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The Enumeration Theorems under (Permutation) Group Action

and Their Applications to Combinatorial Problems

by
Hiroshi Narushima

Department of Mathematical Sciences, Faculty of Science, Tokai University,

Hiratsuka, Kanagawa, Japan

We present a short survey.for enumerative combinatorial
-theory and then describe some topics on enumeration of mapping
systems. Roughly Speaking, I think, the theory is divided into
the following three branches, (1) the enumeration theorems under
(permutation) groub action and their applications, (2) the
principle of inclusion-exclusion and the M®bius function on
partially ordered sets, and (3) a trial for uniting (1) and (2),
in which (1) and (2) are rather established but (3) is not still
done. We now have a general discussion on "enumeration" and
"characterization" of objects. Let 2 be a nonempty set of
objects. Let 4 be a set of attributes, mathematically speaking,
an abstract set with a given structure. Let & be a relation

between 2 and A . Then a Galois correspondence
PQ) __SE_—‘—P‘ZPM)

is induced by the relation 8 and the inverse relation £ (see Ore
[55] for the Galois correspondence induced by a relation). The
notation B and € have a suggestive look of "characterization"

and "enumeration". The map € is closely related to the structure
theory and so the map £ to the enumeration theory. More generally
speaking, the two maps have a close connection with "analysis"

and "synthesis". Also, this correspondence seems to be a set
theoretic representation of Hamilton's diagram in classical
logics, which shows the relationships between "extension" and
"intension" of a concept. Speaking in respect of "enumeration”,
if €(A) = ¢ then it means that any object with the abstract
property A does not exist, if £(A) # ¢ then it means that some

objects with the property A exist, resulting in a problem of
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enumerating the objects. Thus, the Galois correspondence induced
by a relation is very useful as a framework in enumeration.

Let's consider more concretely in connection with our subject.

1. The Enumeration Theorems Under Group Action Let @ be a
nohempty finite set and A be a permutation group G on . ~We
define a relation g between 2 and G in the following : for each
x in © and a in G, x%0 if and only if o (x) = x. Then, a Galois

correspondence
- P() <——,Hv——’ ¢(G)

is induced by the relation 9 and the inverse relation . We

see easily that for each X in @(Q) §(X)(=§2x§(x)) is the
invariant group of X and that for each a in G |H(a)| is the
‘character of a, that is, K (a) = {xeﬂla(x) = x}. Note that |H(a) |
is equal to the number of cycles of length 1 in «. The following
theorem considered one of the fundamental theorems in enumerative
combinatorial theory seems to be the origin of a series of
“enumeration theorems under group action by Frobenius, Redfield,
Pb6lya, De Bruijn, Harary and Palmer [3,17,15,1,7,14]}.

,

Theorem (Frobenius). Let Q/G denote the set of orbits in Q
relative to G and Ox be the orbit containg an element x in Q.
Then the following identities hold,

(1) [oxl = [6|/]8(x) |

(2) 19/6] = Tg1e%elf(a)

This theorem shows that the computability of |§(x)| and
|H(a) | is essential in enumeration. The author has vaguely
known that Burnsidé tobk'up this theorem in his textbook[3].
On the other hand, at this symposium he is presicely taught by
Professor Peter M. Neumann that the theorem was formulated by
Frobenius (from Cauchy through Netto) and Burnside took up the
‘theorem in his textboék.b Since Frobenius'es theorem, Redfield
(171, pblya[l5], De Bruijn[l,2], Harary and Palmer[6-10,14]
fruitfully used the cycle index of a permutation group G as a
generating function, and they and others(Davis[4], Read[16],
Harrison[11,12], Robinson[14],---) applied their methods to
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enumeration of mapping patterns, chemical structures, graphs.
and machines. It is worth noticing that Redfield's work was
referred by Littlewood[13], Read[1l6], Foulkes[5] and appreciated

by Harary and Palmer[8]. The cycle index (group reduction

function by Redfield) of a permutation group is defined as
follows.

p1 P2 Pn
r

P(G;X1,0.~,Xn) (Or Z(G)) = l?'(x%le x2 ocoxn

where n is the degree of G and the cycle structure t(o) (or cycle
type) of a is (p,,---,p,), that is, p; is the number of cycles
of length i in a.

