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Introduction : Three-Particle Systems

M. Toda
Faculty of Engineering

Yokohama National University
Oh-oka, Minami~ku, Yokohama 232, Japan

A three particle system migﬁt be called a-few-body system. However,
in many cases it displays most of the essential properties of a many particle
system of the same nature. So, as an introduction, I would like to remind
you of the investigations of three particle systems, which played important
roles in elucidating fundamental properties or basic mathematical method of
nonlinear problems.

A three particle periodic system is essentially a system of two degrees
of freedom because one of the three coordinates is the so-called cyclic co-
" ordinate and therefore can be eliminated. So, I will speak also of systems
of two degrees 6f freedom.

I shall introduce the problems in a chronological order.
0) Historically, the three-body problems of the celestialvbodies undgr
gravitational forces is fhe most famous problem. But this is out of scope
of the present discussion.
1) In 1972, J.Fordl) pointed out that the three particle system with cubic
nonlinearity in the interaction potential was equivalent to the so—called
Hénon-Heiles systemz), which showed stochastic behavior whén the energy was
raised above a certain critical value.

The Hamiltonian of this system may be written as
H = SI(R24R24p 2 )+(Q Q)" +(Q)Q) 2 +(Q5-0,)] - 30L(Q;-0)° +(Q,=Q, )3 +(Q;0,)° ]

We introduce the normal coordinates and momenta (cj,nj) of the system with

0=0, the linear system. We find théen that the Hamiltonian is transformed into



L2, 2,2 2 2 30 2_1, 3
A B B 2 R
Since nj is a constant of motion (uniform circulation of the ring), we

may drop the corresponding term from H. By the rescaling
t > t/3Y2 | H > 6H/a2
= ]/2 = ]/
T, = (2 /oz)qu » Ty = (2¥%0)q
the Hamiltonian is transformed into
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which is just the Hénon-Heiles system. This is originally considered as a
model for the motion of stars in a simﬁlified galaxy. It is known that this
system shows stochastic behavior when the energy is raised aﬁove a certain
critical value. Therefore the nonlinear lattice with cubic nonlinearity of
tﬁe interaction potential is also hon—integrable.
2) In 1971 N.Saito treated numerically the system of .two particles with
exponential interaction using fixed end boundary conditionsS). It was shown
that the system showed quite émdoth mapping of trajectories on the Poincaré
surface of section indicating that it is integrable. Independently J.Forda)
showed in detail that the three particle periodic system with exponential
iﬁteraetion was integrable, and this paper led H;Flaschka to the analytical
works. The syétem J.Ford showed integréble is

H=
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3)  In 1973, M.Kac>)

showed analytically that the periodic system with the
above Hamiltonian is indeed integrable in the sense of Jacobi's inversion

problem and with van Moerbeke he extended the treatment to periodic system

6)

with the exponential interaction composed of arbitrary number of particles ‘.

Independently, a concrete solution to this problem was given by E.Date and

7)

S.Tanaka “.



Since the calculation for a three particle system looks simple and

illuminating, I will show in some detail a canonical transformation in

the following.

The system is chracterized by the elements
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is shown to be independent of time, so that the curve A(LA) vs. A is fixed

by the in

A(X)

are called

itial condition.
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The auxiliary spectra are introduced as
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If we let
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8, = A(ul) s Az.= a(uy)

we can show that the Poisson brackets turn out to he
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[ul, uzl = [Al, AZ] = [ul, AZ] = [“2’ All =0

In view of the general relation [q, £(p)] = £'(p), we see that
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is the momentum conjugate to ul, and
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v, = 2 log
is the momentum conjugate to uz. Thus
Tygs vil = [uys vl =1
and other Poisson brackets vanish.

It turns out that
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where

b Ebo+b1+b2 = const.

We may choose the coordinate such that b=0.

Then we have
v v
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The equations of motion for the auxiliary spectra are
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Hy and My oscillate between (AZ, A3) and (A4’ AS).

We may introduce the action variables, for example by

A3 A(u)'+\/A2 (-4

Jl =§vldul = 4J log 2 du
Ay

General theory of such transformations was extended by Flaschka and McLaughlin,

and by otherss).

4) In 1977 G.Casati and J.Fordg) showed that a two particle system of
unequal masses joined by exponential interaction (both énds fixed) exhibits
stochastic behavior when the energy exceeds critical value depending on the
mass ratio. This seems to be a new and very interesting phenomena which

is waiting for an analytic explanation. I have no special idea now, but

I would like to present two equivalent systems in this respect.

N

One is the dual system
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with the equations of motion
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The other is the equation for q2'= dqz/dql. This method follows Whittaker's

Analitical Dynamicé9) We note the Lagrangian

-q, -(q,-q,) q
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The total energy is
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Following Whittaker we comnsider 9, ql(E,qz,qz,ql) as a function of E, 1, q,
and 93 and set up

3L _ ., '
a' L(E:qz,qz,ql) .
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Then we have the equation of motion

d 3L' oL’

T =0
dql qu qu ‘
which turns out to be
P A R
d 2 2 2 _H 1 7272 =0
dq, 70—z ' T Vairmg,Z Fom
1 vm tmyq, mtmyd, 2
where
-q -(q,-q,) q
F=E- (e 1 + e 271 + e 2 _ 3)
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H = }_{e 2 71 e 2 }
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