Permutation groups of some special degrees

A preliminary report on some joint work with P.M. Neumann

by Jan Saxl

In an impressive series of papers some fifteen years ago Noboru Ito considered transitive permutation groups of degree p=2q+1, where p and q are prime numbers and p>11, and proved that such groups are either soluble (and therefore well known) or very nearly 4-transitive. In this paper we want to use this remarkable result and a theorem of R. Brauer to obtain an extension to groups of degree kp with k>1.

Throughout G will be a primitive permutation group on a set Ω , where $|\Omega| = n = kp = k(2q+1)$ with p and q prime numbers, p > 11 and k > 1. Let P be a Sylow p-subgroup of G. Our first result brings q into play.

<u>Proposition 1.</u> If k < 10 and $k \neq 8$ then either q divides the order of N(P) or $PSL(2,n-1) \leq G \leq P \cap L(2,n-1)$.

Once we know that q does divide the order of G we can start the work on the proof of our main result.

Theorem. If k = 2 then G is 7-transitive.

If k = 3 then G is 10-transitive.

If k = 4 then either G is A_n , S_n or $PSL(2,n-1) \leq G \leq P \cap L(2,n-1)$.

Let Γ_1,\ldots,Γ_k be the P-orbits on Ω , and let H be the setwise stabilizer of each of these. The main step in the proof is to show that if $k \leq 4$ then H is insoluble. Then we know by Ito's theorem that H is 3-transitive (and in fact nearly 4-transitive) on each of the Γ_1 , which enables us to obtain very high transitivity of G on Ω . It should be possible to deduce then that

G is alternating or symmetric, however we have not been able to do this yet when k is 2 or 3. The case k=4 is easier since we can find a non-trivial element in G fixing a large number of points in Ω so that an old theorem of W.A. Manning can be applied.

We obtain the following corollaries:

Corollary 1. If G is a primitive group of degree n = 2p = 4q + 2 = r + 3where r is also a prime number then G is A_n or S_n . Similarly for

$$n = 2p = 4q+2 = 5r+3$$
 (eg. $n = 118$),
 $n = 2p = 4q+2 = r+5$ (eg. $n = 94$).

$$n = 3p = 6q+3 = r+4$$
 (eg. $n = 141$),

etc., etc.

Corollary 2. If G is 2-transitive of degree 3p+1 with p = 2q+1 then G is alternating or symmetric.

Here the group is 2-primitive by a result of M.D. Atkinson [1, Cor.C], so G is 11-transitive by the theorem. An argument similar to that in the last section in the case n = 4p then shows that G contains the alternating group.

Corollary 3. If any insoluble group of degree p = 2q+1 contains the alternating group then this is also true of any primitive group of degree 2p and 3p. This holds for instance if q = 2r+1 with r prime [15] or if $p \le 4079$ [16].

It should be noted that some of the results in this paper have been also previously obtained by Izumi Miyamoto in [13]. In particular, the case $k \doteq 2$ of the assertion in Section 2 as well as the case k = 2 of Corollary 3 are due to him.

1. Some preliminaries and proof of Proposition 1

We shall assume throughout that k < 10. Then we can clearly suppose that P is cyclic of order p and semi-regular on Ω . Whenever convenient, we shall assume that G is a simple group; this is justified by the following Lemma. If X is a minimal normal subgroup of G then X is simple and primitive on Ω .

<u>Proof.</u> Since p divides the order of X but p^2 does not, the simplicity of X is clear. Suppose that X is imprimitive. Let B be a block of maximal size, say |B| = m, and let Σ be the corresponding system of imprimitivity. If $p \mid m$ then P lies in the kernel of X on Σ ; but X is simple, so X must act trivially on Σ , which is impossible. Thus m divides k and $|\Sigma| = \frac{k}{m}p$.

Now G is primitive on Ω , so for some g in G we have $Bg \notin \Sigma$. Then Σg is another system of imprimitivity for X. Now X acts on Σ and Σg , and by induction (cf. the Theorem) together with a theorem of Ito [9, Satz 3], the actions of X on Σ and Σg are at least 2-transitive and are similar to each other. Therefore X_B stabilizes some block in Σg , and so has an orbit on Ω - B of size at most m. On the other hand, X_B is transitive on Σ - $\{B\}$, so all its orbits on Ω - B have size at least p-1. This is a contradiction.

<u>Proof of Proposition 1.</u> Suppose that q does not divide |N(P)|. Since P is cyclic of order p and since p=2q+1, it follows that |N(P)/C(P)| divides 2, and in fact is equal to 2, as we see from the Burnside transfer theorem. It now follows by a theorem of Brauer [4, Theorem 9.C] that every involution in G is conjugate to one in N(P) - C(P). Therefore, if an involution of G fixes u points then $u \le k$. Moreover, since $p \equiv 3 \pmod 4$ and $G \le A_n$, we have $m \equiv -k \pmod 4$. Hence

for k equal to 2, 3, 4, 5, 6, 7, 8, 9, the maximum possible value for u is 2, 1, 4, 3, 6, 5, 8, 7.

If $k \le 5$ then we can use the theorems of Buckenhout and Rowlinson [5] and deduce that G is PSL(2,n-1). If |C(P)| is even then an involution in C(P) must be fixed-point-free on Q, since if it fixed a point then it would fix pointwise the whole P-orbit containing that point. Hence such an involution is an odd permutation unless k is divisible by 4. Thus for $k \ne 0 \pmod{4}$ the order of C(P) is odd, so that there is only one conjugacy class of involutions in G, and another theorem of Rowlinson [17] applies.

