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Permutation groups of some special degrees
A preliminary report on some joint work with P.M. Neunann

by Jan Saxl

In an impressive series of papers some fifteen years ago Noboru Ito
considered transitive permutation groups of degree p = 2q+1, where p and q
are prime numbers and p > 11, and proved that such groups are either soluble
(and therefore well known) or very nearly 4-transitive. In this paper we
want to use this remarkable result and a theorem of R. Brauer to obtain
an extension to groups of degree kp with k > 1,

Throughout G will be a primitive permutation group on a set Q, where
19} = n = kp = k(2g+1) with p and q prime numbers, p > 11 and k > 1, Let

P be a Sylow p-subgroup of G. Our first result brings q into play.

Proposition 1. If k < 10 and k £ 8 then either q divides the order of N(P)

or PSL(2,n-1) < G < PrL(2,n-1).

Once we know that q does divide the order of G we can start the work

on the proof of our main result,

Theorem, If k

2 then G is 7-transitive,

If k 3 then G is 10-transitive.

"

If k

4 then either G is A , S or PSL(2,n-1) < G < PrL(2,n-1).

Let r;,...rk be the P-orbits on Q, and let H be the setwise stabilizer
: of each of these., The main step in the proof is to show that if k < 4 then
H is insoluble, Then we know by Ito's théorem that H is 3-transitive (and

i’
very high transitivity of G on Q. It should be possibie to deduce then that

in fact nearly 4-transitive) on each of the /, which enables us to obtain
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G is alternating or symmétric, however we have not been able to do this yet
wnhen k is 2 or 3. The case k = 4 is easier since we can find a non-trivial .
elemeni 1n\G fixing a large number of points in @ so that an old theorem

of W.A. Manning can be applied.

We obtain the following corollaries:

Corollary 1., If.G is a .primitive group of degree n = 2p = 4q+2 = r+3

vwhere r is also a prime number then G is An or Sn. Similarly for

n=2p=4q+2 = 5r+3.  (eg.:n = 118),

R = 2p = 4q+2 = r+5 | (egy n = 94),

n = 3p = 6q+3 = r+4 (eg. n = 141),
etc., etc.

Corollary 2.‘ If G is 2-transitive of degree 3p+1\with P = 2q+1 then G is

alternating or symmetric:

Here the group is 2-primitive bj a result of M.D. Atkinson [1, Cor.C],
80 G is 11-transitive by the theorem, An argument similar to that in the last

section in the case n = 4p then shows that G contains the alternating group.

Corollary 3, If any insoluble group of degree p = 2q+1 contains the alternat-
ing group then this is also true of any primitive group of degree 2p and 3p.

This holds for instance if q = 2r+1 with r prime [15] or if p < 4079 [16].

It should be noted that some of the results in this paper have teen
also previously obtained by Izumi Miyamoto in [13]. In perticular, the case
k = 2 of the assertion in Section-2 as well as the case k = 2 of Corollary 3

are due to him,
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1, Some preliminaries and proof of Rggpgg}f}gp 1

We shall assume throughout that k < 10. Then we can clearly suppose
) that P is cyclic of order p and semi-regular on Q. Whenever convenient,

ve_ahall assume that G is a simple group; this iz justified by the following

Lemma, If X is a minimal normal subgroup of G then X is simple and primitive

on .

Proof, Since p divides the order of X but p2 does not, fhe simplicity of X
is clear. Suppose that X is imprimitive. Let B be a block of maximal size,
say IB{ = m, and let I be the corresponding system of imprimitivity. If
P ‘ m then P lies in the kernel of X on I; but X is simple, so X mﬁat act
trivially on I, which is impessible. Thus m divides k and [I] = Ep.

Now G is primitive on Q, so for_some € in G we have Bg £ T. Then ig
is another system of imprimitivity for X. Now X acts on L énd Zg, and by
induction (cf. the Theorem) together with a theorem of Ito [9, Satz 3), the
actions of X on Z and Ig are at least 2-transitive and are similar to each
other, Therefore XB stabilizes some block in Ig, and so has ai orbit on
Q- B of size at most m, On the other hand, XB is transitive on I - {3}.

so all its orbits on @ - B have size at least p-t. This is a contradiction.

Proof of Proposition 1. Suppose that q doés not divide {N(P)IQ Since P is
cyclic of order p and- sihce p = 2q+1, it fonows that gN(P)/c(p)] divides.’2,
and in fact is equal to 2, as we seeAfrom the Burnside transfer tﬁeoiem.

It how follows by & theorem of'Brauerr[4, Theorem 9.0} that every.involution
in G is conjugate to one in N(P) - c(p). Therefbre, if an involution of G
fixes u foints then u < k., Moreover, since p = 3 (mod-4):and G =< An, we have

B = -k (mod 4), Hence
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for k equal to 2, 3, 4, 5, 6, 7, 8, 9,
the maximum possible value for u is 2, 1, 4, 3, 6, 5, 8, 7.

