Classical Euclidean Yang-Mills 場に於ける Self-Dualityの幾何学的意味について

東大 理 村瀨元彦

§ 1. Gauge 場の出現

All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple" theory is associated with a simple Lie algebra.

Glashow & Gell-Mann

M:4次元 Minkowski 空間 、 $\binom{r-1}{r-1}$ をその metric tensor x す 3. よく用いられる座標 $\chi_0,\chi_1,\chi_2,\chi_3$ に対し $d\chi_0,d\chi_1,d\chi_2,d\chi_3$ をvolume element x す 3 orientation を fix す 3. $\phi:M \to \mathbb{C}^n$ な 3 vector値函数 に対し、積を $\phi\cdot\phi'= t\overline{\rho}\cdot\phi'$ によって定めるx 之、 (1) $\mathcal{L}=-\frac{1}{2}d\phi\wedge\star d\phi+\frac{1}{2}m^2\phi\wedge\star \phi$ を自由場の Lagrangean density χ_1 に χ_2 に χ_3 に χ_4 に χ_4 を自由場の Lagrangean χ_4 に χ_4 に χ_4 を χ_4 で、中、*中、d中、*d中もちかて独立たと思って計算する。(1)の場合は $\frac{5L}{5p} = \frac{1}{2}m^2*$ 中、 $\frac{5L}{5d\phi} = -\frac{1}{2}*d$ 中 ν ν

今、 $\phi: M \to C^1$ か電荷を持った粒子の場を表めすものとしよう、我々は $|\phi|^2$ を電荷を通して存在確率として認識するだけだから、 $\phi \to g \phi$ ($g: M \to V(1)$) たる変換を行なっても飲るは知ることか出来ない、役、2 $\mathcal{L} = \mathcal{L}(\phi, d\phi)$ は $\phi \to g \phi$ によって不変なように出来ていなければなうない。(1)のかりりにどのようたものをとればよいだろうか?

 $\phi \longrightarrow g. \phi$ は何かを変えているのではなく、同いものを違った風にとうえているのた、と考えるなうば、それを vector bundle の sectionの表示の変換としてとうえることが出来る、そこで、 $E: M \pm o \ \mathbb{C}^1$ - bundle 、 structure group は U(1) .

中EP(M,E), とし、exterior covariant differentiation DE用11, (3) $\mathcal{L} = -\frac{1}{2}D\phi_{\Lambda}*D\phi + \frac{1}{2}m^2\phi_{\Lambda}*\phi$ とすると、これは section の表示のしちにはようない。 (D中はtensorial 1-form 中 ^{2}M にの 1-form と見為せる、*D中は M にの 3-formとして定義される。) さて、(1)の形の Lagrangean 2 (3)にかえるには connection を導入 せわけなうない、 PEM にの 2 (1)-principal bundle、 A 2 P にの connection form とする。 D は A を含んで11 るから、(3)の 2 の 2 に 3 の 3 の 4 に 4 に 4 の 4 の 4

中だけでなく新しい「場」Aを含んでいる、場」を見たともの connection formを gauge fieldと呼ば、

Aに対する運動方程式を導かく為に、Aの Lagrangean density を定めよう。 A it tensorial 1-form ではないから M 上の form とは 見为せない、後、2 A だけの項(質量項)で Section の表示に ようないものはとれない、モニで、gauge場の Lagrangean を (4) $\mathcal{L}_{G} = -\frac{1}{2}DA \wedge *DA$

と定める。DA it tensorial 2-form 中主 Lq It M 上の4-form としてwell-defined.

作用 $S_G = \int_M L_G$ の复分才程式から Euler-Lagrange 才程式 毛草(と、 $\frac{SL_G}{sA} = (-1)^{\frac{1}{2}} \frac{deg}{sDA} \times 53$ から、整理して

E得る。A は可換Lie環に値を持つ 1-form 中心 DA=dA+½[A,A] = dA. よ、て(5) は d*dA= 0 と書かれる。 d*dA=0は4元 vector potential A を用いて書いた Maxwell の電磁場の方程式に 他ならない。

9: M→ U(1) を用いて中→9中と言換することを gange 蛮換との子、以上で判ったことは; 電荷を持った場の lagrangean は gange invariantでなければなるない。そのとも、 Lagrangean には新しい gange 場 Aか出現なる。そして Aは Maxwellの才程式を
隔たす。

Maxwellの才程式を協たす場は光子の場であるから、電磁相互作用か光によって媒介されることの数分的表現か出来た、と解釈まれる。

1954年に楊振奪とR.L. Mills[1] は、以上に述いたことの抗張 としてB-field なる概念を導入した、B-fieldの必要性や物理 的意味については[1]のintroductionに述いるれているので、こ こではその数学的定数を一般化して述いる。

G: Compact $G: G \to U(n)$ 色色的 n 次元 unitary 表现, $P \xrightarrow{K} M$ 色 M 上 の G - principal bundle (real analytic) と $G = \{g: M \to G \mid M \text{ is } G \text{ in } n \text{ real analytic map }\}$ 色 gauge群 to $G = \{g: M \to G \mid M \text{ is } G \text{ in } n \text{ real analytic map }\}$ 色 gauge群 to $G = \{g: M \to G \mid M \text{ is } G \text{ in } n \text{ real analytic map }\}$

B: PI or connection form (real analytic)

D: B: f, Z \hat{E} f f exterior covariant differentiation $\phi \in \Gamma(M, E)$

E: P, P = associate L = M = a C^- vector bundle.

Gauge invariant to p o Lagrangean 13

(7)
$$\mathcal{L}_{Y.H.} = -\frac{1}{2} \operatorname{trace}(DB_{\Lambda}*DB)$$

と定める B はれ次反エルミート行引に値を持つ 1-form であ

るから(4)とは違って(7)には"trace"をつけた。

 $S_{Y-M.} = \int_{M} \mathcal{L}_{Y-M.}$ 9度分方程式から Euler - Lagrange 才程式を 葉 V < z、形式的に $\frac{SS_{Y-M.}}{SB} = -D \cdot \frac{SL_{Y-M.}}{SDB} \times 5$)

(8) D*DB = 0

も得る。(8) E Yang - Mills 才程式 という。これは 2 階非 終型 才程式 である。

G=U(1) のとま connection form A が電磁相互作用を記述したのと同様に、G=SU(2) のとまの Yang-Mills 場 B か弱い相互作用を記述することが知られている。 (例えば) E.S. Abers & B.W. Lee [2].) 1974年頃からは、G=SU(3) のもっと大き方群、とした場合の Yang-Mills 場か強い相互作用を記述するのではないか、と予想されている。

§ 2. Euclidean Yang-Mills 方程式

Minkowski 空間でけなく metric tensor ('1,) を持った R4 L z. \$1 と同いことをして得られる B を Fuclidean Yang-Mills 場という。 (Euclidean できょることの物理的意味については別には、告川主=[9].)