This implies that k=8 and the proposition is proved. It is perhaps worth observing that since a Sylow 2-subgroup S of G is semi-regular on the set of ordered (k+1)-subsets of Ω , the order of S divides $kp:(kp-1)\cdots(kp-k)$. When k=2 this implies that |S| divides 8, while for k=8 the Sylow 2-subgroups of G have order at most 2^{11} .

Some more notation. Let Q be a Sylow q-subgroup of N(P); then Q \leq H, where H is the setwise stabilizer of all the P-orbits Γ_1 . We shall assume that Q is in fact a Sylow q-subgroup of G, because otherwise G is known to satisfy the conclusion of the theorem. Let Δ_0 be the set of fixed points of Q. We shall denote the k points of Δ_0 by \prec , β ,.. Let Θ be the set of all Q-orbits, and let $\Theta_0 = \Theta - \Delta_0$. Let $\Theta_0 = \{\Delta_1, \dots, \Delta_{2k}\}$, where $\Gamma_1 = \{\prec\} \cup \Delta_1 \cup \Delta_2$, $\Gamma_2 = \{\beta\} \cup \Delta_3 \cup \Delta_4$, etc. Finally, let K, L be the kernel of the action of N(Q) on Δ_0 , Θ_0 , respectively.

2. The insolubility of H

Assume, to obtain a contradiction, that H is soluble. Then $H \leq N(P)$, and since it fixes every P-orbit, H is metacyclic of order pq or 2pq. Let X = N(Q)/Q and Y = C(Q)/Q. Then X/Y is a cyclic group, which is non-trivial by the Burnside transfer theorem. Note also that 3 does not divide the order of X/Y, since $q \equiv 2 \pmod{3}$.

Let $g\in N(Q)$ and assume that g is trivial on Θ . Then $g\in H$, so that $g\in N(P)$, and since g fixes all the Δ_i , we have $g\in Q$. Thus X is faithful in its action on Θ , so that $X\leq S_k\times S_{2k}$. It is this observation which is the key to our proof of the insolubility of H - it restricts the structure of X to only very few possibilities. We should also remark that in fact $X\leq A_{3k}$, since $G\leq A_n$.

The case k=2. Here $X \leq (Z_2 \times S_4) \cap A_6$, and so X/Y is a non-trivial cyclic 2-group.

If |X/Y| = 2 then by [4, Theorem 9.C] all involutions of G are conjugate to involutions in N(Q) - C(Q). Hence all involutions of G fix precisely two points of Ω . But G is 2-transitive on Ω by a theorem of Wielandt [20, 31.1], so that this contradicts a theorem of Hering [8]. It is perhaps worth mentioning that since 2p is 6 modulo 8 we can also deduce that 8 is the highest possible power of 2 dividing |G| and obtain a contradiction this way.

Hence X/Y is a cyclic 2-factor of $(Z_2 \times S_4) \cap A_6$ of order at least 4. The normalizer of a Sylow 3-subgroup of $Z_2 \times S_4$ is $Z_2 \times S_3$, so by the Frattini argument we see that 3 / |X|. The Sylow 2-subgroup of A_6 is D_8 , which does not have Z_4 as a factor. Thus C(Q) = Q and $N(Q) = Q \cdot Z_4$. But then the normalizer of Q in G_2 has order Q. If all the involutions of G_2 are conjugate then they fix precisely 2 points of Q and we obtain a contradiction as before. Hence by [4, Theorem Q we have $O_{Q^*}(G_2) \neq 1$. Since Q is self-central-

izing, a q-element of G acts as a fixed-point-free automorphism on O_q , (G_{\swarrow}) . Therefore O_q , (G_{\swarrow}) is nilpotent by a theorem of J.G. Thompson [18]. On the other hand, G_{\swarrow} is transitive and hence primitive of degree 4q+1. It follows that 4q+1 is a power of a prime. Now 3 divides 4q+1, so 4q+1 is an even power of 3, say 4q+1 = 3^{28} . Then $4q = (3^8-1)(3^8+1)$, which is impossible. Hence if k = 2 then H is insoluble.

The case k=3. Here $X \leq (S_3 \times S_6) \cap A_9$. If g is in the kernel L of X on \mathfrak{S}_0 then either g is a 2-element and therefore is not in A_9 , or g is a 3-element and so lies in Y \cap L. But Y \cap L = 1, so that L = 1 and X \leq S₆.

Now X is transitive on Δ_0 by the Jordan lemma, so X^{Δ_0} is a factor of X isomorphic to Z_3 or S_3 . The normalizer in S_6 of a Sylow 5-subgroup has order prime to 3, so by the Frattini argument 5 does not divide the order of X. Hence X is a $\{2,3\}$ -subgroup of S_6 , and X/Y is a cyclic 2-group.

Let T be a Sylow 3-subgroup of Y. Then T \neq 1, since we have already noticed that 3 divides |X| but does not divide |X/Y|. Hence |T| is 3 or 9. If |T| is 9 let T' be a Sylow 3-subgroup of the kernel K of X on \triangle , otherwise let T' = T. Then the normalizer of T' inside S_6 is either $S_3 \times S_3$ or $(Z_3 \text{ wr } Z_2) \cdot Z_2$, neither of which has a subgroup with a 2-factor of order greater than 2. Hence |X/Y| = 2 by the Frattini argument. Then, using the theorem of Brauer [4] again, all involutions in G are conjugate to those in N(Q) - C(Q), whence they fix at most five points of Ω .

If now |C(Q)| is odd then G has only one class of involutions and we obtain a contradiction from [17]. Assume then that |C(Q)| is even. If an involution in C(Q) fixed a $\triangle_{\mathbf{i}}$ setwise then it would fix it pointwise, which is not possible since q > 5. Hence the involutions of Y are semi-regular on \mathbb{S}_0 . It follows that |Y| is twice an odd number, and so |X| is 12 or 36.

