Multidimensional Central and Local Limit Theorems

for the Phase Separation Line in the

Two-Dimensional Ising Model

Yasunari Higuchi

§1. The Two-Dimensional Ising Model

Let \mathbb{Z}^2 be the square lattice and L be its dual lattice; i.e.

$$\mathbb{Z}^2 \equiv \{(x_1, x_2); x_1 \text{ and } x_2 \text{ are integers}\},$$

$$L \equiv \{(x_1, x_2) + (\frac{1}{2}, \frac{1}{2}); (x_1, x_2) \in \mathbb{Z}^2\}.$$

We consider \mathbb{Z}^2 and L also as graphs. Let $\Omega \equiv \{-1, +1\}^L$ be the space of possible spin configurations on L. For each positive integer N, we define a square box V_N by

 $V_N \equiv \{(x_1, x_2) + (\frac{1}{2}, \frac{1}{2}); (x_1, x_2) \in \mathbb{Z}^2, 0 \le x_1 \le N-1, -[\frac{N}{2}] \le x_2 \le [\frac{N-1}{2}] \},$ where [u] is the largest integer smaller than u. For given $\omega \in \Omega$ and $\beta > 0$, the finite Gibbs state on $\Omega_N \equiv \{-1, +1\}^V N$ with boundary condition ω , inverse temperature β (in the absence of the exterior magnetic field) is given by

$$P_N^{\omega}(\eta) = Z_N(\omega)^{-1} \exp\{-\beta U_N(\eta; \omega)\} \qquad \eta \in \Omega_N$$

where $Z_N(\omega) \equiv \sum_{\eta' \in \Omega_N} \exp\{-\beta U_N(\eta' : \omega)\}$, and

$$U_{N}(\eta; \omega) \equiv -\sum_{x,y \in V_{N}}^{*} \eta(x)\eta(y) - \sum_{x \in V_{N}}^{*} \eta(x)\omega(y),$$

where the summation $\sum_{x \in A, y \in B}^*$ is taken over all pairs (x, y)

such that (i) x and y are nearest neighbours in L, and (ii) $x \in A$ and $y \in B$. From now on, we fix the boundary condition ω as

$$\omega((x_1, x_2) + (\frac{1}{2}, \frac{1}{2})) = \{ + 1 \\ - 1 \}$$
 if $x_2 \ge 0 \\ x_2 < 0$,

and we write simply P_N instead of P_N^{ω} .

§2. The Phase Separation Line

Let us fix N > 0 arbitrarily. Define $\tilde{V}_N \equiv \{(x_1, x_2) \in \mathbb{Z}^2; 0 \le x_1 \le N, -\lfloor \frac{N}{2} \rfloor \le x_2 \le \lfloor \frac{N+1}{2} \rfloor \}.$

We can regard V_N as a subgraph of \mathbb{Z}^2 . We call a segment of length one connecting two points which are nearest neighbours in \mathbb{Z}^2 (or in L) by "a bond in \mathbb{Z}^2 (or in L)". Then for each $\eta \in \Omega_N$, we can define a subgraph $C_N(\eta)$ of V_N in the following way. A bond in \mathbb{Z}^2 belongs to $C_N(\eta)$ if and only if it crosses a bond in L connecting two points $x, y \in L$ such that $\eta(x)\eta(y)=-1$ (or $\eta(x)\omega(y)=-1$). $C_N(\eta)$ consists of some connected components, and each vertex of $C_N(\eta)$ belongs to two of four bonds of $C_N(\eta)$ unless the vertex is A=(0,0) or B=(N,0). It is easy to see that the connected component of $C_N(\eta)$ containing A also contains B. We denote this component by $\lambda_N(\eta)$, and call it by "the phase separation line". Let $\Lambda_N \equiv \{\lambda_N(\eta): \eta \in \Omega_N\}$, and $S \equiv \{\gamma;$ subgraph of \mathbb{Z}^2 such that (i) the length $|\gamma|$ is finite, and (ii) each vertex of γ belongs to two or four bonds of γ }.

Theorem (Gallavotti)

There exists a function $\varphi: \mathcal{N} = \bigoplus_{n=0}^{\infty} S^n \to \mathbb{R}$ such that

(i) φ is symmetric, (ii) $\sum_{\Gamma \in \mathcal{N}} |\varphi(\Gamma)| < + \infty$ and (iii) for each $\Gamma \in \mathcal{N}$

 $\begin{array}{l} \lambda \in \Lambda_{N}, \\ P_{N} \big(\big\{ \eta \in \Omega_{N}; \ \lambda_{N}(\eta) = \lambda \big\} \big) \\ = \exp\{-2\beta \big| \lambda \big| - \sum\limits_{\substack{\Gamma \in \mathcal{N} \\ \Gamma \cap \lambda \neq \varphi \\ \Gamma \subset V_{N}}} \varphi(\Gamma) \big\} / \sum\limits_{\substack{\Gamma \in \mathcal{N} \\ \Gamma \cap \lambda' \neq \varphi \\ \Gamma \subset \widetilde{V}_{N}}} \exp\{-2\beta \big| \lambda' \big| - \sum\limits_{\substack{\Gamma \in \mathcal{N} \\ \Gamma \cap \lambda' \neq \varphi \\ \Gamma \subset \widetilde{V}_{N}}} \varphi(\Gamma) \big\}. \end{array}$

We denote the left hand side of the above equality simply by $P_N(\lambda)$. Thus we are given a sequence of probability spaces (Λ_N, P_N) . To state our result, we need some notations. For each $\lambda \in \Lambda_N$, $0 \le k \le N$, let $\overline{X}_N(k)$ and $\underline{X}_N(k)$ be $\overline{X}_N(k) \equiv \max\{k; (k, k) \in \lambda\}$, $\underline{X}_N(k) \equiv \min\{k; (k, k) \in \lambda\}$.