以下ではR4上のYang-Mills場のみを考察する。
R4の座標を xo, xi, xx, x, とし、 dxondxin dxin dx, を volume element とちる orientationを ひとっ fix まる。 改めて記号を定義する。(G=SU(n)の場合のみ扱う)

P --- R4: SU(n) & fibre 1= 持 > real analytic principal bundle

B:P上定義された connection form 値はれ次反Iルミート行引にもつものと考える。(Bは real analytic)

D: B = I, Z R I 3 exterior covariant differentiation

 $\mathcal{L} = -\frac{1}{2} \text{ trace } (DB \wedge *DB)$: Yang - Mills Lagrangean.

多1 zolt 注意したか、たか、DB lt tensorial 2-form であり、 LIIR4上の 4-formとしてwell-defined である。

 $DB = dB + \frac{1}{2}(B, B) \quad \text{if } P \perp o \text{ curvature form } z, t \in S. \text{ if } z \in S.$ $Z F = DB \quad \text{to it it}$

L=- 1 trace Fx * F

は名英で正の値をとるから、

 $\|F\|^2 = \int_{\mathbb{R}^4} \mathcal{L} = -\frac{1}{2} \int_{\mathbb{R}^4} \operatorname{trace} F_{\Lambda} * F$

は curvature form の正定値 norm を定義する. Yang-Mills 才程式 D*DB=0の解 Bは IFIPの極値に対応している.

我々は $\|F\|^2$ か有限になる様な B,下を扱いたい、そこで条件を強くして、必違で十分早くのになる下を考える、このとま B は ω 遠で constant。問題を幾何学化して扱う為に エゞに 強く下も B も $\|R^4 \sqcup \{\omega\} = S^4$ 上の real analytic form である、と仮定する、P も S^4 上を表 I れた SU(n) - principal bundle と考える、 $\|F\|^2 = \int_{S^4} -\frac{1}{2} \operatorname{trace} F_{\Lambda} *F$

- (9) D * D B = 0
- の解を instanton solution と呼上.

Bianchi n恒等式 DDB=0 により、

(10)
$$*DB = \pm DB$$
 (or $*\overline{H} = \pm \overline{F}$)

なるBは(9)の解である.(+)のすも self-dual Y.-M. 方程式,

(-)のすをanti-self-dual Y.-M. 才程式という.群か SU(2)

ので主、(9)。解でお、z (0) を満たえないものはまだひとっも知られていない。([3])

Real analytic fiber bundle $P \longrightarrow S^4$ o first Pontrjagin number 17,

命題 1.

 $P_1 \le 0$ ならば、 $*F = -F \iff \|F\|^2 か最小、$ $P_1 \ge 0$ ならば、 $*F = F \iff \|F\|^2 か最小、$ 註明 (Atiyah [7])

Au(n) (n没反エルミート行列全体)に値を持っ S^4 上の 2-form の空間を Λ^2 て書く、*: $\Lambda^2 \longrightarrow \Lambda^2$ で、 $*^2 = 1$ 中シャの固有値は ± 1 、 ± 1 に属する固有空間を Λ^{\dagger} 、 ± 1 に属する固有空間を Λ^{\dagger} 、 ± 1 に属する 固有空間を Λ^{\dagger} である。この直和分解に従って、 $\Pi = \Pi^{\dagger} \oplus \Pi^{-}$ と分解する。 $\Pi^{\pm} \in \Lambda^{\pm}$.

ae 1t, be 1 tixt,

trace $a \wedge b = trace (a \wedge (-*b)) = trace (-b) \wedge *a$ $= trace (-b \wedge a) = -trace (-b) \wedge *a$ $trace (-b \wedge a) = -trace (-b) \wedge *a$ $trace (-b \wedge a) = -trace (-b) \wedge *a$

從, 乙,

 $\begin{aligned} \|F\|^{2} &= \int_{S^{4}} -\frac{1}{2} \operatorname{trace} F \wedge *F = \int_{S^{4}} -\frac{1}{2} \operatorname{trace} (F^{+} + F^{-}) \wedge (F^{+} - F^{-}) \\ &= \int_{S^{4}} -\frac{1}{2} \operatorname{trace} F^{+} \wedge *F^{+} + \int_{S^{4}} -\frac{1}{2} \operatorname{trace} F^{-} \wedge *F^{-} \\ &+ \int_{S^{4}} \frac{1}{2} \operatorname{trace} F^{+} \wedge F^{-} - \int_{S^{4}} \frac{1}{2} \operatorname{trace} F^{-} \wedge F^{+} \\ &= \|F^{+}\|^{2} + \|F^{-}\|^{2} \cdot ||F^{+}|| = 1 \end{aligned}$

 $2\pi^2 P_1 = \|F^+\|^2 - \|F^-\|^2$

P1 (0 x l f). ||F||2+2π2P1 = 2 ||F+1|2 > 0

∴ ||F||² > -2π²P₁ で、||F||² = -2πP₁ ⇔ ||F[†]|² = o ⇔ F[±] o よ、ス*F = -F のとま ||F||²が最小値をとる。 P₁ ≥ 0 の場合も 同様、■ Note

1° $P_1 \leq 0$ by $*F = F \Rightarrow F = 0$, $P_1 = 0$.

実際, $\|F^{+}\|^{2} \le \|F^{-}\|^{2}$ で, $F^{-}=0$ たから $F^{+}=0$ とたる.同様に $P_{1} \ge 0$ かっ * $F^{-}=F$ たる解も Oしかない.

 2° . S^{4} orientation をかえると、米の固有空間か入れかわり P_1 の符号かかわる、徒、こ、 $P_1 \ge 0$ のとき杯= 下なる解かあれば、それは orientationをかえれば $P_1 \le 0$ のときの米 $F_1 = -F_1$ なる解に他なるない、

このように、self-dual と anti-self-dual とは本質的に同いものであるから、以下では S⁴ に (前に述いたような) Orientationを fix し、もっぽら anti-self-dual Y.-M.才程式の升を扱うことにする。

才程式 (9) D*DB = 0 は norm ||F||² の極値に対応していたか、才程式 (10) *DB=±DB は norm ||F||² の最小値に対応している訳である。

G. Girardi et.al. [3]によれば、SU(2) - Yang-Mills場に対しては、才程式(10) 即 f (anti-) self-duality とエネルギー・運動量テンソルか消えることとか同値であるという。[3]にはSU(n) nを3 の場合については証

明まれていない.

Yang-Mills 場より易しい場合に、type (9)の才程式とtype (10)の才程式かどのくらいまかっているか、について多ち、で生し触れることにする。

§ 3. Anti-self-duality & complex structure I.

M.F.Atiyah は[5]で, anti-self-dual Y.-M. 才程式か, ある 実多構体上の概複素構造の積分可能性条件と同値であること も指摘した. § 3 ではその正確な statement と証明を与える.