Since the order of the normalizer of T in X is even by the Frattini argument, we have $T \triangleleft X$, and so also $T' = T \land K \triangleleft X$. Note also that the semi-regularity of the involutions of Y on Θ_0 now implies that X is transitive on Θ_0 . Thus X has index 1 or 3 in $(Z_3 \text{ wr } Z_2) \cdot Z_2$. Let t be an involution in K. Since t is even on Θ , it cannot be semi-regular on Θ_0 . This force K to be of order 6 with two orbits of size 3 on Θ_0 , and therefore $K = S_3$ and $X = (Z_3 \text{ wr } Z_2) \cdot Z_2$. But now an inspection of $(Z_3 \times Z_2) \cdot Z_2$ shows that K cannot be normal subgroup $A \triangleleft X$ of X, a contradiction.

The case k = 4. First we shall show that, quite independently of the assumption on H, there is a subdegree of G which is 3 modulo q. Suppose that there is a G—orbit of size aq+1. Assume first that $a \ge 3$. Using the theorem of Weiss [19] extensively we see that the only possibilities are

7q+1, q+2,

6q+1, 2q+2,

6q+1, q+1, q+1,

5q+1, 3q+2,

4q+1, 3q, q+2,

and 3q+1, 2q, 2q, q+2.

We shall consider just the third case - all the other cases can be ruled out in the same way. Let \int be the G -orbit of size 6q+1, and let Δ be one of the G -orbits of length q+1. Let $G \in \Delta$. Since the greatest common divisor of q+1 and 6q+1 divides 5, the G -orbits on G have size a multiple of (6q+1)/5. On the other hand G divides G . This implies that G is transitive on G, which contradicts the primitivity of G (cf. the second part of the proof of Theorem 1 in G). This contradiction shows that G and in fact G -orbit of because G -orbit of

length q+1. Then G_{ζ}'' is 2-transitive, so by [6] there is a G_{ζ} -orbit Σ of size cq with $3 \le c \le 6$. It also follows from [6] that G_{ζ}'' is not 3-transitive; hence $G_{\zeta}'' = PSL(2,q)$. But then the action of G_{ζ}'' on Σ implies that q = 11; this possibility is easily excluded by an ad hoc argument.

Hence we have shown that no non-trivial subdegree of G is 1 modulo q. This implies that one of the subdegrees is 3 modulo q, whence N(Q) is 2-transitive on \triangle_0 by Witt's lemma. Hence $C(Q)^{\triangle_0} > A_4$, since 3 / |N(Q)/C(Q)|.

Let us return now to the proof of the insolubility of H in the case k=4. Assume that the kernel L of X on \mathcal{C}_0 is non-trivial. Then L is transitive on Δ_0 . But L α Y = 1, so L is cyclic and therefore contains an odd permutation. Hence L = 1 and X \leq S₈. Moreover, we see as before that 5 and 7 do not divide the order of X by the Frattini argument. So X is a $\{2,3\}$ -subgroup of S₈, and X/Y is a cyclic 2-group. Let T be a Sylow 3-subgroup of Y; then $\{T\} \leq 9$.

Assume first that T=9. Then T'=K of T has order 3. If |X/Y|>4 then the Frattini argument shows that $N_{S_8}(T')$ has a 2-factor of order at least 4. But the normalizer of a group of order 3 in S_8 is either $S_3 \times S_5$ or $Z_2 \times (Z_3 \text{ wr } Z_2) \cdot Z_2$, so that |X/Y|=4 and $N_X(T')$ is a subgroup of $S_3 \times S_4$ of order divisible by 9. However there is no subgroup in S_4 of order divisible by 3 with Z_4 as a factor, since the Sylow 3-normalizer in S_4 has order 6.

So |X/Y| = 2. Then, as before, a Sylow 2-subgroup S of Y is semi-regular on S_0 . Hence X has order 72 or 144. Then $|K \cap Y|$ is 3 or 6, and so T' is characteristic in the normal subgroup $K \cap Y$, so that $T' \triangleleft X$ and $X \leq N_{S_8}(T')$. But $N_{S_8}(T')$ has orbits on S_0 of size 3 and 5 or 2 and 6, whereas Y is semi-regular of order at least 4.

Hence |T|=3. Suppose first that $|X/Y|\gg 4$. Then by the Frattini argument, $N_X(T)$ has Z_4 as a factor. Thus T has 5 fixed points on \mathcal{C}_0 . Consider an element x of order 4 in $N_X(T)$. Then x either inverts T and therefore is

of type 2,1,1 on \triangle_o and of type 4,2,1,1 on Θ_o , or it centralizes T and acts as a 4-cycle on Θ . In either case x is an odd permutation, which is not possible.

Hence |X/Y| = 2. Then [4, 9C] implies that all involutions fix at most 8 points of Ω . Notice that since 4p is 12 modulo 16, we see that 2^{10} does not divide |G|, so that G is known by various recent results. But let us argue directly.

We see again that a Sylow 2-subgroup of Y is semi-regular on Θ_o , so that |Y| is 12 or 24 and |X| is 24 or 48. Assume first that |X| = 24, |Y| = 12. Then Y has two orbits of size 4 on Θ_o and therefore acts as A_4 on each. If X preserves the Y-orbits then X acts as S_4 on each of these and on Δ_o . But then an odd permutation in S_4 acts as an odd permutation on each of these and hence is odd on Θ . Hence X is transitive on Θ_o . But then any 2-element of X is semi-regular on Θ_o , so that involutions in X fix at most 4 points of Θ . Hence the involutions in G fix at most 4 points of Ω and so G is known [17], which leads to a contradiction. In fact, since 4p is 12 modulo 16, we see that 64 is the highest possible power of 2 dividing |G|, which gives an alternative argument.