If k< 5 then we can use the theorems of Buekenhout and Rowlinson [5]
and deduce that G is PSL(2,n-1), If [C(P) is even then an involution in C(P)
must be fixed~-point-free on Q, since if it fixed a point then it would fix
pointwise the whole P-orbit containing that point., Hence such an involution
is an odd permutation unless k is divisible by 4, Thus for k # 0 (mod 4)
the order of C(P) is odd, so that there is 6n1y one conjugacy class of
involutions in G, and another theorem of -Rowlinson [17] applies.

This implies that k = 8 and the proposition is proved. It is perhaps
worth observing that since a Sylow 2-subgroup S of G is semi-regular on the
set of ordered (k+1)-subsets of Q, the order of S divides kp:(kp-1)+-+(kp-k).
When k = 2 this implies that [S| divides 8, while for k = 8 the Sylow

2-subgroups of G have order at most 2“.

.Some more notation, Let Q be a Sylow gq-subgroup of N(P); then Q < H, where
H is the setwise stabilizer of all the P-orbits /;. Ve shall assume thét

Q is in fact a Sylow g-subgroup of G, because otherwise G is known to satisfy
the conclusion of the theofem. Let AO be the set of fixed points of Q. We
shall denote the k points of Ao by «% Byes Let @ be the set of all Q-orbits,
and let @0 = O- AO‘ Let @O = {A1,...02k} , where f; = {«} v, v Dy s

/”2 = {3} UA3 U 44 , etc, P‘inally, let K, L te the kernel of the action of

N(Q) on 4ys &,, respectively.
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2. The insolubility of H

Assume, to obtain a contradiction, that H is soluble. Then H < N‘P),
and since it fixes every'P-orbit, H is metacyélic of order pq or 2pg. Let
X = N(Q)/Q and Y = C(Q)/Q. Then X/Y is’a éyclic group, which is non-trivial
by the Burnside transfer theorem. Note also that 3 does>not divide the order
of X/Y, sirce q =2 (mod" 3),

Let g« N(Q) and assume that g is trivial on &, Then g € H, so that
g € N(P), and since g fixes all the 4., we have‘g € Q. Thus X is faithful
in its action on @, so that X «£S xS

k 2k’

the key to our proof of the insolubility of H - it restricts the structure

It is this observation whigh is

of X to only very few possibilities. We should also remark that in fact

< i =
X A3k s Since G ‘.An.

The case k = 2, Here X = (22 X 34) s} AG » and so X/Y is. a non-trivial

cyclic 2-group.

If (X/Y] = 2 then by [4, Theorem 9.C] all involutions of C are conjugate
to involutions in N(Q) - €(Q). Hence all involutions of G fix precisely two
peints of Q. But G is 2-transitive on Q by a the&rem of Wielandt [20, 31.1],
so that this contradicts a theorem of Hering [8]. It is perhaps worth
mentioning that since 2p is 6 modulo 8 we can also deduce that 8 is the
highest possible power of 2 dividing |G| and obtéin a contradiction this way.

v Hence X/Y is a cyclic g-féctor of (82 x 84)1ﬂ A6 of ordef at least 4,
The no;malizer of a Sylow 3—subgroup of 22 b'¢ S4 is Z2 x 83, so by the Frattini
argument we see that 3 }/[X(.'The Sylow 2-subgroup of A6 is bs, which does
not have 2, as a factor, Thus C(Q) = Q and N(Q) = Q:Z, . But then the
normalizer of Q in q; has order'2q. Ifball the involutions of gc are conjug-

ate then they fix precisely 2 points of Q and we obtain a contradiction as

before, Hence by.[4, Theorem 90]_we have Oq,(g<) £ 1e Since Q is self-central-

r
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izing, a g-element of G acts as a fixed-point-free automorphism on Oq,(q‘).
Therefore Oq,(qk) is nilpotent by a theorem of J.G. Thompson [18]. On the
other hand, q< is transitive and hence primitive of degree 4q+1. It follows
that 4q+1'is a power of a prime., Now 3 divides 4q+1, so 4q+1 is an even
power of 3, say 4q+1 = 328. Then 4q = (38—1)(3S+1), which is impossible.

Hence if k = 2 then H is insoluble,

The case k = 3, Here X £ (S3 x 86) N A . If g is in the kernel L of X on @0

9°
then either g is a 2-element and therefore is not in A9,or g is a 3-element
and s0 lies in YN L, But YAn L =1, s0 that L = 1 and X < 36.

