.

Procedure (4.3): For given ¢ and j, determine whether there
exists an RL deduction of Lji from S' with si as top clause,

applying Procedure 2 or 3. If Si is a unit clause, we consider

that there is an RL deduction with Si as top clause.

The next examples show incompleteness of RL and RL1 resoclu-

tons.

Example 4.2 Let S={P0VP1VP2:.~P1VP2,plvﬂpg:nplvﬂpg:,vpg‘/P Svp43 "pg
Vp4,~p3de4,p3V~p4} There exists no RL refutation from S. As
there exist RL deductions of Py and ~pyr there exists an RLl ref-

utation from S.

Example 4.3 Let S={p0Vp1Vngp3,~p2Vpg,p2V~p3,ﬁpgavp3,~p0Vp1Vp4

p5:~p4vp5: p4vﬂp5a&p4vﬂp5: po‘{"p vagvp 72 ﬂpgvp 73 pgvﬂ'p 7:/vp6‘vl"p73 ﬂPOV
AP VDY PgsnD VP oD fm P gs P g/~Dy}. There exists no RL1 refutation
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from S, although $§ is unsatisfiable.

5. RL(RL1) REFUTATION FROM PROI;OSITIONAL FORMULAS

It is shown that the problem to determine whether there
exists an RL(RL1l) refutation from the given propositional formula
(in the set of clauses or in conjunctive normal form) is
P-complete. In this section by the formula we mean the
propositional formula in the set of clauses or in conjunctive
normal form. The decidability problem is regarded with the lan-

guage in the same sense.

Definition 5.1 [8] Let L,L'sz*. LSL' if and only if there
exists a function g such that (a) xz€L if and only if g(x)EL' for
¥x¢¥* , (b) g is computable in space complexity Zog(/x/) for the
input length Jz/ of =x.

Definition 5.2 [8] Let P be the class of languages accepted by

deterministic Turing machines in polynomial time (complexity).
L is said to be P-comlete if and only if (a) LéP, (b) L’éL for
any L'é€P.

Theorem 5.1 [8] The problem to determine whether there exists a

unit refutation from the formula of length n is decidable in time

complexity Ofng) and in space complexity 0(n), and is P-complete.
According to Theorem 3.1 and Procedure 1, we can easily

obtain that Theorem 5.1 also holds for the input refutation.

We can obtain the following theorem according to Procedure 3.

Theorem 5.2 It is of time complexity 0(n4) and of space complex-
ity 0(n) to determine whether there exists an RL refutation from
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fi(i) : m
the formula S where Sz{Sl,Sg,...,Sm}, Sizj 7 Lj , and égaf(i)=n.

We can obtain the following theorem according to Procedure 3
and 4.

Theorem 5.3 It is of time complexity 0(n6) and of space complex-

ity 0(n) to determine whether there exists an RL1 refutation from
G0t e B
the formula S where S={Sl,82,...,8m}, Si=j=1 Lj , and 7:=1f(1)=71.

For the formula S={S .,Sm}, consider the transformation

JERE
TF1: s—>s>'={sl‘/x,...,smvk,A;\v7\1v;\2,z~}\1";\2,Alvpkg,,\,\zvﬂ)gg where X,
%] and K2 are atoms not appearing in S. Then we can obtain ‘the

next theorem.

Theorem 5.4 "The problem to determine whether there exists a unit

refutation from the formula"%"The problem to determine whether

there exists an RL refutation from the formula".

For the formula S={Sl,...,5m}, consider the transformation
. r— v ) Ve LAV Vy v NV V. A 74 AV
TF2: S5 {51 Koo oS YNAANYA YAV gom AV A g A VAN AN VA, AN
~ v o V‘ V~ N "/ . : .
7\0 )\SVA4J )“S )\4: KS >‘~43 )-3 "‘)\4 Where Al AJ’ >\ 14 >\3 and >\4 are
atoms not appearing in S. Then we can obtain the next theorem.

Theorem 4.5 "The problem to determine Whether theére exists an RL

refutation from the formula"%"The problem to determine whether

there exists an RL1 refutation from the formula”.

From Theorem 5.1,.5.2, 5.3, 5.4, and 5.5, the next theorem

is derived.
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Theorem 5.6 The problem to determine whether there exists an RL

or RL1 refutation from the given formula is P-complete.

6. CONCLUDING REMARKS

In this paper we defined the RL resolution layered with
input resolutions which is more powerful than unit and input
resolutions. Next we showed that it has the characteristic of
unit (input) resolution: the problem to determine whether there
exists an RL refutation from the given propositional set of
clauses is P-complete. Thus the RL resolution is an extension
of unit (input) resolution and prescribes one class of resolu-
tions.

It is left as a problem to examine whether there exists
another resolution which has the characteristic of unit and RL

resolutions.
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