Assume now finally that |X| = 48 and |Y| = 24. Here Y is transitive on \mathcal{C}_0 . If |K| = 2 then K has 4 orbits of size 2 on \mathcal{C}_0 , and X/K acts as S_4 on these and on Δ_0 . Hence any involution of X fixes at most 4 points of \mathcal{C}_0 , and we arrive at a contradiction as before. So |K| = 4, and $X/K \simeq A_4$. Now A_4 has no subgroup of index 2, so K has four orbits of size 2 on \mathcal{C}_0 . Hence K is $Z_2 \times Z_2$ with two involutions of type $2^{2}1^4$ on \mathcal{C}_0 and one of type 2^4 . Since X/K has no subgroup of index 2 this forces K to be central in X, which is impossible since K is not semi-regular on \mathcal{C}_0 .

3. The high transitivity of G

We shall prove the theorem only for k = 2 and k = 4; the proof in the case k = 3 is similar. Our original proof relied on the 4-transitivity of H on each $\binom{r}{i}$. Unfortunately, as Professor Ito has noticed recently, there is a mistake in the last part of [10, III], which so far remains uncorrected. In the later stages of the proof we therefore have to work harder, using the following result which pushes the character theory in [10] just one step further:

Lemma (P.M. Neumann, unpublished). Let X be an insoluble group of degree p = 2q+1, with p and q prime numbers and p > 11. If X is not 4-transitive then the stabilizer $X_{\alpha/\beta/\beta}$ of three points has two orbits on $\Omega = \{\alpha, \beta, \beta\}$, each of size q-1. Moreover, the normalizer of a Sylow q-subgroup in X' has order $\frac{1}{2}q(q-1)$.

The case k = 2.

Step 1. G is 3-transitive.

We have already that G is 2-transitive by [20, 31.1], and the action of Q implies that G is 2-primitive. Now H₂ fixes 3 and has two 2-transitive orbits $\frac{7}{1} - \{\alpha\}$ and $\frac{7}{2} - \{\beta\}$. Since p $\frac{1}{3}$ [G] and G₂ does not fix β , the assertion follows.

Step 2. G is 4-transitive.

From the action of $H_{\alpha,\alpha,z}$ we see that the possibilities for the length of the $G_{\gamma,\beta,\alpha,z}$ -orbits are 1, 2q-1, 2q-1,

2q, 2q-1,

1, 4q-2,

or 4q-1.

Now the second is clearly impossible, since $q \nmid (G_{\prec_i,\beta_i,\prec_j})$. Consider the first and third case. Here the stabilizer of any 3 points in G fixes exactly 4 points. Hence we obtain a Steiner system S(3,4,n) on Ω . Clearly $\{\alpha_i,\beta_i,\prec_j,\beta_j\}$ is a line for any pair i,j, and it is the unique line containing any triple in it. Hence the fourth point of the line on \prec_i, \prec_2 , \prec_3 is not one of β_i,β_2,β_3 , and so it is \prec_4 or β_4 . Hence $H_{\prec_i,\alpha_2,\prec_4}$ fixes \prec_4 , which contradicts the semi-regularity of R on $\Gamma_1 = \{\prec_1, \prec_2, \prec_3\}$. Thus this is impossible, and so G is 4-transitive.

Step 3. G is 5-transitive.

Since $G_{\alpha_1\alpha_2,\beta_1,\beta_2}$ contains $H_{\alpha_1\alpha_2}$, the only alternative to this assertion is that $G_{\alpha_1\alpha_2,\beta_1,\beta_2}$ has two orbits of size p-2, which would imply that the order of G is odd ([20, 3.13]). This is clearly impossible.

Step 4. G is 6-transitive.

By the Lemma at the beginning of this section, the $H_{\alpha_1,\alpha_2,\alpha_3}$ -orbits on $\Omega = \{\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2,\beta_3\}$ have length divisible by q-1. By a theorem of Nagao [14], β_3 is not fixed by $G_{\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2}$. Baring in mind that $q \not = \{G_{\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2}\}$ the possibilities for the length of the $G_{\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2}$ -orbits on $\Omega = \{\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2\}$ therefore are 2q-1, q-1, q-1,

2q-1, 2q-2,

3q-2, q-1,

or 49-3.

In the first three cases it follows from [19] that $G_{\gamma_1 \gamma_2 \gamma_3, \gamma_2}$ is imprimitive. Let B be the block containing α_3 . Then B is a union of $G_{\gamma_1 \gamma_2, \gamma_3, \gamma_3, \gamma_3}$ —orbits, and since |B| divides 4q-2, we have |B|=2q-1 (this already excludes the third case). Let $A=B\cup\{\alpha_1,\alpha_2,\beta_1,\beta_2\}$. Then $G_{\{\alpha_1,\alpha_2,\beta_1,\beta_2,\beta_3\}}$ is transitive on B. It follows that G_A is 5-transitive on A, so that $g_A \cap G_A \cap G_$

Step 5. G is 7-transitive.

Since $H_{\prec_1 \prec_2 \prec_2} \leq G_{\prec_1 \prec_2 \cdots , \prec_3}$, all the $G_{\prec_1 \prec_2 \cdots , \prec_2}$ -orbits on the rest of Ω have length divisible by q-1. Hence the possibilities are

$$q-1$$
, $q-1$, $q-1$, $q-1$, $q-1$, $2(q-1)$, $q-1$, $2(q-1)$, $2(q-1)$, $3(q-1)$, $q-1$, or $4(q-1)$.