 $Hamilfon の回え数体をHで表わし、H <math>\cong$ \mathbb{C}^2 と見なす。 $\pi: \mathbb{P}^3(\mathbb{C}) \longrightarrow S^4$ を没のように定める。

Projective spaceはC上のものしか扱わないので、以下Cを略す.

SU(n)-principal bundle $P \rightarrow S^4$ の π に f 3 induced bundle $\pi^*(P)$ てかく. $\pi^*(P)$ の fibre を複素化した bundle $\pi^*(P)$ の

で表わす. PIの real analytic to connection form Bと curvature form F = DB の $\pi^*(P)^{\mathbb{C}} \wedge \sigma 3|$ 主 もとし $E B^{\mathbb{C}}$, $F^{\mathbb{C}}$ と書く. $B^{\mathbb{C}}$, $F^{\mathbb{C}}$ は $\pi^*(P)^{\mathbb{C}}$ よの real analytic to connection, curvature form である.

 $\pi^*(P)^C$ \ni u に於ける 接望間 $T_u(\pi^*(P)^C)$ は, B^C によって horizontal 成分 H_u v vertical 成分 V_u v に直知分解されている. $H_u=C^3$, $V_u=C^{n^2-1}$ 中心 B^C は

 $T_{u}(\pi^{*}(P)^{C}) \cong \mathbb{C}^{3} \oplus \mathbb{C}^{n^{2}-1}$ Efizing tion, almost complex structure to unique に定めている、それを J_{B} と書く、次の定理か知られている。

定理 1.

 J_B \$\sim \text{integrable} (i.e. \pi^*(P)^\mathbb{C} \text{ pr } 被暴多样体) \$\iff \text{F}^\mathbb{C} \text{ pr } type (1,1) o form.

これを使って、[5]で述かるれた次の定理か示まれる。

定理 2. (Atiyah?) $J_{B} \text{ br integrable} \iff *DB = -DB \quad (anti-self-dual)$ on S^{4} .

証明 まで無を言う。

 $S^4-\{\infty\}=\mathbb{R}^4$ の局所座標 ϵ xo, χ_1,χ_2,χ_3 , \mathcal{L}^3 の同次座標を $3_0:3_1:3_2:3_3$ とする。 $\pi:\mathbb{L}^3\longrightarrow S^4$ は ,

$$\chi_{0} = \frac{1}{2d} (\overline{S}_{0} \, \overline{S}_{2} + \overline{S}_{0} \, \overline{S}_{2} + \overline{S}_{1} \, \overline{S}_{3})$$

$$\chi_{1} = \frac{-i}{2d} (\overline{S}_{0} \, \overline{S}_{2} - \overline{S}_{0} \, \overline{S}_{2} + \overline{S}_{1} \, \overline{S}_{3} - \overline{S}_{1} \, \overline{S}_{3})$$

$$\chi_{2} = \frac{1}{2d} (\overline{S}_{0} \, \overline{S}_{3} + \overline{S}_{0} \, \overline{S}_{3} - \overline{S}_{1} \, \overline{S}_{2} - \overline{S}_{1} \, \overline{S}_{2})$$

$$\chi_{3} = \frac{-i}{2d} (\overline{S}_{0} \, \overline{S}_{3} - \overline{S}_{0} \, \overline{S}_{3} - \overline{S}_{1} \, \overline{S}_{2} + \overline{S}_{1} \, \overline{S}_{2})$$

でをえられる

F^C は自然にP³上の2-formと見なせるから、 T*(dxyndxv)の(su(n)-体数の)-没結合で表わまれる、従って,

その为には、ではdxmndxvを見体的に計算すればより。

P3n(30+0) の局所を槽を(1:31:32:33)でチェる、このとも

$$\pi^{*}dx_{0} = \frac{1}{2\alpha} \left(w_{0}ds_{1} + \overline{w}_{0}d\overline{s}_{1} + ds_{2} + d\overline{s}_{2} + \overline{s}_{1}d\overline{s}_{3} + \overline{s}_{1}d\overline{s}_{3} \right)$$

$$\pi^{*}dx_{1} = \frac{i}{2\alpha} \left(w_{1}ds_{1} - \overline{w}_{1}d\overline{s}_{1} - ds_{2} + d\overline{s}_{2} + \overline{s}_{1}d\overline{s}_{2} - \overline{s}_{1}d\overline{s}_{3} - \overline{s}_{1}d\overline{s}_{3} \right)$$

$$\pi^{*}dx_{2} = \frac{1}{2\alpha} \left(w_{2}ds_{1} + \overline{w}_{2}d\overline{s}_{1} - \overline{s}_{1}d\overline{s}_{2} - \overline{s}_{1}d\overline{s}_{2} + d\overline{s}_{3} + d\overline{s}_{3} \right)$$

$$\pi^{*}dx_{3} = \frac{i}{2\alpha} \left(w_{3}ds_{1} - \overline{w}_{3}d\overline{s}_{1} - \overline{s}_{1}d\overline{s}_{2} + \overline{s}_{1}d\overline{s}_{2} - d\overline{s}_{3} + d\overline{s}_{3} \right)$$

$$d = | + |3||^{2}, \quad W_{0} = \overline{3}_{3} - 2 \times_{0} \overline{3}_{1}, \quad W_{1} = -\overline{2}_{3} + 2i \times_{1} \overline{3}_{1}$$

$$W_{2} = -\overline{3}_{2} - 2 \times_{2} \overline{3}_{1}, \quad W_{3} = \overline{3}_{2} + 2i \times_{3} \overline{3}_{1}$$

である.

 $R^{4} = 0 \text{ anti-se} \{f - \partial ual \ 2 - form \ 0 \text{ base } 17$ $\langle dx_{0} \wedge dx_{1} - dx_{2} \wedge dx_{3} , dx_{0} \wedge dx_{2} + dx_{1} \wedge dx_{3} , dx_{0} \wedge dx_{3} - dx_{1} \wedge dx_{2} \rangle$ $7^{*} = 3^{*} + 3^{*}$

 $\pi^*(diondi+diondi)$

 $= \frac{1}{2d^{3}} \left\{ (\overline{S}_{1} \overline{S}_{2}^{2} - \overline{S}_{1} \overline{S}_{2}^{2}) + (\overline{S}_{1} \overline{S}_{3}^{2} - \overline{S}_{1} \overline{S}_{3}^{2}) + (1 - |S_{1}|^{2}) (\overline{S}_{2} \overline{S}_{3} - \overline{S}_{2} \overline{S}_{3}) \right\} dS_{1} \wedge d\overline{S}_{1}$ $+ \frac{1}{2d^{3}} \left\{ (\overline{S}_{1} \overline{S}_{3} + \overline{S}_{2}) dS_{1} \wedge d\overline{S}_{2} - (\overline{S}_{1} \overline{S}_{3} + \overline{S}_{2}) dS_{2} \wedge d\overline{S}_{1} \right\}$ $+ \frac{1}{2d^{3}} \left\{ (-\overline{S}_{1} \overline{S}_{2} + \overline{S}_{3}) dS_{1} \wedge d\overline{S}_{3} - (-\overline{S}_{1} \overline{S}_{2} + \overline{S}_{3}) dS_{3} \wedge d\overline{S}_{1} \right\}$ $+ \frac{1}{2d} \left(d\overline{S}_{2} \wedge d\overline{S}_{3} - d\overline{S}_{3} \wedge d\overline{S}_{2} \right)$