Now X is transitive on do by the Jordan lemma, so XA° is a factor of X
isomorphic to 23 or 83. The normalizer in SG of a Sylow 5-subgroup has order
prime to 3, so by the Frattini argument 5 does not divide the order of X.
Hence X is a {2,3!-subgroup of Sg» end X/Y is a cyclic 2-group.:

Let T be a Sylow 3-sﬁbgroup of Y. Then T £ 1, since we have already
noticed that 3 divides !X| but does not divide {X/Y'. Hence (T is 3 or 9.
If |T! is 9 let T* be a Sylow 3-subgroup of the kernel K of X on ﬁb, otherwise
let T* = T. Then the normalizer of T' inside S6 is either S3 x S3 or
(Z3 wr ZZ)'Z2 , neither of which has a subgroup with a 2-factor of order
greater than 2. Hence X/Y! = 2 by the Frattini argument. Then, using the
theorem of Brauer [4] again, all involutions in G are conjugate to those in
N(Q) - C(Q), whence they fix at most five points of Q.

Ir nof {C(Q); is odd then G has only one class of involutions and we
obtain a contradiction from [17]. Assume then.that :C(Q): is even, If an

involution in C(Q) fixed a {, setwise then it would fix it pointwise, which

i

is not possible since q > 5, Hence the involutions of Y are semi-regular

on @%; It follows that Y| is twice an odd number, and so ix] is 12 or 36.
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Since the order of the normalizer of T in X is even by the Frattini argument,
we have T< X, and so also T' =TnK<«X. Noté-also that the semi-regularity
of the iﬁvolutions of Y on Sb now implies that X is transitive on G%. Thus

X has index 1 or 3 in (23 wr Zz)'Z2 o Let t bé an involution in K. Since

t is even on &, it cannot be semi-regular on & . This forcesK to be of order

6 with two orbits of size 3 on 5%, and therefore X = S, and X = (Z3 wr 22).2

3 2.

shows that K cannot bginormal subgroup

o

But now an inspection or (2, x Zz)-Z

o

3 2

of X, a coniradiction.

The cése k = 4;V First we shall show that, quitevindependently of the assumption
on H, there is a subdegree of G yhich is 3 modulo q. Suppose that there is
a q;-orbit of size a§+1. Assume first that a > 3. Using the theorem of Weiss
{19] extensively we see that the only possibilities are

Ta+1, q+2,

6g+1, 2q+2,

6q+1, q+1, aq+i,

S5a+1, 3q+2,

4q+1, 3q, q+2,

and EQ+1. 2q, 29, q+2.

Ve shall consider just the third case - all the other cases can be ruled out
in the same way. Let "be the qt—érbit of size 6q+1, and let & be one of the-
G -orbits of length q+1. Let deli. Since the greatest ccmmon divisor of é+1
and 6q+1 divi&es 5, the G ;-orbits on /" have size a multiple of (6q+1)/5.
On the other hand q divides fggf; This implies that Q<{ is transitive on f:
which contradicts the primitivity of G (cf. the second part of the proof of
Theorem 1 in f19]); This contradiction shows that a < 2, and in fact a = 1,

because 2q+1‘= p. Let us consider then the case where / is a G —orbit of
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length gq+1. Then qf,is 2;fransitive, 30 by {6] there is a G -orbit I of size
cq with 3 <c¢ < 6. It also follows from [6] that Qﬁvis not 3-transitive;
hence q:'= PSL(Z.q). But then the action of g:,on L implies that q = 11;
this possibility is easily excluded by an ad hoc argument. |
Hencé we have shown that no non-trivial subdegree of G is 1 modulo q.
This implies that one of-the subdegrees is 3 modulo q, wheﬁce N(Q) is
2—t?ansitive on.:'lo by Witt's 1emma.‘Hence c(Q)Aﬁ ?aA4, since 3 [} ]N(Q)/c(Q)f.
Let us return now to the proof of the insolubility of H in the case
k = 4. Assume that the kernel L of X on 6% is non-trivial. Then L is transitive
on zﬁo. But LaY =1, so L is cyclic and therefore contains an odd permutation,
Hence L = 1 and X 5588. Moreoﬁer, we see as before that 5 and 7 do not divide
the ordér of X by the Frattini argument. So X is a {2,3!-subgroup of Sg »
and X/Y is a cyclic 2-group. Let T be a Sylow 3-sﬁbgroup of Y; fhen §T§ = 9,
Assume first that T = O, Then T' = K » T has order 3. If X/t > 4
then the Frattini argument shows that NSB(T') has a 2-factor of order at
least 4, But the norﬁalizer of a group of order 3 in S8 is either 33 X S5
or 22 b 4 (Z3 wr Zz)'Z2 » 80 that ?X/Yf = 4 gnd NX(T') is a subgroup of 33 x 847
of order divigible by 9. Hoyever there is no subgroup in 84 of order divisible

by 3 with Z, as a factor, since the Sylow 3-normalizer in 84 has order 6.