We now use a variation of an argument of M.D. Atkinson in [2, Lemma] to exclude the first three cases. Let U be a Sylow 3-subgroup of $G_{\chi_1 \chi_2 \dots \chi_{3_4}}$, and let V be a Sylow 3-subgroup of $G_{\chi_1 \chi_2 \dots \chi_{3_4}}$ containing U. Then $|V| = 3 \cdot |U|$. But V normalizes $G_{\chi_1 \chi_2 \dots \chi_{3_4}}$ and therfore permutes its

orbits. Now $G_{\{\alpha_{1},\alpha_{2},\beta_{3},$

Consider now the fourth case. Here H is not 4-transitive, so the Lemma at the beginning of this section implies that R has order $\frac{1}{2}(q-1)$. Moreover, R has eight regular orbits $\overline{\xi}_i$, and

$$\Delta_{1} = \{ \forall_{2} \} \cup \underline{\Phi}_{1} \cup \underline{\Phi}_{2},$$

$$\Delta_{2} = \{ \forall_{3} \} \cup \underline{\Phi}_{3} \cup \underline{\Phi}_{4},$$

$$\Delta_{3} = \{ \beta_{2} \} \cup \underline{\Phi}_{5} \cup \underline{\Phi}_{6},$$
and
$$\Delta_{4} = \{ \beta_{3} \} \cup \underline{\nabla}_{7} \cup \underline{\Phi}_{8}.$$

Since H is not 4-transitive, the $H_{\langle , \prec_1 , \prec_2 \rangle}$ -orbits on $\sqrt{1} - \{ \prec_1, \prec_2, \prec_3 \}$ are $\Phi_2 \cup \Phi_3$ and $\Phi_4 \cup \Phi_4$. Now the shorter $G_{\langle , \prec_2, \cdots, \rangle_2}$ -orbit is also an $H_{\langle , \prec_2, \prec_3 \rangle}$ -orbit, so we can assume that this is $\Phi_2 \cup \Phi_3$.

Let S be a complement for Q in $N_G(Q)$ which contains R. Since R has small index in S, a subgroup R_0 of small index in R is normal in S. Then R_0 fixes precisely $\mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_2, \mathcal{L}_3$ in $\Omega = \{\mathcal{L}_4, \mathcal{L}_3\}$, so that the set $\{\mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4\}$ is S-invariant, and is permuted in precisely the same way as $\{\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4\}$. Let x be an element in S which interchanges \mathcal{L}_3 and \mathcal{L}_3 such an element exists by the Jordan lemma. Then $\mathbf{x} \in G_{\{\mathcal{L}_4, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4\}}$, and so $(\mathcal{L}_2 \cup \mathcal{L}_3)\mathbf{x} = \mathcal{L}_2 \cup \mathcal{L}_3$, so that $\{\mathcal{L}_1, \mathcal{L}_2\}$ and $\{\mathcal{L}_3, \mathcal{L}_4\}$ are x-invariant. But x involves $(\mathcal{L}_4, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4\}$. It therefore involves precisely one of $(\mathcal{L}_1 \mathcal{L}_2)$ or $(\mathcal{L}_3 \mathcal{L}_4)$, and so acts differently on $\mathcal{L}_4 \cup \mathcal{L}_2$ and on $\mathcal{L}_3 \cup \mathcal{L}_4$. For instance, if x involves $(\mathcal{L}_1 \mathcal{L}_2)$ then it fixes nothing in $\mathcal{L}_1 \cup \mathcal{L}_2$ but fixes \mathcal{L}_2 and \mathcal{L}_3 in \mathcal{L}_4 .

On the other hand, let X be the setwise stabilizer in G of $\lceil 1 - \{ \alpha \} \rceil$ and $\lceil 2 - \{ \beta \} \rceil$. Let $\pi \in \lceil 1 - \{ \alpha \} \rceil$. Then $\Pi_{\alpha \pi}$ fixes a point $\sigma \in \lceil 2 - \{ \beta \} \rceil$, and is transitive on $\lceil 1 - \{ \alpha , \pi \} \rceil$ and on $\lceil 2 - \{ \beta , \sigma \} \rceil$. Since $\Pi_{\alpha \pi}$ has index 2 in Π_{α} , it follows that $\Pi_{\alpha} = \Pi_{\alpha}$, so that X acts in the same way on $\lceil 1 - \{ \alpha \} \rceil$ and $\lceil 2 - \{ \beta \} \rceil$. This is a contradiction, since $\Pi_{\alpha} \in \Pi$. The case $\Pi_{\alpha} = \Pi_{\alpha} \in \Pi$ and $\Pi_{\alpha} = \Pi_{\alpha} \in \Pi$. The case $\Pi_{\alpha} = \Pi_{\alpha} \in \Pi$ and $\Pi_{\alpha} = \Pi_{\alpha} \in \Pi$. The case $\Pi_{\alpha} = \Pi_{\alpha} \in \Pi$ and $\Pi_{\alpha} = \Pi_{\alpha} \in \Pi$.

The case k = 4.

Step 1. G is 2-primitive.

We have already established in Section 2 that one subdegree is 3 modulo q. Since $H_{\chi} \leq G_{\chi}$, the subdegrees are sums of 3, 2q, 2q, 2q, 2q. Now 3 is not a subdegree by [20, 18.4], and the possibilities 4q+3 and 6q+3 are ruled out by [19]. Finally, any group of degree 2q+3 whose order is divisible by q contains the alternating group by [20, 13.10], which rules out the possibility 2q+3. Hence G is 2-transitive, and in fact 2-primitive, since the highest common divisor of 3 and 8 is 1.

Step 2. G is 3-transitive.