We now show some examples in illustration of the theorems.
Example 1 is due to De Bruijn[l,2}, Harary and Palmer[7] ( the
special case ‘is due to Davis[4]) and it is elementary but
essential in enumeration of finite mapping systems such as
mapping patterns (schemata), chemical structures, graphs and
machines. Example 2 is one which Harary and Palmer[10] showed
to.illustrate one of Redfield's theorems{1l7] (later Read[1l6]).
Example 3 is one which the author[44, 48] introduced by the motive
of simplifying figure-works in enumerating the reducible or
irreducible types of finite systems suchvas mappings, finite

automata and sequential machines.

Example 1. Let 7J(S,T) denote the set of mappings from a
finite set S to a finite set T. Let Gg be a permutation group
on S and Gp be a permutation group on T. Then we define f =~g
for each f and g in #S,T) if and only if there are o in Gg and
B in Gp such that B(f(s)) = g(a(s)) for all s in S. The product
group GgxGp is easily considered to be a permutation group on t
Hs,T) . Therefore, for each (a,B) in GgxGy we obtain the
following identity.

Mo, | = T, (% da5)®,

. 121 3|
where t(a) = (py,-++,Pis--+) and t(B) = (q;,-+-,9ir*""). Thus,
the number of equivalence classes under the relation = (orbits
in #S,T) relative to GgxGq , called patterns or schemata) is

obtained from Frobenius'es theorem.



109

Example 2. Let Dp denote the dihedral group of degree n
generated by the cycle (1 2---n) and the relation (1 n)(2 n=1)....
Then the cycle index of D, is as follows.

7 (Dn) =_;Z(cn)_+{%$ix(n_n/2 n:odd
2 'g%xnlz gxcn 2)/2)
where C, is the cyclic group of degree n generafed by the cycle

n:even

(1 2---n). The cycle index of Cp also is as follows.

Z(Cn) =—— X (k) x xplk

where ¢%(k) is the Euler ?-function. The cycle indices of D,
andenwereshown by Redfield[17]. On the other hand, since the
automorphism group of a cycle graph of order n is Dn, by the
Redfield's theorem (later by Read[l16]) the number of different

superpositions of 2 cycle graphs of order n with the same set of

unlabeled points is equal to Z(D,)NZ(D,), where 0 is the cap

operation (originally denoted f1 by Redfield). For m (2>2)
i, ir Jigde Jr

. i . . ,
monomials x; x,2%---xy¥, X1'x32%---X¢ «++, the cap N is defined by
i J2 ) ¢
xll Xy "'Xrﬂjxl k3% xgTne -

{(kfrlk kKip)™ ! iy = g = ... for all k

0 ‘ otherwise (also 00=1)
By linearity, the cap operation may be extended to arbitrary

polynomials in the variables. For example, for n = 5

Z(Ds) =-%X%(xf + 4x5) + %xlx2 = ——(x1 + 4x, + 5x%,x2),
Z(Ds)DZ(Dg) = —%— x3nx} + l6x,nx, + 25x,x20x,X32)
= 35(120 + 80 + 200) = 4.

The four superpositions are as follows
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'Example 3. Let PL(S) denote the partition lattice of a
‘n-set S. Let ©(S) be the symmetric group on S. Then a
permutation group {d|a in‘6(Sj} on PL(S), written G(PL(S)), is
induced by &(m) = {a(B)|Ben} for each m in PL(S). Furthermore,
a permutation group {d|3€G(PL(S))} on the set C(PL(S)) of chains
in PL(S), written G(C(PL(S))), is induced by a(c) = {d(m) |mec}
for each ¢ in C(PL(S)).  In the sequel, we have - o

©(S) 2G(PL(S)) = G(C(PL(S)))
where = denotes "group isomorphic™". We now define a cardinal

_congruéﬁce»relatioh Z¢ on C(PL(S)) in the following : for each

¢ and ¢' in C(PL(S)) ¢ Z¢¢' if and only if there is o in &(S)
such that 3 (¢) = c'. Since the cardinai congruence classes
under the equivalence relation =¢ are the orbits in C(PL(S))
relatiVe'toiG(C(PL(S))), theffollowing identity is obtained.
| | |oc] = nt/|G(C(PL(S)))¢
When #(e) (length of ¢ |e]-1) = 0, it results in the well known
‘formula, that is, for m in PL(S)