4
So ?X/Yf = 2. Then, as before, a Sylow 2-subgroup S of Y is semi-regular

on 5%. Hence X has order 72 or 144. Then |K a Y| is 3 or 6, and so T' is

characteristic in the normal subgroup K~ Y, so that T'«? X and X < NS (7).

8
But NSB(T’) has orbits on & of .size 3 and 5 or 2 and 6, whereas Y is

[o]
semi-regular of order at least 4.
Hence T! = 3. Suppose first that ;X/Ygl?z4. Then by the Frattini
argunment, NX(T) has Z4 as a factor, Thus T has 5 fixed points on @%. Consider

an element x of order 4 in NX(T)' Then x either inverts T and therefore is
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of type 231,1 on 4, and of type‘4,2,1,1 on 6;, or it centralizes T and
acts as a 4-cycle on & In either case x is an odd permutation, which is
not pdssible.

Hence |X/Y| = 2. Then [4, 9C] implies that all involutionslfix at
nost 8 points of Q. Notice that since 4p is 12 modulo 16, we see that
210 does not divide [G], so that G is known by various recent results,
But let us argue directly.

Ve see again that a Sylow 2~-subgroup of Y is semi-regular on 6%, so
that |Y| is 12 or 24 and [X| ié 24 or 48, Assume first that [X{ = 24,
{Y} = 12. Then Y has two orbits of size 4 on @% and therefore acts a§~A4

on each. If X preserves the Y-orbits then X acts as S4 on each of thesé

and on ﬁ%. But then an odd permutation in S, acts as an odd permutation on

4

each of these and hence is odd on &, Hence X is transitive on f%. But then

any 2-element of X is semi-regular on é%, so that involutions in X fix

at.most 4 points of 5& ﬁence the involutions in G fix at most 4 poihts

of Q and so G is known [17], which leads tg a contradiction, In fact,

since 4p is 12 modulo 16, we see that 64 is the highest possib1e>power

of 2 dividing {G|, which gives an alternative argument, |
Assume now finally that {X] = 48 and [Y] = 24. Here Y is transitivé

on~§é. If K| =2 then K has 4 orbits of size 2 on é%; and X/K acts as

S, on these and on A%. Hence any involution of X fixes at most 4 points

4

of’@) and we arrive at a contradiction as before. So gK{ = 4, and X/K o A4.
Now A, has no subgroup of index 2, so K has four orbits of size 2 on £,
Hence K is Z, x 4, with two involutiona of type 2214 on éi and one of type

2 2
24. Since X/X has no subgroup of index 2 this forceas K %o be central in X,

vhich is imposéible gince K is not semi-regular on e
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3. The high transitivity of G

By the theorem of Ito [10] mentioned in the introduction, the
insolubility of H, which we established in Section 2, implies that H is
3-transitivé on each of the /;. Then we know by‘another theorem of Ito
[9, Satz 3] that the H-actions on /;....,/L are isomorphic to each other.
Our notation for the points of Q will from now on be such that
[‘; = {a(i,af ,...}. I'2' = {,31 ,‘62,...}, etc., with « "gi etc, corresponding
to each other under the action of H for each i. We shall also write 04(%
etc., for a%,f%,etc. As before, «¢ is chosen to be fixed by Q. Let R be

a complement of Q in H a Then any element in R other than 1 fixes
2

oLA.

precisely three points of /:; one of these is «, the others will be a%
kand a%.

We shall prove the theorem only for k = 2 and k = 4; the proof in
the case k = 3 is similar. Our original proof relied on the 4-transitivity
of H on each /;. Unfortunately, as Professor Ito has noticed recently,
there is a mistake in the last part of [10, III], which so far remains
uncorrected. In the later stages of the proof we therefore have to work
harder, using the following result which pushes. the character theory in

[10] just one step further:

 Lemma (P.M. Neumann, unpublished), Let X be an insoluble group of degree
p = 2q+1, with p and q prime numbers and p > 11, If X is not 4-transitive

then the stabilizer %<fﬁf

each of size gq-1, Moreover, the rormalizer of a Sylow g-subgroup in X'

of three points has two orbdits on Q - {«,.3,:5,

has order %q(q-1).

/0
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The case k = 2,

Step 1. G is 3-transitive.

?L;ff veeel
We have already(that G is 2-transitive by [20, 31.1], and the action of Q
implies that G is 2-primitive. Now H fixesfﬂ and has two 2-transitive

orbits /7 ~ f=land /) - fak Since p [ I |and G does not fix 4, the

assertion follows,

Step 2, G is 4-transitive.

