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§1 Introduction and Summary

It has been known since the days of Stokes that there
may exist two possible modes of gravity waves on a two-layer
fluid%) which we call the fast and slow modes according to
the magnitude of their phase velocities. On thé other hand,
it is also well known that weakly nonlinear long gravity waves
on a single fluid layer are governed approximately by the
Korteweg—de‘Vries (shortly K-d4d¥) equationZ) which provides
one of the prototype equations for nonlinear evolutional sys-
tems.

In this paper, we consider weakly nonlinear long gravity
waves, which take place on a stably stratified two-layer fluid,
and ask how the classical K-dV equation for waves on a single
layer is modified by the presence of another fluid layer.

)

By using the reductive perturbation method? it is found
that the fast mode is always governed by a K-dV equation whose
coefficients depend on the thickness ratio 971 (= 'ﬁ.a/Ho ) and
the density ratio O (= f%/f?~< 1) H, and‘ﬁ; being the undis-
turbed thickness of the lower and upper fluid layers while f}

and f% the densities of the lower and upper layers, respective-

.ly. It should be remarked that the surface wave and interface
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wave are always in phase and the qualitative nature of the
solution is similar to that for the classical gravity waves
on a single layer. In particular, if we take the limit G -1,
we recover the classical K-d4dvVv equétion for a single layer?)
As a by-product we can easily determine the internal level
elevation at any depth of the fluid layer.

On the other hand, the slow mode shows curious behaviours.
It is found that the slow mode is also governed generally by
another K-dV equation except for the critical thickness ratio
given by'7n‘=’nfk5)and that the surface wave and interface
wave are always 180o out of phase. At the critical thickness
ratio, however, the coefficient of the noﬁlinear term vanishes
and the K-dV equation ceases to describe the balance between
the nonlinearity and the dispersion. Using a mecdified reduc-
tive perturbation method similar to that for the nonlinear

4)

Alfvén waves,’ we can show that the slow mode is governed by

a modified K-dV equation with cubic nonlinearity. It can also
be shown that near the critical thickness ratio, the slow mode

is described by an equation of a combined form of the K-dV and

modified K-dV equation.

Steady solitary wave solutions are mainly considered in
this paper. It is interesting to note, however, that this
equation has a shock like steady solution in addition to the
usual solitary wave and periodic wave train solutions. This
shock like sclution may be regarded as a sort of dispersive

(lossless) bore or hydraulic jump (if we move with the wave

velocity).
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§2 Basic System of Equations

We consider the gravity waves which take place on a
stably stratified two-layer fluid as shown in Fig.l. We
assume that the

fluids in both

,5\ 9 ] gravity

layers are inviscid ) a}vnosphere
and incompressible | TN ﬁc /_Q =ﬁa/é)
and that the flow \\\*“’//
field due to the Rﬁﬁhf?X\ f%,‘?
wave motion remains 3=Y(3L;t)
o 4
irrotational, so N TN 4>
’ - . ~N_ _— \/’x

that we may intro- ﬁea\'"'ex /O )
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for the upper and
lower layers, res-
pectively. Let the elevations of the free surface and the
interface be denoted by Y= ﬁ(l,‘t) and Y= Y(X,‘ﬁ) , respec-

tively, then we may obtain the following system of equations,

for the upper layer:
c;()lx-t-CP%:o For Y<‘j<9\,; — 00X 00 | (2.1)

=R, +Ph (2.2)
4)3 b'f' qu X a_(: j: 'ﬁ\(x/t);

B+ 3@ 8))+ (R =o @
for the lower layer:

P T “;:(_333“20 for —1 <YLY, —0o<X< 02, (2.1)
P, =o0 at  Y=-1, (2.5)
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and the matching conditions at the interface:

ijizﬁ/t’k b Tz (2.6)

_ v at Yy=Y(xt)
s[4+ @By '
=3+ (BB Y (2.8)

We assume here that the fluids are in the undisturbed uni-
form state upstream at infinity, so that we impose the

follewing boundary conditions with respect to X

A>-c0: h-m, Y, P, B — O, (2.9)

In the above system of equations (2.1) - (2.9), all the
quantities are normarized with respect to the characteristic
length [, (thickness of the lower layer) and the characteris-
tic speed /G;;E s g being the acceleration due to gravity,
and we define the thickness ratio 9 ==-f€o,/f{o . f{c being
the thickness of the upper layer, and the density ratio
o = /O;l //OI (< 1) s f? and /‘3 being fluid densities
of the lower and upper layers, respectively.