 $+\frac{i}{2d^2}\left\{ (\bar{s}_1\bar{s}_3+\bar{s}_2)d\bar{s}_1 \wedge d\bar{s}_3 + (\bar{s}_1\bar{s}_3+\bar{s}_2)d\bar{s}_3 \wedge d\bar{s}_1 \right\}$

 $+\frac{1}{24}(d_{3}, d_{\overline{3}}, -d_{3}, d_{\overline{3}})$

T+ (dxondx, - dxindx)

 $= \frac{-i}{2\alpha^{3}} \left\{ (3_{1}\overline{5}_{3}^{2} + \overline{5}_{1}\overline{5}_{3}^{2}) - (3_{1}\overline{5}_{2}^{2} + \overline{5}_{1}\overline{5}_{2}^{2}) + (1-|5_{1}|^{2})(3_{2}\overline{5}_{3} + \overline{5}_{2}\overline{5}_{3}) \right\} d\beta_{1} \wedge d\overline{5}_{1}$ $+ \frac{-i}{2\alpha^{2}} \left\{ (\overline{5}_{1}\overline{5}_{3} + \overline{5}_{2}) d\beta_{1} \wedge d\overline{5}_{2} + (\overline{5}_{1}\overline{5}_{3} + \overline{5}_{2}) d\beta_{2} \wedge d\overline{5}_{1} \right\}$ $+ \frac{-i}{2\alpha^{2}} \left\{ (\overline{5}_{1}\overline{5}_{2} - \overline{5}_{3}) d\beta_{1} \wedge d\overline{5}_{3} + (\overline{5}_{2}\overline{5}_{1} - \overline{5}_{3}) d\beta_{3} \wedge d\overline{5}_{1} \right\}$ $+ \frac{i}{2\alpha} \left(d\overline{5}_{2} \wedge d\overline{5}_{3} + d\overline{5}_{3} \wedge d\overline{5}_{2} \right)$

を得る、確かにすかて (1,1) 軽の 2-form である、よって、 *F=-F ⇒ F^C は bype (1,1) ⇔ JB は integrable か言に 次に \Rightarrow も言う .

 $f = \sum_{\mu \in V} f_{\mu\nu} dx_{\mu} \wedge dx_{\nu} \quad \xi S^{4} \pm 0 \quad 2 - \text{form} \quad \xi \quad 3 \quad .$ $\pi^{*}(f) \quad \text{type} (1,1) \implies *f = -f \quad \xi \stackrel{?}{=} 2 \quad |t^{3} \pm 1| \quad .$

 $\pi^*(f)$ by type (1.1) なうけ、特に $d_{2n}d_{3n}$ の係数け 0 である. $\pi^*(f) = \sum_{\mu < \nu} f_{\mu} \pi(\pi^* d_{3\mu} \wedge d_{3\nu})$ 中立 (13) を用いて計算すると $d \neq 0$ たかう

 $2i\overline{3}_{1}(f_{01}\circ\pi+f_{23}\circ\pi)+(1+|31|^{2})(f_{02}\circ\pi-f_{13}\circ\pi) + i(-1+|31|^{2})(f_{03}\circ\pi+f_{12}\circ\pi) = 0 \qquad \varepsilon \, f_{3} \, \delta.$

任意のろりろうりについて上式か成立

$$\iff f_{01} = -f_{23}, f_{02} = f_{13}, f_{03} = -f_{12}$$

$$\Leftrightarrow f = f_{01} (dx_{0} n dx_{1} - dx_{2} n dx_{3}) + f_{02} (dx_{0} n dx_{2} + dx_{1} n dx_{3})
+ f_{03} (dx_{0} n dx_{3} - dx_{1} n dx_{2})$$

$$\Leftrightarrow$$
 $*f = -f$

∞遠差のところは座標をとりかえて調かればより. 🌌

これで S^4 I の anti-self-dual Y.-M. 場から、 IP^3 I の bundle $\Pi^*(P)^{\mathbb{C}}$ の複載構造か unique に決まることが判った。 Complex analytic bundle $\Pi^*(P)^{\mathbb{C}}$ からは、 P^3 I の rank n の holomorphic (徒って algebraic) vector bundle か決まるから、anti-self-dual Y.-M. 場と algebraic vector bundle との対応かついた。

今まで知られていた(anti-) self-dual solution かすかて有理 函数だったのは、はじめからalgebraicなものしかなかったか うた、ということが明らかになった。

Atiyah-Ward [4] には、n=2の場合に、対応するvector bundleの性質が詳しく調かられているか、教をは anti-self-dualityの幾何学的表現をもうさし詳しく調かることにしよう。

§ 4. Anti-self-duality & complex structure II.

 \mathbb{P}^3 の相果なる 2 矣 $\mathfrak{z}=(\mathfrak{z}_0:\mathfrak{z}_1:\mathfrak{z}_2:\mathfrak{z}_3)$, $\eta=(\eta_0:\eta_1:\eta_2:\eta_3)$ を通る 1 次元 linear subspace (projective line) を $\langle\mathfrak{z}\eta\rangle$ と表わす.

 $\mathbb{P}^{5} \ni \mathcal{J} = (\mathcal{J}_{01} : \mathcal{J}_{02} : \mathcal{J}_{03} : \mathcal{J}_{12} : \mathcal{J}_{13} : \mathcal{J}_{23})$

GはPo中の4次元代数多媒体、このとも、

 $\{P^3 \text{ or projective line } \text{ ft}\} \ni \langle 31\rangle \longrightarrow P(ii\langle 31\rangle = 3 \in G)$ $\{P^3 \text{ or projective line } \text{ ft}\} \ni \langle 31\rangle \longrightarrow P(ii\langle 31\rangle = 3 \in G)$ $\{P^3 \text{ or projective line } \text{ ft}\} \ni \langle 31\rangle \longrightarrow P(ii\langle 31\rangle = 3 \in G)$

Gの定義方程式は、 P^S の中で次のように座標変換すれば、 $W_0^2 = W_1^2 + W_2^2 + W_3^2 + W_4^2 + W_5^2$ と書ける、徒って、 P^S の中の単位球面 S^4 の複素化かGになっている。

$$\begin{bmatrix}
W_0 \\
W_1 \\
W_2 \\
W_3 \\
W_4 \\
W_5
\end{bmatrix} = \begin{bmatrix}
\dot{\cdot} - \dot{\cdot} \\
\dot{\cdot} \dot{\cdot} \\
\cdot & \dot{$$