From the action of H ‘we see that the possibilities for the lergth of

ek,
the G -orbits are 1, 29-1, 2g9-1,
4!/30"‘2 '
2q, 29-1,
1, 4q-2,
or 4q-1.

4!' Consider the

Now the second is clearly impossible, since q [ (Q(ﬁ
115,

first and third case, Here the stabilizer of any 3 points in G fixes
exactly 4 points. Hence we obtain a Steiner system s(3,4,n) on Q. Clearly
5*1'Fﬁ'“3'3%3 is a line for any pair i,j, and it is the unique line

containing any triple in it. Hence the fourth point of the line on=ﬁ, %2,

ol is not one of I'é?l’f 32,{'93,' and so it is <, or /34. Hence H"‘:"‘z < fi.xes vﬁ, |
which contradicts the semi-regularity of R on /? - §x1,«é,<3?. Thus this

is impossible, and so G is 4-transitive,

Step 3. G is S5-transitive,

Since G ‘bilqzcontains H‘ﬂﬁ’ the only alternative to this assertion is

that §<< 1,4 has two orbits of size p-2, which would imply that the order
1Rard Sy . : .

of %.(/g is odd ([20, 3.13]). This is clearly impossible.
]

t XA

7/
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Step 4.. G is 6-transitive.

By the Lemma at the beginning of this section, the Eﬂd -orbits on
13

Q - {d1,x2,43q3 .é%,g 1 have length divisible by g-1. By a theorem of
Nagao [14], ﬁ% is not fixed by G

iy 2, 27 Baring in mind that q [ {-<« - b

%2

the possibilities for the length of the G . 3Fi
4{

therefore are 29-1, q-1, q-1,

2g-1, 2g-2,

3q-2, q-1,
or 4qg-3.
In the first three cases it follows from [19] that quzpquis imprimitive.
Let B te the block containing«KB. Then B is a union of g“¥‘ /{F;-orblts,
and since (B! divides 4q-2, we have |B| = 2q-1 (this already excludes the
third case). Let A= B v {«1, 0% ,f'i Then G&‘/“J sy £ G, s
apd Q(« 3,,3B is transitive on B. It follows that GA is 5-transitive on /5,

(T

so that pi quf. This is impossible, since p2 /il

Step 5. G is 7-transitive.

Since H‘ﬁ“z’—";i: G‘.dz'--/s_, » all the

Q have length divisible by q-1. Hence the possibilities are

Qﬁ*z'wéz -orbits on the rest of

q-1, aq-1, gq-t, gq-t1,
2(g-1), go-1, aq-1,
2(a-1), 2(q=1),
3(q-1), g-1,
or 4(q-1).
¥e now use a variation of an argumert of M.D. Atkinson in {2, Lemma] to
exclude the first three cases. Let U be a Sylow 3-subgroup of G.*z A

and let V be a Sylow 3-subgroup of G containing U, Then

T2, 2,

{V{ = 3+ {U{. But V normalizes G{ - , and therfore perrutes its

—~orbits on Q - ﬁx 2,«3q 0%}
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bits. Now G . ct S, on {¢ yeee 1 d there are onl
orbits u*w‘;,«‘zz/i’.,,.,,ai; s as 5, on (%, o/%.; an ¥

at most four G -orbits on Q - {« ,...,/31 It follows that V fixes
] °"o¢ /./3 1
these orbits setwise. But then, since q-1 = 1 (mod 3), ve see that V fixes
arart from :: ,,/’:12,/!3 also at least 1 or 2 points in each 1ong'G,)(' .(l__./g?.-orbit.
Hence V fixes at least six points, and since G is 6-transitive, V is
conjugate to a subgroup of U. This is impossible, and so the first three
cases cannot occur.

Consider now the fourth case. Here H is not 4—tran$itive, so the

Lemma at the beginning of this section implies that R has order %(qd).

Moreover, R has eight regular orbits §i, and

A1 = {« %\J § y &,
By = {<5} u§3 v g';g,
WIS TRISE MO
»and A4=§ﬁ3}u§‘7U§’é.
Siﬁce H is not 4~transitive, the H:\,ﬁlms-orbits on /;’ - m( «2,:’!3> are
& _(f} and | © (i. Now the shorter Go(,dlo»h/a;orb:.t is also an H_ gy -orbit,

so we can assume that this is QZ v ;63
Let S be a complement for Q in N (Q) which contains R. Slnce R has -
small index in S, a subgroup Ro .of small index in R is normal in S. Then
Ro fixes precisely « ‘(3 2 23 in Q - 5«, 3} , S0 that the set f ,/%2,
is S-invariant, and is permuted in precisel y the same way as ~é'21. 2.&3,’\4—’
Let x Ye an element in S which interchanges o(and/é’,; such an element ‘exists
by the Jordan lemma. Then x & G- , s and s0 ( g‘f’)x = U 2
"’C»J""Z/ !g»- r 3
80 that L ,42- and 43,3,52 are x-invarlant. But x involves (of-:’:), and so
2 I3 r d d ’:’
it must be odd on At“ 42 ué‘x3 Jd4 and hence_ also on ‘«C 50 4,
It therefore involves precisely one of (l. ) or (/' Z’ ), and so acts
s I : A on
differently on 61 v A2 and on 53 o l?4. For instance, if x 'involves (“1“2)
» » 3 3 . o 7 2 2 A s A
then it fixes nothing in ﬁ‘ v Ly but fixes 3 and s in -3 U e