Theorem 1.

Let an integer $k \ge 1$, and $0 < t_1 < t_2 < \ldots < t_k < 1$ and the numbers $-\infty < T_j < T_j' < \infty, j = 1, 2, \ldots, k$ be given arbitrarily. Let $a_j^{(N)} \equiv [t_j \cdot N]$ $j = 1, 2, \ldots, k$, where [u] is the largest integer smaller than u. Then,

$$\lim_{N \to \infty} P_{N} \left(\bigcap_{j=1}^{k} \{ T_{j} \leq \frac{\overline{X}_{N} (\alpha_{j}^{(N)})}{\sigma \sqrt{N}} \leq T_{j}^{\prime} \} \right)$$

$$= \lim_{N \to \infty} P_{N} \left(\bigcap_{j=1}^{k} \{ T_{j} \leq \frac{\overline{X}_{N} (\alpha_{j}^{(N)})}{\sigma \sqrt{N}} \leq \frac{\overline{X}_{N} (\alpha_{j}^{(N)})}{\sigma \sqrt{N}} \leq T_{j}^{\prime} \} \right)$$

$$= P_{0}^{1}; 0 \left(X_{t_{j}} \in [T_{j}, T_{j}^{\prime}], \ \ j = 1, 2, \cdots, k \right)$$

where $\sigma = \sigma(\beta) > 0$ is a constant depending only on $\beta > 0$ and $\{\{X_t\}_0 \le t \le 1, P_0^1; \}\}$ is a one-dimensional Brownian Bridge such that $P_0^1; \{(X_0 = X_1 = 0) = 1.\}$

Remark Gallavotti has proved the above theorem in the case when k = 1 in [2], and it is announced that Cammarota has proved it for general $k \ge 1$, but we have got nothing in print yet.

§3. An Auxiliary Ensemble and the Central Limit Theorem

In order to prove Theorem 1, we need another sequence of probability spaces $(\hat{\Lambda}_N, \hat{P}_N)$. Let $I_N \equiv \{(x_1, x_2) \epsilon^{-2}; 0 \le x_1 \le N\}$, and $\hat{\Lambda}_N \equiv \{\text{connected subgraph } \lambda \text{ of } I_N \text{ such that } (i) |\lambda| < +\infty$, $(ii) \lambda \ni A$, (iii) there exists a point B' in $\{(N, \ell): \ell \in \mathbb{Z}\}$

such that each vertex of λ belongs to two or four bonds of λ unless it is A or B', and A and B' belong to one or three bonds of λ . For each λ \in $\hat{\Lambda}_N$, we define

$$\hat{P}_{N}(\lambda) = \exp\{-2\beta |\lambda| - \sum_{\substack{\Gamma \in \mathcal{N} \\ \Gamma \subset I_{N} \\ \Gamma \cap \lambda \neq \phi}} \varphi(\Gamma)\} / \sum_{\substack{\tilde{\lambda} \in \hat{\Lambda}_{N} \\ \Gamma \cap \tilde{\lambda} \neq \phi}} \exp\{-2\beta |\tilde{\lambda}| - \sum_{\substack{\Gamma \in \mathcal{N} \\ \Gamma \cap \tilde{\lambda} \neq \phi}} \varphi(\Gamma)\}.$$

Then, Gallavotti has shown that for every $A_N \subset \Lambda_N$,

$$P_N(A_N) = \hat{P}_N(A_N \mid \tilde{\Lambda}_N) + o(\frac{1}{N^{\ell}}) \quad \text{as} \quad N \to \infty \quad \forall \ell \in N,$$

where $\tilde{\Lambda}_N \equiv \{\lambda \in \hat{\Lambda}_N; B' = B\}$.

Hence we only have to investigate the probability space $(\hat{\Lambda}_N, \hat{P}_N)$. we obtain the following theorem first, which is much easier to prove than Theorem 1.

Theorem 2.

For each integer $k \ge 1$, $0 = t_0 < t_1 < \cdots < t_k < t_{k+1} = 1$ and $-\infty < T_j < T_j' < +\infty$, $j = 1, 2, \cdots, k+1$, we have

$$\lim_{N\to\infty} \hat{P}_{N} \left(\bigcap_{j=1}^{k+1} \{ T_{j} \leq \frac{\overline{X}_{N} \{ \alpha_{j}^{(N)} \}}{\sigma \sqrt{N}} \leq T_{j}^{\prime} \} \right)$$

$$= \lim_{N\to\infty} \hat{P}_{N} \left(\bigcap_{j=1}^{k+1} \{ T_{j} \leq \frac{\underline{X}_{N} \{ \alpha_{j}^{(N)} \}}{\sigma \sqrt{N}} \leq \frac{\overline{X}_{N} \{ \alpha_{j}^{(N)} \}}{\sigma \sqrt{N}} \leq T_{j}^{\prime} \} \right)$$

$$= P_{0} \left(X_{t_{j}} \in [T_{j}, T_{j}^{\prime}], j = 1, 2, \dots, k+1 \right),$$

where ($\{X_t\}$, P_0) is a one-dimensional Brownian Motion starting at 0.

References

- [1] Del Grosso, G., On the Local Central Limit Theorem for Gibbs Processes. Comm. Math. Phys., 37, 1974.
- [2] Gallavotti, G., The Phase Separation Line in the Two-Dimensional Ising Model. Comm. Math. Phys., 27, 1972.
- [3] Gallavotti, G. and Martin-Löf, A., Surface Tension in the Ising Model. Comm. Math. Phys., 25, 1972.