致力はGの局所座標として、上のWではなく別のものをと 3. Gは 801823 - 802813 + 803812 = 0 で建義まれているから、 $G \cap \{801 \neq 0\}$ 上の函数 $\frac{802}{801}, \frac{813}{801}, \frac{803}{801}, \frac{812}{801}$ は、 独立変数と思うことか出来る、そこで、

(15)
$$\begin{cases} Z_0 = \frac{1}{2} \left(\frac{\hat{\delta}_{03}}{\hat{\delta}_{01}} - \frac{\hat{\delta}_{12}}{\hat{\delta}_{01}} \right) \\ Z_1 = \frac{i}{2} \left(\frac{\hat{\delta}_{03}}{\hat{\delta}_{01}} + \frac{\hat{\delta}_{12}}{\hat{\delta}_{01}} \right) \\ Z_2 = \frac{-1}{2} \left(\frac{\hat{\delta}_{02}}{\hat{\delta}_{01}} + \frac{\hat{\delta}_{12}}{\hat{\delta}_{01}} \right) \\ Z_3 = \frac{-i}{2} \left(\frac{\hat{\delta}_{02}}{\hat{\delta}_{01}} - \frac{\hat{\delta}_{13}}{\hat{\delta}_{01}} \right) \end{cases}$$

を Gn(lov+o)の局所座標として辞用する.

Gつ $\{$ 実定存 $\}$ \hookrightarrow S ϕ であるここのとも、次の命題 か成り立つ。

命題2

Plü: { real line 全体} \longrightarrow { 宾东全体} (\subset , G)

II, § 3. τ f i. τ . fibering π : $\mathbb{P}^3 \longrightarrow S^4$ に対応する.

即 5 、 { real line 全体} = { π of fiber 全体} τ 、 そのえり

に対し P に対し P に対し e $S^4 \hookrightarrow G$ か成り立つ.

证明

1°. Ro fiber or IP3 or projective line 1=13 = 2

9.3 では P³ = H²/C* として P³ を作った。 H = C⊕ Cj とおこう。 P³ ∋ 3 は (30+31j, 32+33j)/C* と表めされる そこで、 P³ の自己同型 ロ: P³~> P³ を

 $P^3 = (3_0 + 3_1j_1, 3_2 + 3_3j_1)/C^*$ ~ ()3_0 + j3_1j_1, j3_2 + j3_3j_1)/C* に よって定める。 j2=-1 ∈ C*ゆ 上 $\sigma^2 = 1$ また、 $3 = (3_0:3_1:3_0:3_3)$ に対しては $\sigma(3) = (-\overline{3}_1:\overline{3}_0:-\overline{3}_3:\overline{3}_2)$ と表わせれるので のは fixed point も特たないことか判る。

 $\pi(3) = (3_0 + 3_1 j)^{-1}(3_1 + 3_3 j) \in \mathbb{H}^2/\mathbb{H}^* \quad 7^* 5 3 5^* 5,$ $\pi^{-1}(\pi(3)) = \{ (h(3_0 + 3_1 j), h(3_2 + 3_3 j))/\mathbb{C}^* \mid h \in \mathbb{H} \}$ $= \{ ((\lambda + \mu_j)(3_0 + 3_1 j), (\lambda + \mu_j)(3_2 + 3_3 j))/\mathbb{C}^* \mid \lambda, \mu \in \mathbb{C} \}$ $= \{ \lambda(3_0 + 3_1 j, 3_2 + 3_3 j)/\mathbb{C}^* + \mu(j3_0 + j3_1 j, j3_2 + j3_3 j)/\mathbb{C}^* \mid \lambda, \mu \in \mathbb{C} \}$ $\lambda, \mu \in \mathbb{C} \}$

 $= \langle 3 \sigma(3) \rangle \quad \tau^2 \delta 3$

これで、几の fiber か $3 \in \mathbb{P}^3$ によって (3) と表わせん ることが判った。

2°. (30(3)) or real line 7. # 3 = 2.

Plü(3の(3))から (15)に従って る,を,を,を,を,を

801 + 0 a & I

(16)
$$\begin{cases} Z_{0} = \frac{1}{|\S_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{3}) \\ Z_{1} = \frac{-1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Im(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{3}) \end{cases}$$

$$\begin{cases} Z_{1} = \frac{-1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(-3_{0}\overline{3}_{3} + \overline{3}_{1}\overline{3}_{2}) \\ Z_{2} = \frac{-1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(-3_{0}\overline{3}_{3} + \overline{3}_{1}\overline{3}_{2}) \end{cases}$$

$$\begin{cases} Z_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(-3_{0}\overline{3}_{3} + \overline{3}_{1}\overline{3}_{2}) \\ Z_{3} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(-3_{0}\overline{3}_{3} + \overline{3}_{1}\overline{3}_{2}) \end{cases}$$

$$\begin{cases} Z_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{2}) \\ R_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{3} + \overline{3}_{1}\overline{3}_{2}) \end{cases}$$

$$\begin{cases} Z_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{2}) \\ R_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{2}) \end{cases}$$

$$\begin{cases} Z_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{2}) \\ R_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{2}) \end{cases}$$

$$\begin{cases} Z_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{2}) \\ R_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{2}) \end{cases}$$

$$\begin{cases} Z_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{2}) \\ R_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{2}) \end{cases}$$

$$\begin{cases} Z_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{2}) \\ R_{0} = \frac{1}{|\Im_{0}|^{2} + |\Im_{1}|^{2}} & \Re(3_{0}\overline{3}_{2} + \overline{3}_{1}\overline{3}_{2}) \end{cases}$$

を得る。これらはすかて実数、また $\delta_{01} = |3_0|^2 + |3_1|^2 = 0$ なら $P\ddot{u}(3\sigma(3)) = \{0:0:0:0:0:0:1\}$ $\{\delta_{01} = \delta_{02} = \delta_{03} = \delta_{12} = \delta_{13} = 0\}$

7, +1 1) (30(3)) it real line 2, \$3

3°. In 20 real line so To fiber 1= to) = 2.

(0:0:0:0:0:0:1) に対応する場合は明らか、

任艺の4度数 Zo, Zi, Zz, Zz, もすこたとき、才程式

$$(|7) \begin{cases} z_0 - i z_1 = \frac{\overline{3}_0 \overline{3}_2 + \overline{3}_1 \overline{3}_3}{|3_0|^2 + |3_0|^2} \\ -\overline{2}_2 + i \overline{2}_3 = \frac{\overline{3}_0 \overline{3}_3 + \overline{3}_1 \overline{3}_2}{|3_0|^2 + |3_0|^2} \end{cases}$$

か、複素数解(30,31,32,33)を持つことが判ればよい。(一意ではない。)しかしそれは明了か、 🛛

8.3 では、aufi-self-dualityか、たで引き上げられた場合 には概複素構造の種分可能条件であることを証明した、20は S⁴ C の図式で anti-self-duality きとうえると、とうなるであるうか?