/3
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On the other hand, let X be the setwise stabilizer in G of /? - ﬂx}

- ‘ .
and /7 - {p}. Let T ¢ /; - {«}. Then E,_fixes a point e I3 = {3t

and is transitive on /; - f<,7} and on f% - {4, }. Since %(”_has index

2 in X#, it follows that Xn_='%7, so that X acts in the same way on

2

k = 2 of the Theorem is now proved.

rn- fx} and /] - £3%e This is a contradiction, since x € X. The cass

The case k = 4.

Step 1. G is 2-primitive.

We have already established in Section 2 fhat one subdegree is 3 modulo q.
Since g( < g(, the subdegrees are\sums of 3, 2q, 2q, 29, 2q. Now 3 is

not a subdegree by [20, 18.4], and the possibilities 4q+3 and 6q+3 are

ruled out by [19]. Finally, any group of degree 2q+3 whose order is divisible
by q contains the alternating group by [20. 13.10]. which rules ocut the

possibility 2q+3. Hence G is 2-transitive, and in fact 2-primitive, since

the highest common divisor of 3 and 8 is 1.

Step 2. G is 3-transitive.

Since 'H‘( = q(,, the %$-orbits have size obtained out of 1, 1, 2q, 2q, 2q, 2q.
"J

Assume first that there are two of size 1 modulo q. Since G is 2-primitive

and since p 1 ! {» the only possibility is 4q+1, 4q+1. But then {q{${

G
is odd by {20; 3.13], which is impossible as {Eng is certainly even.
Hence one of the orbits has size 2 modulo q. Notice that iﬁ,fﬂ»is not

an orbit by [20, 18.7]. Hence the only pessibilities are

2q+2, 6q,
4q' 4q+2 »
or 8qg+2.

/%
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The second is clearly impossible since 4g+2 = 2p. In the first case, let

L be the Qva-orbit of length 2q+2. Then J5676-2. and since H =< q@%nE'
we see'that‘ggﬂﬂs.ia 2-transitive on I - §,43{. Hence q§3 is 4-transitive

on I, which contradicts [6].

Step 3. G is 4-transitive,

if 9@5 has two blocks of imprimitivity then by a theorem of Griin (ecf.

[7, ;5.5]). E( has a normal subgroup N of index 2 which is rank 3 on

Q - §~} with subdegrees 1, 4g+1, 4q+1. But then |N| is odd by [20, 3.13],

which is impossiblé éinée N muet have a 2-transitive section of degree 2p.
Suppose next that st has 4q+1 blocks of imprimitivity. Then‘the

stabilizer of any 3 points fixes precisely 4‘points in Q, and we obfain

a Steiner system S(3,4,n) on Q. Let A be a line, say A= {)i’AZ’AB’*4§’

and assune that 31 and A, correspond to each other under the action of H,

2
so that HA‘ = gkl’.lf HA$ = HA: then certainly also EAQ = Ei,' Therefore
E}s £ H, implies HAQ #AHgy, and hence H*s = Hiy' since ﬁ.fixes,ﬁ. vwhereas EY%MAA
H* A has orbits of size p-2 on the set of points of R not corresponding

4%}
to :\,Aa. Thus in either case, HA, = HAl iaplies HA = EAq. Consider now
. 3 ~
the line A = syﬁ,«b,«B.ai. Then © is not fixed by H, _ . by the above
remarks, since R is semi-regular on the set of points in Q not correspond-
ing toid1-«%,a3-under the action of H.

Hence G is 3-primitive. Now one of the non-trivial subdegrees of G

is 2cq+1 with 1 = ¢ < 4. Certainly ¢ £ 1 since 2g+1 = p, &nd ¢ = 2 and

¢ = 3 are excluded by [19]. Thus G is 4-transitive.

Step 4. G is S-transitive.

Since H G < all the

i, < <3y -orbits on Q - {«,fhja5§ have 1engthvdivisible

Gé’-f‘!'?

by 2q. If one of these does have length 2q then the other must be 6q by

/7§
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f6], since G is clearly 4-primitive. Hence the.possibilities are

2q, 6q,
4q, 4q,
or . 8q.