Since $H_{\chi} \leq G_{\chi,3}$, the $G_{\chi,3}$ -orbits have size obtained out of 1, 1, 2q, 2q, 2q, 2q. Assume first that there are two of size 1 modulo q. Since G is 2-primitive and since p $/\!\!/ |G_{\chi,3}|$, the only possibility is 4q+1, 4q+1. But then $|G_{\chi,3}|$ is odd by [20, 3.13], which is impossible as $|H_{\chi,3}|$ is certainly even. Hence one of the orbits has size 2 modulo q. Notice that $\{f_1, \mathcal{C}\}$ is not an orbit by [20, 18.7]. Hence the only possibilities are

2q+2, 6q,

4q, 4q+2,

or 8q+2.

The second is clearly impossible since 4q+2=2p. In the first case, let Σ be the $G_{\sqrt{3}}$ -orbit of length 2q+2. Then $f, \delta \in \Sigma$, and since $H_{\chi} \leq G_{\sqrt{3}/1\delta}$, we see that G_{χ} is 2-transitive on $\Sigma = \{f, \delta\}$. Hence G_{χ} is 4-transitive on Σ , which contradicts $\{6\}$.

Step 3. G is 4-transitive.

If G has two blocks of imprimitivity then by a theorem of Grun (cf. [7, 35.5]), G has a normal subgroup N of index 2 which is rank 3 on $Q - \{x\}$ with subdegrees 1, 4q+1, 4q+1. But then |N| is odd by [20, 3.13], which is impossible since N must have a 2-transitive section of degree 2p.

Suppose next that $G_{\zeta,\delta}$ has 4q+1 blocks of imprimitivity. Then the stabilizer of any 3 points fixes precisely 4 points in Ω , and we obtain a Steiner system S(3,4,n) on Ω . Let Λ be a line, say $\Lambda = \{\lambda_1,\lambda_2,\lambda_3,\lambda_4\}$, and assume that λ_1 and λ_2 correspond to each other under the action of H, so that $H_{\lambda_1} = H_{\lambda_2}$. If $H_{\lambda_3} = H_{\lambda_4}$ then certainly also $H_{\lambda_4} = H_{\lambda_4}$. Therefore $H_{\lambda_3} \neq H_{\lambda_4}$ implies $H_{\lambda_4} \neq H_{\lambda_4}$, and hence $H_{\lambda_3} = H_{\lambda_4}$, since H fixes Λ , whereas $A = H_{\lambda_4,\lambda_3}$ has orbits of size p-2 on the set of points of Ω not corresponding to A_1,A_3 . Thus in either case, $H_{\lambda_1} = H_{\lambda_2}$ implies $H_{\lambda_3} = H_{\lambda_4}$. Consider now the line $\Lambda = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$. Then Ω is not fixed by $H_{\alpha_1,\alpha_2,\alpha_3}$ by the above remarks, since R is semi-regular on the set of points in Ω not corresponding to $\alpha_1, \alpha_2, \alpha_3$ under the action of H.

Hence G is 3-primitive. Now one of the non-trivial subdegrees of G is 2cq+1 with $1 \le c \le 4$. Certainly $c \ne 1$ since 2q+1 = p, and c = 2 and c = 3 are excluded by [19]. Thus G is 4-transitive.

Step 4. G is 5-transitive.

Since $H_{\alpha} \leq G_{\alpha\beta\beta}$, all the $G_{\alpha\beta\beta}$ -orbits on $\Omega = \{\alpha, \beta, \beta, \delta\}$ have length divisible by 2q. If one of these does have length 2q then the other must be 6q by

[6], since G is clearly 4-primitive. Hence the possibilities are

2q, 6q,

4q. 4q.

or 8q.

The Atkinson argument used in Step 5 of the case k=2 excludes the second case, while an analogues argument with respect to 4 rules out the first case: Let U be a Sylow 2-subgroup of $G_{\{\alpha_{i},\beta_{i},\beta_{i}\}}$, let V be a Sylow 2-subgroup of $G_{\{\alpha_{i},\beta_{i},\beta_{i}\}}$ containing U. Then $|V|=8\cdot |U|$, since G is 4-transitive. Now V normalizes $G_{\alpha_{i},\beta_{i},\delta_{i}}$, and so preserves the two long $G_{\alpha_{i},\beta_{i},\delta_{i}}$ -orbits. Since each of these has size 2 modulo 4, V has an orbit of size 2 in each. Let W be the pointwise stabilizer in V of two V-orbits of size 2; then the index of W in V is at most 4. On the other hand, W fixes at least four points of Ω , and since G is 4-transitive, this means that W is conjugate to a subgroup of U. This is a contradiction.

Step 5. G is 6-transitive.

Consider the length of the $G_{\chi/\rho\delta\alpha_2}$ -orbits. These are sums of 1, 1, 1, 2q-1, 2q-1, 2q-1, 2q-1. Since 8q-1 is divisible by 3, the Atkinson argument implies that $\frac{1}{2},\frac{1}{2},\frac{1}{2}$ are all in the same orbit Σ .

 $\Sigma = \{\beta_2, \beta_2, \delta_2\}$, because it contains H_{α,α_2} . It follows by [20, 13.2] that $G_{\alpha/2, \delta_2}$ is 4-transitive on Σ , which is impossible since q does not divide its order.