 S^4 If G on holomorphic submanifold 2' It to 11 から $\pi^*(B|_{S^4})$ If P^3 is holomorphic bundle かでうかけずりまた。

11. 係し、次の定理が成立する. $P^3 \longrightarrow S^4 \longrightarrow G$

定理 3.

 Ω of $S^4 \cap 9$ \$1 PR $\Omega|_{S^4}$ it, real analytic bundle $B|_{S^4} \longrightarrow S^4$ or real analytic curvature 7° it 3 to, $S^4 \perp 9 2$ -form $e + 2 \Omega|_{S^4}$ to anti-self-dual to \bar{j} it:

(i.e. $|*\Omega|_{S^4} = -\Omega|_{S^4}$ to holomorphic bundle 1= to 3.

हैं है भी

(16) で定義した 3μ に対し $8e3\mu = x_\mu$ (μ =0...,3) とおく ($\chi_0, \chi_1, \chi_2, \chi_3$) は $R^4 \hookrightarrow S^4$ の局所座標で、この順に正の向 王となる様な orientation か + i s れている.

R4 192-form の base に対し、米は江のようになる;

$$\begin{cases} * dx_0 \wedge dx_1 = dx_2 \wedge dx_3 \\ * dx_0 \wedge dx_2 = -dx_1 \wedge dx_3 \\ * dx_0 \wedge dx_3 = dx_1 \wedge dx_2 \\ * dx_1 \wedge dx_2 = dx_0 \wedge dx_3 \\ * dx_1 \wedge dx_3 = -dx_0 \wedge dx_2 \\ * dx_2 \wedge dx_3 = dx_0 \wedge dx_1 \end{cases}$$

実理3の証明は、いくつかのstepを入て完成する。 1°.

$$\mathbb{P}^{3} \ni 3 = (30:31:32:33) \quad \text{1. 2}$$

$$\mathbb{G}_{3} = \begin{cases} (b_{01}:b_{02}:\cdots:b_{23}) \in \mathbb{P}^{5} \middle| 3ib_{j}R + 3ib_{ij} + 3kb_{ij} = 0 \end{cases}$$
for $0 \le i < j < R \le 3$

 $\forall \ \text{i.} \ C$, G_3 if \mathbb{P}^{Γ} or \Rightarrow or linear to 21L $\bar{\pi}$ subspace 7° to 3 or 5, $G_3 \cong \mathbb{P}^2$ 7° to 3.

Lemma 1.

Plü({ P³on projective line 2°] E 菌 3 + 9 左体))
= G3.

<u>証明</u>. G3 の定義す程式は、上の条件も書主表かしたものであるから、明らか、 ▲

次の命題が、anti-self-duality の幾何学的意味を明らかに する重要な命題である。

命題 3.

三記明、G∩(801キの) 上で証明する、また、3 も 3.40 であるよう な美とする。(計算も易しく 3 3 分にこう仮定する.
一般の場合は、座標もとりかえてやればよい。)

 $g_{01}=1$, $3_0=1$ として、残りの复数を座標と見るす、 g_3 の定義才程式は

$$\begin{cases} g_{12} = 3_1 g_{02} - 3_1 \\ g_{13} = 3_1 g_{03} - 3_3 \\ g_{23} = 3_2 g_{03} - 3_3 g_{02} \end{cases}$$

入して計算すれば得られる:

$$\begin{cases}
dz_{0} \wedge dz_{1} |_{G_{3}} = -\frac{i}{2} \quad \exists_{1} \quad d\delta_{02} \wedge d\delta_{03} \\
dz_{2} \wedge dz_{3} |_{G_{3}} = -\frac{i}{2} \quad \exists_{1} \quad d\delta_{02} \wedge d\delta_{03} \\
dz_{0} \wedge dz_{2} |_{G_{3}} = \frac{1}{4} (1+3_{1}^{2}) \quad d\delta_{02} \wedge d\delta_{03} \\
dz_{1} \wedge dz_{3} |_{G_{3}} = -\frac{1}{4} (1+3_{1}^{2}) \quad d\delta_{02} \wedge d\delta_{03} \\
dz_{0} \wedge dz_{3} |_{G_{3}} = \frac{i}{4} (1-3_{1}^{2}) \quad d\delta_{02} \wedge d\delta_{03} \\
dz_{1} \wedge dz_{2} |_{G_{3}} = \frac{i}{4} (1-3_{1}^{2}) \quad d\delta_{02} \wedge d\delta_{03} \\
dz_{1} \wedge dz_{2} |_{G_{3}} = \frac{i}{4} (1-3_{1}^{2}) \quad d\delta_{02} \wedge d\delta_{03}
\end{cases}$$

そこで、G 上の (2,0) - f or f = $\sum_{\mu \in V} f_{\mu \nu} dZ_{\mu \lambda} dZ_{\nu}$ (係数は v : にあってもよい)の G_3 への制配を計算 かみと、(21) $f|_{G_{3}} = \begin{cases} -\frac{\dot{c}}{2} 3_{1} (f_{01} + f_{23}) + \frac{\dot{c}}{4} (1 - 3_{1}^{2}) (f_{00} + f_{12}) + \frac{1}{4} (1 + 3_{1}^{2}) (f_{02} - f_{13}) \end{cases}$ $d_{02} \wedge d_{03}$

$$= \left[\frac{1}{4}\left\{(f_{02}-f_{13})-i(f_{03}+f_{12})\right\}_{1}^{2}-\frac{i}{2}\left(f_{01}+f_{23}\right)_{1}^{3}+\frac{1}{4}\left\{(f_{02}-f_{13})+i(f_{03}+f_{12})\right\}\right]$$

$$d_{02}\wedge d_{03}$$

となる、後、て

$$f|_{G_3} = 0$$
 for $\forall 3 \in \mathbb{P}^3$

$$f_{02} - f_{13} = 0 , f_{01} + f_{23} = 0 , f_{03} + f_{12} = 0$$

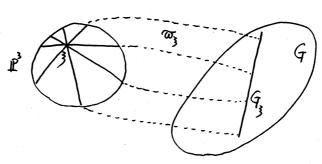
$$\Leftrightarrow$$
 * $f|_{S^4} = -f|_{S^4}$
f と (\mathcal{L}) を とれば、 命題 3 の 証明か終る. \mathbb{Z}

証明. G_3 is curvature form $\Omega|_{G_3}$ it 恒等的12072, か $G_3 \subseteq \mathbb{P}^2$ it simply connected to δ . A

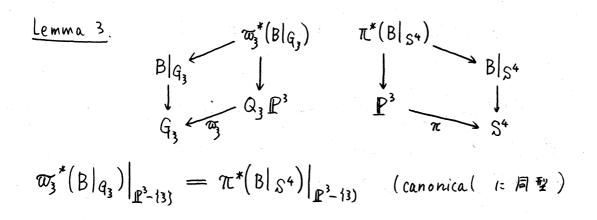
2° $w_3: \mathbb{P}^3 - \{3\} \longrightarrow G_3 \hookrightarrow G$ to 3 map E,

 (P^3-133) $\Rightarrow 1 \xrightarrow{\infty_3} P \text{Lix}(31) \in G_3 \in \mathcal{F}$, 2 定 n 3.