Before proceeding to the nonlinear problem, it is instruc-
tive to examine the linear dispersion relation. Assuming
a sinusoidal wave proportional to efoE&(ﬁCl—Ldt)] , ﬂa and
being respectively the wave number and the angular frequency,
and linearizing the system of equations (2.1) - (2.8), we

have the linear dispersion relation between f&kand o o
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(1+stonh B todmt ) o™
% (tawh & + tabomf) 02

+ (-5 YR Hahk fahmR =0,

(2.10)

which was first investigated by Stokes according to a famous

D Since the dis-

text book 'Hydrodynamics' written by Lamb.
persion relation is biquadratic with respect to (D , there

may exist two possible modes, which we call the fast and the
slow modes according to the magnitude of their phase veloci-
ties. It turns out from eq.(2.10) that the both modes are
dispersive except in the limit 'ﬁi——? o . We are interested
here in weakly dispersive waves and in weak nonlinearity.
Therefore we consider waves for which.'#%?<(’/, thereby imply-

ing waves of long Wavelength. In this case the phase velo-

2
cities can be expanded as power series in f%_ to give
VIDT_ = -—('-L—{ == \/OJ: (f— ’DI‘&2+ O(’I%4‘) )/, (2.11)

which 1s of the same form as that for the classical waves on

a single layer, where

Voi_ =J§[(Hm)i/(l+m) 4(l~ cr)m] (2.12)

G+t +B36- Om*mlvo::"({ S)m{+3sm+rt?) ,(2.13)
§LU+r)VE — 2(1—5Dmm ]

Dy =

- 5 -
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and the suffixed signs + and - refer to the fast and slow

modes, respectively.

§3 Derivation of the Korteweg-de Vries Equation

In order to reduce a simple evolutional equatibn from
the system of equations (2.1) - (2.9), we employ the reduc-
)

tive perturbation method? Let us first introduce the

coordinate stretching defined as
i L
E=E*(x~VWoxt), T=E8>*t, Y=Y, (3.1)

where the small parameter & <= O(ﬁ2)> measures the
weakness‘of dispersion. Since, on the other hand, we con-
sider weakly nonlinear waves, we expand the dependent vari-
ables around the undisturbed uniform state as power series

in terms of the same parameter &

s, T-m = ERVE T + BV, T+

V5.0 =YD +e2YV 5D,

5,90 = £=2[#5, 90 +€s, y 0], [ oD
35,90 =e2[3"6.30+£2%6 30+ ],

thereby implying that the small parameter & is also to be
regarded as a measure of weakness of the nonlinearity. In
this sense, we consider a balance between the nonlinearity
and the dispersion.

Introducing (3.1) and (3.2) into egs.(2.1) - (2.9) and

carrying out the standard procedure of the reductive perturba-
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S
tion method§)we obtain the following results from C)(EF*),

O(gsm) and O(ES_/J)

W (1) —_— = _ 5w —
PV =PV, T, =D (5, D), (3.3)
2
V. §
_f\,“): = or Y(l) , | (3.1)
Ve — 771
&) Ve t
CF_ == 2 = ﬁ/ 2 (3.5)
? Vc‘t“m
— (%) RN LY
?5 = Vox T , (3.6)

{ . . .
and \/U 1s governed by the Korteweg-de Vries equation:

n) (D) \ A ? W __ 0O
where

b= 3V,j—_[(1+7)’t(5‘)\/oi -(1“5)’)44(_‘2—-?71)] L
2[f1+s-0miVE — (=) (1= 1 7

ﬁj: = L/O'J:DI , (3.9)

The first results (3.3) show, to the lowest order of perturba-
tion, that the horizontal velocity components in both layers

do not depend on the vertical coordinate and that the vertical
velocity components are zero. This means, by virtue of Ber-
noulli's theorem, that the pressure distribution can be approxi-

mated by the hydrostatic one. This is one of the fundamental
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assumptions employed in the usual shallow water wave (or

5)

long wave) approximatiocn. It should be noted that all the
first order quantities can be expressed in terms of Y“) s
more precisely, they are just proportional to the first order
elevation of the interface \('U), so that the first order
elevation of the free surface “ﬁ(i) and the horizontal

velocity components CP(” and @;) are also governed by

similayr K-dV equations to eq.(3.7).

§4 Solitary Wave Solutions

As 1is well known, the steady solitary wave solution to

eq.(3.7) can be expressed as

YW= a/se /‘XQ (€ ~c><a Z‘)] (4.1)
(Qﬁ

where we have used the boundary condition that Y'u)——) G as

% S5 —00 . Since O(Cl/(,Qﬁ) , which is under the‘squar‘e—

root symbol, must be posi‘tivé, the amplitude (X is positive

or negative according as OL//B is positive or negative. Thus

we may have a convex or conéave solitary wave according_'to

the sign of Oé/[j.’

4.1 Fast Mode

Let us first consider the fast mode. Inspecting the
expressions (3.8) and (3.9), it is found that CX+>O and
[’a+>0 for all possible values of 77 and & , so that
Cl_+ >0 . On the other hand, by virtue of (3.4), we find

that both the surface wave and the interface wave are convex
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upward and that the amplitude of the surface wave Cl(:) is
always larger than that of the interface wave QE::), where
the subscripts S and L refer to the surface and interface
waves, respectively. Thus the qualitative nature of the
solution is similar to that for the classical gravity waves
on a single layer. In particular, if we take the limit

G — [ , we recover the classical K-dV equation for a single

2)

layers, In fact, ir{terms of the first order elevation of

the free surface _ﬁU} , we obtain

, 2./
) 3Vor pWp 1) | (M) Vor p1) —
et 2(1+m)lﬁ' %% N é “ﬁ"f‘?% C,

(4.2)

with Ve = /{+71t.