Suppose now finally that $|\Sigma| = 4q+1$. Then H_{ω_1,ω_2} has two primitive (primitive orbits Σ_1 , Σ_2 on $\Sigma = \int_{\mathbb{Z}_2}^2 f_2 \cdot \delta_2^2 \cdot \delta_2^2$ of size 2q-1. Since q and p does do not divide $|G_{\omega_3}|_{0,0,\infty_2}$ we see that $G_{\omega_4}|_{0,0,\infty_2}$ is imprimitive on Σ and $\{\mathcal{L}_2,f_2,\mathcal{E}_2\}$ is a block of imprimitivity. Consider any other block B of size 3. Then one of $\mathbb{B} \cap \Sigma_1$, $\mathbb{B} \cap \Sigma_2$ is a non-trivial block of H_{ω_1,ω_2} on Σ_1 or Σ_2 , contradicting its primitivity there.

Step 6. G is 7-transitive.

The $G_{\kappa/3,\gamma}$ for L_2 -orbits have sizes obtained out of 1, 1, 2q-1, 2q-1, 2q-1, 2q-1. Now the Atkinson argument with respect to 4 (cf. Step 4) shows that all the $G_{\{\kappa, \frac{1}{2}, \dots, \frac{1}{2}, \frac{1}{2}\}}$ -orbits have even length and in fact only one has length not divisible by 4. Since none is divisible by p or q, the only possibilities are 2 and 8q-4 or 8q-2.

In the first case $G_{\{\prec, , , \ldots, , \prec_2\}}$ has blocks of imprimitivity on $\Omega = \{\prec, , \ldots, , \prec_2\}$ of size 3, and $\{\downarrow, , , , , , , , , , \}$ is one of these. Now the block containing \prec_3 must contain 3 points out of $\{\prec_3, , , , , , , , , , , \}$, as we see from the action of $H_{\prec, , \prec_2, \prec_3}$. But this must be also true of the blocks containing A_3, A_3 and A_3 , which gives a contradiction.

In the second case, $G_{\{\alpha,\ldots,\beta_2\}}$ is transitive on $\Omega = \{\alpha,\ldots,\beta_2\}$, and since $G_{\{\alpha,\ldots,\beta_2\}}/G_{\alpha,\ldots,\beta_2}$ is S_6 , we see that either G is 7-transitive or $G_{\{\alpha,\ldots,\beta_2\}}$ has two orbits of size 4q-1. But the latter is impossible by [20, 3.13].

Step 7. G is 8-transitive.

Consider the $G_{0,0,0,1}$ -orbits. Note that $\{\tilde{c_2}\}$ is not an orbit by [14], and

also that q does not divide the order of G . Hence the possibilities are 4q-1, 2q-1, 2q-1,

4q-1, 4q-2,

6q-2, 2q-1,

or 8q-3.

The first two are excluded by the Atkinson argument with respect to 4. In the third case it follows from [19] that G is not primitive. This is however impossible, because the blocks would have size 2q. Hence the assertion.

Step 8. G is 9-transitive.

Here all the G -orbits have length divisible by 2q-1. The Atkinson argument with respect to 4 implies directly that G is transitive on $\Omega = \{ <, \ldots, < <_2 \}$. Since G is 8-transitive, this shows that G is 9-homogeneous on Ω . Since G is 8-transitive, this shows that G is 9-homogeneous on Ω . Since G is G is G is G, we see that either G is 9-transitive or G has two orbits of size G on G is G. In the latter case it follows that if G is any subset of G of size 9 then G is G (and not G). This implies that any involution of G fixes at most respect points, which is clearly impossible.

Step 9. More on the action of N(Q) on \mathfrak{S}_{\bullet}

Let $N = N_G(Q)$, and let K and L be the kernels of N on Δ_0 , \mathcal{E}_0 respectively. Then $L \leq K$: Otherwise LK > K, so 1 \neq LK/K \triangleleft N/K. Now N/K = S₄, so LK/K \geqslant V₄. But this implies that $L \cap C(Q)$ $\stackrel{\frown}{=}$ Q, and since Q is self-centralizing on its long orbits, this is not possible.

Let X = N/L, Y = LC(Q)/L. We shall write \overline{K} for K/L. Then $X \leq S_8$ and $X^{\triangle_0} = S_4$, so $X \not \in A_8$. By [20, 15.1], any 3-element of X acts on $\hat{\mathcal{F}}_0$ as a product of two 3-cycles, since we know that all the 3-elements of X lie

in Y. Now the normalizer in S_8 of such a 3-element is $Z_2 \times (Z_3 \text{ wr } Z_2) \cdot Z_2$, which has an elementary abelian Sylow 2-subgroup. Hence $X/Y \leq Z_2$ by the frattini argument. If $P_0 = 2$ -element of Y(fixed a point in O_0 then, being even, it would have degree at most 6q+2; this is not possible by a theorem of Luther [11]. Hence the 2-elements in Y are semiregular on O_0 . Therefore |X| is 24 or 48. Furthermore, if |X| = 24 then $X = S_4$. If X has two orbits of size 4 on O_0 then the permutations odd on O_0 are even on O_0 and hence are odd on O_0 , and the same is true if X is transitive on O_0 . If X has orbits of size 2 and 6 then the involutions of Y cannot all be semi-regular. Hence |X| = 48 and \overline{K} is Z_2 acting semi-regularly on O_0 . Finally, note that we may assume that K normalizes R. Then $\{C_2, C_2, \ldots, C_3\}$ is K-invariant.

Step 10. Let $D = G_{\{\alpha_2, \beta_2, \dots, \beta_3\}}$. Then D is 4-transitive on $\Omega = \{\alpha_2, \beta_2, \dots, \beta_3\}$. For, from the analysis in Step 9 it follows that $D_{\{\alpha_1, \beta_2, \dots, \beta_3\}}$ is transitive on $\Omega = \{\alpha_1, \beta_2, \dots, \beta_3\}$. Moreover, the lengths of the D_{α} -orbits on $\Omega = \{\alpha_2, \beta_2, \dots, \beta_3, \alpha\}$ are obtained out of 3, 2(q-1), 6(q-1), and in fact all the $D_{\alpha_1, \alpha_2, \dots, \alpha_3}$ are obtained out of 3, 2(q-1), 2(q-1), and in fact as we see from the action of K.