 $\mathbb{P}^{3} \in \mathfrak{F} \quad \text{blowing-up}$ $\mathbb{L} \in \mathfrak{f} \quad \mathfrak{g} \quad \mathbb{E} \quad \mathfrak{g}_{\mathfrak{F}} \mathbb{P}^{3} \quad \mathbb{F}^{3} \quad \mathbb$



holomorphic mapに抗張できる。このとき、



証明、P-13) > りに対し、名なのbundleのfiberの間に、
canonical な同型対応かあることを見ればよい。

Bundle on fiber E, B,x of is takent. (Box rin fiber.) $P(u < 37) = a \in G_7, \quad P(u < 7\sigma(7)) = b \in G_7 \quad \text{th} < 0.$ $G_3 \cap G_7 = \{a\}, \quad S^4 \cap G_7 = \{b\}, \quad \text{th} < 0.$ $\mathcal{E}_{3} \wedge S_{3} \wedge S_{$

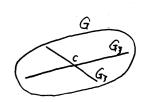
 $\chi = 3$ $\chi = 4$ $\chi =$

w t B t t t t G L 定義 I h た

3°.

 $TO_3^*(B|G_3)|_{\mathbb{P}^3-\{3\}}$ It holomorphic bundle たから、 $\pi^*(B|S^4)$ も $\mathbb{P}^3-\{3\}$ 上ではholomorphic であることか判った。あと、これを \mathbb{P}^3 にまで拡張出来ることを見ればよい。

Lemma 4 $\forall 3,3 \in \mathbb{P}^3$ is $2 \neq 1$ (3 \div 3) $B|_{G_3 \cup G_3} \cup G_3 \cup$



 G_3

註明. PW(33) = C とおく、 $G_3 \cap G_3 = 1c$). $B|_{G_3}$ is trivial to b s section $A_1 \in \Gamma(G_3, B|_{G_3})$ か存在し、 $B|_{G_3}$ も brivial to b s section $A_2 \in \Gamma(G_3, B|_{G_3})$ か在在する. $A_1(c)$ も $A_2(c)$ も SL(n,C) の元 であることに 注意する、定数

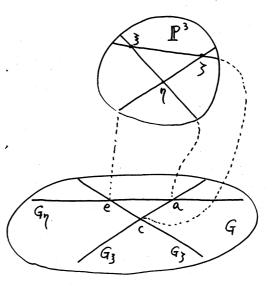
函数 $\Delta_1(c)^{-1} \cdot \Delta_2(c)$ If G L 9 holomorphic function 4 λ , $\Delta = \Delta_1 \cdot \Delta_1(c)^{-1} \cdot \Delta_2(c) \quad \text{on} \quad G_3$ $\Delta = \Delta_2 \quad \text{on} \quad G_3$

で定数まれる a は G3 UG3 上の holomorphic section である。 は BlG3 UG3 は brivial. 自

Note. 以下で判る通り Lemma 4 のはたす役割は大きい、そしてこの Lemma か成立したのは $G_3 \cap G_3 = \{1 \not\in \}$ だったからである。 $G_3 \cap G_3$ かなかりも持っていると、そのよの hol. function $A_1(c)^{-1}$, $A_2(c)$ か $G_3 \vee G_3$ にまで接続できるかどうか判らいかる.

Lemma 5. \mathbb{P}^3 为相里方为 2美3, 3 后效し, $\overline{w_3}^*(B|_{G_3})|_{\mathbb{P}^3-\{3,3\}} = \overline{w_3}^*(B|_{G_3})|_{\mathbb{P}^3-\{3,3\}}$ (canonical 后型)

 $\frac{\text{EBH}}{\text{PW}(3n)} = \alpha,$ $PW(3n) = \alpha,$ PW(3s) = C, PW(3n) = e, $E = C, G_{1} \cap G_{2} = \{e\},$ $G_{3} \cap G_{3} = \{c\},$ $G_{3} \cap G_{1} = \{a\}, z, t, s\}.$



 $\{ \mathcal{O}_{3}^{*}(B|G_{3}), \eta = B, a \}$ $\{ \mathcal{O}_{3}^{*}(B|G_{3}), \eta = B, e : \chi = 3 \text{ } z^{-}, a, e \in G_{3}^{\cup}G_{3}^{\cup} \text{ } \psi \text{ } i \}$ Lemma 4 か 5 canonical な同型 $B, a \cong B, e \text{ } \phi^{-}$ なる $z = 2 \text{ } \phi^{-}$ は $z = 2 \text{ } \phi^{-}$ は z =

fifther f is the zero of f is f is a real analytic bundle f (fiber f is f

 $S^4 \hookrightarrow G$ たかる、P, B, F は S^4 の複素近傍 U C G にまて抗張出来る、解析接続しれた P, B, F \in P^C , B^C , F^C \vee 書く.

 P^{C} , B^{C} , F^{C} . $U \in +$ f_{0} f_{0}

ゆシハファも可能.)

定理2(Atyahの定理)は、「*F=-F なうは、 $\pi^*(P^C|_{S^4})$ は P^3 」の holomorphic bundle」という形で述いることかままる。これを定理3で用いた手法で証明してみよう。

命題3 は base をと、こ証明したから、方の場合でも、 $F^{C}|_{S^4} = F$ か anhi-self-dual $\Longrightarrow F^{C}|_{G_3 \cap U} \equiv 0$ for $G_3 \cap U$ は simply connected にとった。 から、 $F^{C}|_{G_3 \cap U} \longrightarrow G_3 \cap U$ な bundle は trivial」という Lemma 2 も成り立つ.

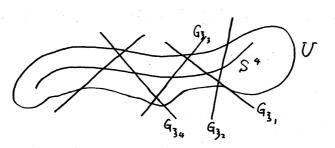
 $\mathcal{O}_3: Q_3 \mathbb{P}^3 \longrightarrow G_3$ In $J: G_3 \cap U \cap \mathcal{P} \otimes IJ$, $(G_3 \cap U \circ G_3 \circ Open subset ? A 3 5 3) Q_3 \mathbb{P}^3 \circ Open set := I_3 3. St., <math>2 \infty_3^{-1}(G_3 \cap U) \subset \mathbb{P}^3 - 13)$ If open.