The Atkinson argument used in Step 5 of the case k = 2 excludes the
second case, while an analogues argument with respect to 4 rules out the

first case: Let U-be a Sylow 2-subgroup of ey let V be a Sylow 2-sub-

%s

group of G containing U, Then V] = 8+]|U|, since G is 4-transitive,

A, 2 ¥t

Neow V normalizes G }6‘ and so preserves the two long G ~orbits. Since

W&
each of these has size 2 modulo 4, V has an orbit of 31zeJ; in each. Let
‘W be the pointwise stabilizer in V of two V-orbits of size 2; then the
index of W.in V is at most 4. On the other hand, W fixes at least four
points of Q, and since G is 4—transifive, this means that W is conjugate

to & subgroup of U. This is a contradiction.

Step 5. G is 6-transitive.

Consider the length of the G S -orbits. These are sums of 1, 1, 1, 2q-1,
X

2q~1, 2g-1, 2q-1. Since 8g-1 is divisible by 3, the Atkinson argument

implies that _%{;Z;YE are all in the same orbit Z.

Assume first that {Ij = 3. Then G acts on a Steiner system S(5,8,n).

. -
The line containing x,.{, ;v and any two of «_,,%,/1,7. 0 9™ s “my el
e 2% 202 2072027 2

Similarly the line containing <%,/ and two of X f%,;f,g\ nust be

i T
18 1, vy !
o '0/

’ 2, 3. Then by

the above observations A meets Q - {<%9,...,53} in precisely three points

f«pfhju@.a3{¢33w3.73:. Consider now the line .} on Xy a1

~

L fuf iy} ‘ -
kﬁ.a2.73 Then ’ 2. - nust be a uv«tF3°--v~xt invariant subset of

Q- {x”3,....353. This is contrary tc our knowledge of the action of H - a'«J

Let {Z{ = 2g+2. Then G is transitive, and in fact primitive,

A’/K...Sl'

s
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L - ﬁﬁz%uz,Ség} because it contains gx;;' It follows by [20, 13.2] that

[P A
6 , . 18 4-transitive on I, which is impossible since q does not divide
g Sy
its order.

Suppose now finally that [Z| = 4q+1. Then R(ﬂl has two‘primitive
primitive orbits L, L, on L - o4 2/ 2} of size 2q-1. Since q -and.- p{c«cs

4o not divide lG f l we see that G, p is imprimitive on L and
. ~l /a

ﬂAZ&PZ' ¢ is a block of imprimitivity. Con51der any other block B of

size 3. Then one of B / L., Bn I, is a non-trivial block of H on %
: 1 2 &y KXy 1

or 22, contradicting its primitivity there,

Step 6. G is 7-transitive,

The -orbits have sizes obtained out of t, 1, 29-1, 2q-1, 2q-1,
‘ 4,2.}:0,,( Ay

29-1. Now the Atkinson argument with respect to 4 (ef. Step 4) shows that

all the G , .—orbits have even length and in fact only one has
{9 s00009,7

length not divisible by 4. Since none is divisible by p or q, the only
possibilities are 2 and 83-4 or 8qg-2,.

In the first case G has blocks of imprimitivity on
. {dou*--v"/zz

:’29 2'

contalning mj must contain 3 p01nts out of C\

Q- {4"4,...,«2} of size 3, and §.1 is one of these. Now the block

2, as we see from

3’ 3 33
the action of H&qx o, But th;s must be also true of the blocks cbntaining

ﬁ3 g ) 32 which gives a contradiction.

, is transitive on R ~ &x,...,;a}, and

In the second case .
.- ’ {o{.oo-.‘!",

since G_ - /G . 1is.8,., we see that either G is T-transitive . -
{'—’(,ooo.‘,:’{’: A:-,’oon/l'f2 6
cr G& 3 has two orbits of size 4gq-1. But the latter'is impossible: by

(20, 3.13].
Step 7. G is B-transitive.

Consider the G -orbits. Note that 5,1 is not an orbit by [14], and

‘ﬁ'(o-o.)ll1 : 2

77
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al§§ that q does not divide the order Of‘qx..”ez' Hence the possibilities
are - 4g-1, 2q-1, 2q-1,
4q-1, 4q-2,
6q-2, 2q-1,
‘or 8g-3.
The first two are excluded by the Atkinson argumen; with respect to 4.
4In the third case it follows from [19] that G is not primitive. This is

Mhbwever impossible, because the blocks would have size 2q. Hence the

assertion. ..