Since G is 9-transitive on Ω , the Atkinson argument with respect to 9 (cf. Step 4) shows that there are at most two D_c-orbits, because $6(q-1) \equiv 6 \pmod{9}$. So the possibilities are

3, 8(q-1),
2q+1, 6(q-1),
2(q-1), 6q-3,
8q-5.

The first case is impossible by a theorem of Bannai [3, Theorem 2]. In the second case D is primitive, contrary to [19]. In the third case, D is

imprimitive by [19], so the blocks must have size 2q-1. Now 6q-3 is odd, so D_{3} is still transitive on the D_{α} -orbit of length 6q-3. It now follows from [1, Lemma 2] that $G_{\{\alpha_{1},\beta_{2},\dots,\beta_{3}\}}$ acts as a 2-transitive group on a Steiner system S(2,2q,8q-3), which is impossible since q does not divide its order. Hence D is 2-transitive.

Now the D_{χ_3} -orbits have length obtained out of 2, 2(q-1), 2(q-1), 2(q-1), 2(q-1), 2(q-1). Then the Atkinson argument with respect to 3 shows that D_{χ_3} is transitive. Similarly, the only possibilities for the length of the D_{χ_3} -orbits are 2q-1, 6(q-1),

or 8q-7.

In the first case though $D_{\alpha/3}$ is primitive and the suborbit of size 2q-1 is 2-transitive, and a contradiction now comes from [5, II, Theorem 3]. Hence D is 4-transitive on $\Omega = \{\alpha_2, \beta_2, \dots, \beta_3\}$.

Conclusion. We know that the orbits of $G_{\alpha_2,\beta_2,\ldots,\delta_3,\alpha_{\beta_1}}$ on $\Omega = \{\alpha_2,\ldots,\delta_3,\ldots,\beta_{\beta_1},\ldots,\beta_{\beta_2}\}$ have length combined out of 1 and eight times q-1. But $G_{\alpha_2,\beta_2,\ldots,\beta_3,\alpha_{\beta_1}}$ is normal in D_{α_3,α_1} , and D_{α_3,α_4} is transitive on $\Omega = \{\alpha_2,\beta_2,\ldots,\beta_3,\alpha_4,\beta_4,\beta_4\}$. Hence G is 12-transitive on Ω . But G contains a 3-element in C(Q) fixing 2q+1 points of Ω . Hence by a result of W.A. Manning [12, p.596], G is alternating or symmetric. This concludes the proof of the theorem.

References

- 1. M.D. Atkinson, Two theorems on doubly transitive permutation groups, J. London Math. Soc. 6(1973), 269-274.
- 2. M.D. Atkinson, Doubly transitive but not doubly primitive permutation groups, J. London Math. Soc. 7(1974), 632-634.
- 3. Eiichi Bannai, On some triply transitive permutation groups, Geometriae Dedicata 6(1977), 1-11.
- 4. Richard Brauer, Some applications of the theory of blocks of characters of finite groups, III, J. Algebra 3(1966), 225-255.
- Francis Buekenhout and Peter Rowlinson, On (1,4)-groups, III,
 J. London Math. Soc. 14(1976), 487-495.
- 6. P.J. Cameron, Permutation groups with multiply transitive suborbits, Proc. London Math. Soc. 25(1972), 427-440; II, Bull. London Math. Soc. 6(1974), 136-140.
- 7. C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York 1962.
- 8. C. Hering, Zweifach transitive Permutationsgruppen, in denen zwei die maximale Anzahl von Fixpunkten von Involutionen ist, Math. Z. 104(1968), 150-174.
- 9. Noboru Ito, Über die Gruppen PSL (q), die eine Untergruppe von Primzahlindex enthalten, Acta Sci. Math. (Szeged) 21(1960), 206-217.
- 10. Noboru Ito, Transitive permutation groups of degree p = 2q+1, p and q being prime numbers, Bull. Amer. Math. Soc. 69(1963); II, Trans. Amer. Math. Soc. 113(1964), 454-487; III, Trans. Amer. Math. Soc. 116(1965), 151-166.
- 11. C.F. Luther, Concerning primitive groups of class u, II, Amer. J. Math. 55(1933), 611-618.
- 12. W.A. Manning, The degree and class of multiply transitive groups, Trans. Amer. Math. Soc. 35(1933), 585-599.
- 13. Izumi Miyamoto, On primitive permutation groups of degree 2p = 4q+2, p and q being prime numbers, J. Fac. Sci. Univ. Tokyo 22(1975), 17-23.
- 14. H. Nagao, On multiply transitive groups, Osaka J. Math. 2(1965), 327-341.
- 15. P.M. Neumann, Transitive permutation groups of prime degree, II:

 A problem of Noboru Ito, Bull. London Math. Soc. 4(1972),
 337-339.
- 16. E.T. Parker and Paul J. Nicolai, A search for analogues of the Mathieu groups, Math. Tables Aids Comput. 12(1958), 38-43.
- 17. Peter Rowlinson, Simple permutation groups in which an involution fixes a small number of points, J. London Math. Soc. 4(1972), 655-661.
- 18. John Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proc. Nat. Acad. Sci. 45(1959), 578-581.
- 19. Marie J. Weiss, On simply transitive primitive groups, Bull. Amer. Math. Soc. 40(1934), 401-405.
- 20. Helmut Wielandt, Finte permutation groups, Academic Press, New York 1964.

Downing College, Cambridge CB2 1DQ