定理3 n 証明のと主には Lemma 3 と Lemma 5 を用りて 2矣3,3 \in \mathbb{P}^3 もとって示したのたった。それは、

 $\mathbb{P}^3 = (\mathbb{P}^3 - \mathcal{W})) \cup (\mathbb{P}^3 - \mathcal{W})$ というはり合わせを用いたことにあたる。今度の場合は

 $P^3 = \bigcup_{3 \in \mathbb{P}^3} \overline{w_3}^{-1}(G_3 \cap U)$ to 3 covering E使わねはなるない、また、Lemma 3 では、a、b を 2 なぐ Gn か、<u>U</u> の中でa.b を 2 なかわけなるないな、 $\overline{w_3}^*(P^C|_{G_3})$ と $\pi^*(P^C|_{S^4})$ と かりになる P^3 の領域は極めて複難になる。しかし、とにかく open set であり、3 を動かせば P^3 を cover することは確かであるかる、Lemma 4 + Lemma 5 によ、て P^3 に

global に矛盾 なくっなぐことか出来る。これで、 $\pi^*(P^c|_{S^4})$



= $\pi^*(P)^{C}$ or analyticity.
か結論なれた。

Anti-self-dual という条件か、どのようにしてcomplex structureと話かついたのか、というからくりか、多4 で明らか になった。

§ 5. D* DB = 0 & *DB = ± DB & n 5 m 11

D*DB=0の解で、*DB=±DB でないもの(BP5 ||F||²の最小値以外のcritical point)か存在するか? という問題はまだ解かれていない(Atiyah [6]).ここでは、Linear な場合にいくつかを寄する.

群か U(1) n場合: BのかわりにAと書く、DA=dA.

<u>命題4</u> (Atiyah [7]) $d*dA = 0 \iff *dA = \pm dA$

註明 (Atiyah [7]) ← は明らか

$$\Delta (*dA \pm dA) = (dS + Sd) (*dA \pm dA)$$

$$= - d*d**dA \pm (-d*d*dA)$$

$$= -d * d d A$$

= 0

i. *dA ± dA it harmonic 2-form 能, 2, S^4 it compact z^1 あ s s , Hodge の定理により $i(*dA \pm dA) \in H^2(S^4)$

か判る、 $H^2(S^4) = 0$ なので、 $*dA = \pm dA$ を得る. \square Note: A は紀塵数に値を持つので、 $i(*dA \pm dA)$ とした.

Yang-Mills 場とは全くなかうか、2次元で次のようなものも考えてみる。

$$\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \quad \text{5 3 定函数}.$$

$$\mathcal{L} = \int_{\mathbb{R}^2} d\phi \wedge * d\phi.$$

「物理学者の記号では $\mathcal{L} = \int_{\mathbb{R}^4} d^2x \left(\frac{\partial \mathbf{f}_0}{\partial x_i}\right)^2$, a=1,2 但し x_1, x_2 は \mathbb{R}^2 の座標。)

in z = Euler - Lagrange j = 1 if $d \neq d \neq 0$. Self-duality $z \in z + d \neq 0$ $= 2d \neq 0$ $= 2d \neq 0$ = 0. しか解を持たないので面白くない、そこで, (22)*d中=±(0 1) d中

E (anti-) self - duality 21223

「 $d*d\phi = 0 \iff *d\phi = \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} d\phi$ 」は成立するたうか? もちろん \iff は成り立つから \implies を調かてみる. その为に座標で書いてみよう。

 $d\phi = \frac{\partial \phi}{\partial x_1} dx_1 + \frac{\partial \phi}{\partial x_2} dx_2 \qquad * dx_1 = dx_2, * dx_2 = -dx_1$ $\phi \ge * d\phi = \frac{\partial \phi}{\partial x_1} dx_2 - \frac{\partial \phi}{\partial x_2} dx_1$

$$\Rightarrow \frac{\partial \phi}{\partial x} = \pm \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \frac{\partial \phi}{\partial x}$$

$$\Rightarrow \frac{\partial \phi}{\partial x} = \pm \begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix} \frac{\partial \phi}{\partial x}$$

$$\begin{cases}
\frac{\partial \phi_1}{\partial x_1} = \pm \frac{\partial \phi_2}{\partial x_1}, & \frac{\partial \phi_2}{\partial x_1} = \mp \frac{\partial \phi_1}{\partial x_2} \\
-\frac{\partial \phi_1}{\partial x_2} = \pm \frac{\partial \phi_2}{\partial x_1}, & -\frac{\partial \phi_2}{\partial x_2} = \mp \frac{\partial \phi_1}{\partial x_1}
\end{cases}$$

$$\begin{cases} \frac{\partial \phi_1}{\partial x_1} = \frac{\partial \phi_2}{\partial x_2} & \text{or} \\ \frac{\partial \phi_2}{\partial x_1} = -\frac{\partial \phi_1}{\partial x_2} & \text{or} \\ \frac{\partial \phi_2}{\partial x_1} = \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_2} = \frac{\partial \phi_1}{\partial x_2} \end{cases}$$

これは Cauchy-Riemann の才程すである。 か, かまた役 たら中はは正則函数だから、 ⇒ か言える、併し中か

$d*d\phi = 0$ を満たすだけなう必かしも \Rightarrow は成立したn.

Bibliography and References

- [1] C.N. Yang and R.L. Mills; Conservation of Isotopic

 Spin and Isotopic Gauge Invariance, Physical Review 96,

 191-195 (1954)
- [2] E.S. Abers and B.W. Lee; Gauge Theories, Physics Reports

 9 C, 1-141 (1973).
- [3] G. Girardi, C. Meyers and M. de Roo; On the self-Duality of Solutions of the Yang-Mills equations, Ref. Th.

 2399-CERN (Preprint), Geneva, (1977).
- [4] M.F. Atiyah and R.S. Ward; Instantons and Algebraic Geometry, Commun. math. Physics. <u>55</u>, 117-124 (1977)
- [5] M.F. Aliyah; Classical Solutions of Yang-Mills Equations, 京都大学教理解析研究所での講演(1977年10月3日)
- [6] M.F. Atiyah; Morse Theory and Stable Bundles over Curves,京都大学数理解析研究所での講演(1977年10月4日)
- [7] M.F. Atiyah; Classical Geometry of Yang-Mills Fields, 東京大学理学部数学教室での講演(1977年 10月7日)
- [8] H. Flanders; Differential Forms, Academic Press (1963).

- [9]吉川主二 ; 場の理論におけるトンネル効果 , 素粒子論研究 <u>54-4</u> , 49-56 (1977)
- [10]小鸠泉; Yang-Mills 場と Fibre Bundles,素粒子論研究, 53-4, 299-334 (1976)