Step 8, G is 9-transitive,

Here all the G -orbits have length divisible by 2q-1. The Atkinson

2

argumenf with respect to 4 implies‘directly that G{< &1 is transitive
B '.."Z

on Q - {d,;..;éé}. Since G is 8-transitive, this shows that G is 9-homog-

s oo

eneous oh . Since is 38' vwe see that eitiner G is

G{«,...,JIS/G«...;:};_

9-transitive or G o has two orbits of size 4g-2 on Q- {R,...,Jé},
..'l

In the latter case it follows that if I is any subset of Q of size 9

z
then GZ 9

T T
at most)&g;tn:points, which is clearly impossible,

ig A (and not Sg). This implies that any involution of G fixes

Step 9. More on the action of N(Q) on &.

Let N = NG(Q), and let X and L be the kernels of N on &4 respectively.

g
0’70 ,
Then'L < K: Otherwise LXK > K, so 1 £ LK/K @ N/K. Now N/X = Sy 80 LK/K >V,
But this irplies that L n C(Q)géCL and since Q is self-centralizing on
its long orbits, this is not possible.

Let X = N/L, Y = 1c(Q)/L. We shall write K for K/L. Then X < Sg and -
x8o =,S4' so X {;AB. By [20, 15.1], any 3-elepent of X acts on %, as a

product of two 3-cycles, since we know that all the 3-elements of X lie

/5
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-in Y. Now the normalizer in Sé of such a 3~-element is 22 x (Z3 wr 22)-22 ’

ﬁhich has an elementary abelian Sylow 2-subgroup. Hence X/Y < z2 by the
Gn thyolofion oL (0}

- Frattini argument. If ja-2~-element—of-¥(fixed a point in Gb then, being
even, it would have degree at most 6q+2; this is not possible by a theorem
of Luther [11]. Hence the 2-elements in Y are semiregular on 56. Therefore

|X! is 24 or 48, Furthermore, if [X/ = 24 then X = S,. If X has two orbits

4
of size 4 on ?b then the permutations odd on Z% are even on G% and hence

are odd on 2, and the same is true if X is transitive on 5%. If X has
orbits of size 2 and 6 then the involutions of Y cannot all be semi~regular,

‘Hence §X{ = 48 and K is 2 acting semi-regularly on @%. Finally, note that

2

we may assume that K normalizes R. Then {25,;2,....é;§ is K—invériant.

Step 10. .Let D = G_ -

o Then' D is 4-transitive on Q = ~ ,.u.,o, %
RPN "2 3
Por, from the analysis in Step 9 it follows that D . -, is transitive

1eng T g Tgl #
17 e g

on Q - gx”?, ...,53?. Moreover, the lengths of the Qx—orbits on
{

Q- {x ,x} are obtained out of 3, 2(g-1), 6(gq-1), and in fact

2’_-'529 oo )(‘;3

all the D, ,
N3,

crg-orbits on Q - {&?4,...,5"} have length divisible by 2(q-1),

3
as we see from the action of K,

Since G is 9-transitive on , the Atkinson argument Qith respect
to‘9 (cf. Step 4) shows that there are at most two g‘—drbits; because
6(g-1) = 6 (mod 9). So the possibilities are

3, 8(q-1),

2q+1, 6(q-1),

2(g-1), 69-3,
or 8g-5.

The first case is impossible by a theorem of Bannai [3, Theorem 2]. In

- the second case D is primitive, contrary to [19]; In the third case, D is
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imprimitive by [19], so the blocks must have size 2q-1. Now 6q-3 is odd,
80 D;&' is still transitive on the D -orbit of length 64-3. It now follows
e < .

from [1 Lemma 2] that 6. _ , acts as a 2-transitive group on
T2 03200000 4]

a Steiner system 3(2 2q,8q—3), vwhich is impossible since q does not divide
its order. Hence D is 2-transitive.

Now the EL‘-orbits have length obtainedvout of 2 2(q-1), 2(q-1),

2(q-1) 2(g=1). Then the Atkinson argument with respect to 3 shows that

D

s is transitive. Similarly, the only p0531b111t1es for the length of

the Qﬁaﬁ-orbits are gq—1, 6(q-1),
or 8gq-7.

Ih’the fifs? éase‘thoﬁgh Q*£ is primitive and the suborbit of size 2q-1

is 2—traﬁsitive. and a confradiction now comes from {5, II, Theorem 3].

-

Hence D is 4-transitive on Q - {?%,/%,.;.,63?.

Conclusion. We know that the ortits of G“ R S on‘Q - {0§...., 337373

have length comblned out of 1 and eight times g-1. But G
2[‘3 ..'c 0(,376#{

: . . PR 2
1§ normal in Q?%”’ and Q?iﬂ is transitive on Q - {x Vsz’”"' 3, ’ 5(4.

Eence G is 12-transitive on Q. But G contains a 3-element in C(Q) fixing
- 2q+1 points of Q. Hence by a result of W.A. Manning [12, p.596], G is

alternating or symmetric. This concludes the proof of the theorem.

20
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