lon] = nt/ 8 GADPLEi N,
where t(m) (the type of m) = [(1)P1(2)P2...(n)PP] in the set of
P(n) of partitions of n. - For m in PL(S), G(PL(S))r is equal to
the automorphism group of m defined by Orel 53]. We next consider
the case of %(¢) = 1. Let v(x) = (p,,Py,--+-,Px) for
X = [(1)91(2)92'--(k)Pk].in P(k) . Let m and 1 be any elements
in PL(S) and X(m) = {B in W{BQX} for X in 1. Let [m,1] be an
interval in PL(S) such" that Y(t(ﬂ)) = v and P(v) be the set of

partitions of a vector v, where l is aunique maximal element in

PL(S) . Then an extended type function tg:[w,1} —> P(v) is well
defined by ' ’

tr(T) = [y (E(X(m)))]|X in T].
It is shown that m< T Z¢7' <t' if and only if tgp (1) = g (T'),

and the following formula is obtained.

n . X n ,
[omer| = nt/ G EDPLTT (gt (v 3099,

where t(m) = [(1)P1---(m)P2], t;(1) = [v§1 ---vET] and

vy = (vlj,--~,vnj) for 1<j<r. For example, for
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~=1{1,2,3,4,5,6,7,8} and T = {I,3,4,2,5,6,7,8},
t(m) = [(1)2(2)*] and tq(t) = [(1,1)%2(0,1)]. Then

log| = 81/((11)%(21)3%2131) = 420

|On<t| = 81/((11)2(21)3%21(1111)211(011t)) = 2520.
Furthermore, let d be a chain in PL(S) and C[d] denote the set
of each chain in PL(S) containing d as a subchain. Then, it is
shoWn that G(C(PL(S)))4q is a permutation group on C[d] and that
c Z¢ ¢' for each ¢ and ¢' in Cl{d] if and only if there is a in
G(C(PL(S)))q such that d(c) = ¢'. Let 03 denote the cardinal
congruence class (orbit) on C[d] containing c. Then, since for
each subchain d of a chain ¢ G(C(PL(S)))¢ is a subgroup of
G(C(PL(S)))q, the following identity is obtained, '

03] = |e(C(PL(S)))al/|G(C(PL(S)))e| = |0c|/|0a].
For the previous example 7 and T, we have
lor<t| = |om<t|/|On| = 6.
It is noted that the formulas for L (c) 23 are open.

2. The Principles of Inclusion-Exclusion on Partially
Ordered Sets The enumeration theorems under group action are
very useful in counting non-isomorphic types of finite systems,
but neverthless they can not answer for the problems of
enumerating reducible or irreducible types of finite systems.
So, in order to deal with the problems, we have been developing,
so called "the enumeration theorems under lattice action", with
the Harrison's problem "determine the number of minimal (irreducible)
machines with n states" for a background. We now present the
fringe of the theory. The principle of inclusion-exclusion on

semilattices[45, Theorem 1] is as follows.

Theorem (Inclusion-Exclusion on Semilattices). Let Q be a
nonempty set and (L,v ) be a finite join-semilattice. Let

f:L—p(R) be a map satisfying f(x)Nf(y)c £(x y) for each x and

y in L. Then for any measure m on P(R) the following identity
holds.
o _1y 2 ()
m( Y £(x)) = T (-1 m( 0 £(x)),



112

where C is the set of chalns in L and 2 (¢) denotes the length of

a chaln c. The theorem can be dualized.

The theorem was applied to a Boolean lattice and a product
paftition lattice[45, Proposition 1, Theorem 2]. Also, the
theorem has been restated in terms of valuations on ‘distributive
lattices inStead of measures on p(9) [46]. The three different
proofs have been given, one in which the Rota's theorem from
[60, Theorem 1] plays an important role, that is, the closure
relation isvused ‘and the others are elemental.  Furthermore,
recently, the theorem has been extended on partially ordered sets
(posets) as follows [49].

Theorem (Inclu51on—Exclusion on Posets). Let Q be a
nonempty set and P be a finite partially ordered set with a
unique maximal element. Let f:P—;ép(Q) be a map satisfying
f(x)nf(y) € £(z) for each x and y in P and for some minimal
element z in the subposet{(of P) of all upper bounds of {x, vy}.
Then for any measure m on () the following identity holds.

_ oy (e)
m(Jpfi(x)) = Z . (-1)7" " 'm( 0O £(x)),

. where C is the set of all chains - in P and %(e¢) denotes the
length of a chain c. Also the theorem can be dualized, which
results in other three cases.  Furthermore, the theorem can be
restated in terms of valuations on distributive lattices instead

of measures on {(Q).

We next describe the principle of inclusion-exclusion on
partition semilattices and an application of the principle to
enumeration of the reducible or irreducible mapping systems.

The most simple case is explained (see [48] for the full

" information). Let F(S) be the set of mappings from S into S.
Let's recall the Galois correspondence (€,g) in Introduction.
Then, regarding #S) as Q and PL(S) as 4, we define a relation

L between F(S) and PL(S) regarded the relation g in the following
way : for each f in F(S) and © in PL(S) fLr if and only if for
each s and t in S srnt implies f(s)mf(t), where for any x and y

in § xmy denotes that x and y are contained in a same block of
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. Therefore, a Galois correspondence
L
PIFS)) ‘—’e-T e (PL(S))
is induced by the relation £ and the inverse relation‘g.‘ We

see easily that for each F in @(QKS))‘i(F) is a sublattice of
PL(S) called a reduction diagram of F and that for each m in

P(PL(S)) j(n) is a subsemigroup of the semigroup F(S) under map
composition. Note that the map £ is introduced by making an
abstract of a sublattice of partitions with substitution property

on a sequential machine studied by Hartmanis and Stearns([37].
Now, the important subset 1y of F(S) is defined by

1dr = {feF(S) |max (L(£)n[0,T]) = 7},
where T and 7 are any elements in PL(S) and 0 is a unique minimal

element in PL(S). Here, [0,T] is called a reduction domain of

f and L(£)N[0,T] is called a reduction diagram of f relative to
[0,t]. In other wards, 1%rm is the set of f in &S) which is at

most reduced to f:m—m relative to [0,7]. Therefore, 1&g is the

set of all irreducible mappings relative to [0,T]. In the

computation of |tJn|, the following theorem[45, Corollary] is

essentially used.

Theorem (Inclusion-Exclusion on Partition Semilattices).
Let § be the map PL(S)—> p(F(S)) induced by the relation 4.

Let L be any subsemilattice in PL(S). Then for any measure m
on P(FS)) the following identity holds.
5 _ o R e) %
m(x\EJL,g(x)) = Zc(-1) m(3(c)),

where C 1is the set of all chains in L.

The map f:P — P(Q) in the principle of inclusion-exclusion

on posets is called a weak morphism on P. In an application of

the principle, for a given poset P and map f£:P — (), it is of

interest whether f is a weak morphism or not. It is shown that
the map £ is a weak morphism on L, and then the theorem follows

from the principle. It is also shown that for each chain ¢ in
PL(S) |8(€)| is characterized by the arithmetic operations. On
the other hand, the set 19y is characterized by the map-j, and

. Let's recall the

the theorem is applied to compute | Fr
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permutation group G(PL(S)) in Example 3. Let o be any element
in ©(S) and 4 be a permutation on FS) induced by
‘ ' ;,&(f)'= ( a(l) -~ --- a(n) )

o a(f(1))---a(f(n))

for each £ in ¥(S). Then,'it is shown that for each o in &(S)
" G(L(£)) =L (a(£)) and &(<Fm) = g(m%Fa (1) -
'Therrésent formulation is naturally extended to a relation
between the set "(#(S,T))P of mapping systems and the product
paftitioh lattice PL(S)xPL(T), and then the method of counting
the number of the reducible or irreducible mapping systems is
‘established by the author[48]. Furthermore, "the relation
' bétweenj(?(S))P and PL(S)" and fa relation between machines and
'PL(S)" aie idéntified by a bijection from the set of transition
 functions to (F(S))P. Therefore, the enumeration of reducible
or irreducibie machines is transformed into the enumeration of
reducible'or.irreducible mapping systems, resulting in the
solution for the Harrison's problem. In this enumeration, the
cardinal congruence relation described in Example 3 is used to'
simplify figure-works in it.  Furthermore, by considering a
"permutation group on the set of machines induced by the symmetric
group on the set of states, the identity on the number of
non-state-isomorphic irreducible machines with n states is also
obtained. Finally, it is noted that for each T in PL(S)
G(PL(S))r is a Permutation grbup on 1Fp and that the general
computation method for |1Fo/G(PL(S))t| is not still establiéhedf;)
The author thinks that this note is a very simple entrance

probiem to the third branch described in Introduction.
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