On the other hand, Y“) gives the internal elevation at any
depth, since the value of 971 can be chosen arbitrarily. It

is thus found that the internal level elevation in a single

)
layer is proportional to the depth, that is, the amplitude CZ(?
at any depth Ho is given by

Ww ; ) g :

a;\- == HOQ—(- /( Ho'+ _ﬁ,o) s (4.3)

Y .
where Q+ is the amplitude of the free surface wave.
4.2 Slow Mode

Let us now consider the slow mode. From the relations
(3.8) and (3.9), it turns out that &~ > QO and P_ >Q so
that (Q-YC for M >N while X-< O and - >0 so that
b 8

O <0G for m< P, where the critical thickness ratio M7 '
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is given by the only real root of the cubic equation:

) 2 ; -
M3 —(3-36 =82 —(46=3Dm -1 = o, (4.4)

which is derived from the condition o/~ = O (see eq.(3.8)h).

Y

"It has been‘found that f&t are alwavs positive for all possi-

ble values of M and & . However, if we take into account

of the effect of surface tgnsion, (31 may change signs depend-

ing upon the relative importance of the gpavity and the surface
tension. Such a case was dealt with by Hasimoto for waves

6)

on a single layer.

The explicit form of 7ﬁkis therefore
MH(S) = S+ () + S +L(3-35-62), )

Sx(s) '=[5%(27+2\70-+/86“2_3463~/964‘_255" ) L (4.5)

+ O‘(/+26‘7(i—6‘)(2’7+5’5) ] /3
3 )

é

In Fig.2 is shown the qy?)\
dependence of M*(S) 13
on the density ratio 1.25

S . 1.2
It is also found,

from eq.(3.4), that 1.1

the free surface wave 1’CU-

‘and the interface ’[:
wave are always 180O (j 0.1 O.5 (o) {.O
out of phase, that is, F&g 2

depende‘mu of— ’rﬂ* ol O
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0% <o awd Q>0 feo >t \l
, ‘ (4.6)
a® >c  and CZ&”(O /;N m<m*) j
thereby implying that the surface wave is concave and the
interface wave is convex for 7ﬂ>l4* and vise versa for
m< m* . It is further found that the magnitude of the

amplitudes of the surface and interface waves dependsupon the

thickness ‘ratio M and the density ratio O , that is,

a1 > Y| foc O <M< 2(-20),

(4.7)

La¥ ) <o) Hor > 2(1-28),

Thus the slow mode shows entirely different behaviours from

the classical waves on a single layer.

§5 Slow Mode at and near the Critical Thickness Ratio

Next step we have to proceed is to investigate the slow
mode at the critical thickness ratio 77?“. Since the dis-
persion relation (2.11) remains unchanged even at the criti-
cal ratio 77€ﬁ, we adopt the same coordinate stretching as
was given in eq.(3.1) with Vgt , where b6f2==.b/‘(7n5). On
the other hand, in order to take 'stronger' nonlinear effect
into account, we adopt the following modified expansion of

the dependent variables:
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R O-n"=¢ (%‘,T)—c—G%")(%;t)«-m,
YT =& Y‘“cg D+ TE D+

PEyT = $‘ (5.9 0+ TP U850~

36,90 =29 E 0 é“%é;,.jft) .

l* Aﬂ*

II

(5.1)

whereby implying that the order of the nonlinearity is assumed
to be not O(E) but 0(8{/2) . Similar expansion to (5.1) was
first employed by Kakutani and Onou) for investigating non-
linear Alfve{n waves in a collisionless plasma. Introducing
(5.1) into eqs.(2.1) - (2.9) and carrying out tedious but

straightforward manipulations, we obtain the following results;

from Q(E®) , O(g’l/‘?), and CCE) :

I

v 9
VX2 — pot*
o X
oo VLS (5.2)
¢ 0_ 2_m* >
— () X ey
P, =Voo Y
which are similar in form to those given by (3.3) - (3.6).
3
From O(_EI), we have
SAORSALY :
FOnX,6) Y \l/ = (5.3)

- 1?2 -
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where F(mﬂﬂT) is a complicated function of 71 and O , but it
~ A
= e O F
turns out that ["(7”;‘5_) =C for m = M, so that Y( Y? is
not necessarily zero in spite of eq.(5.3). Finally, from

C)(E%), we obtain the modified K-dV equation for \’U):

4 4 )
\I/:) —+ e Y() U -+ G Yggg =Y, (5.4)

Hhere {(32 646‘816'2)+(*37+é(><‘~216—/o<53)m
+ (14~ 155)m*2 § /X2
8 - ’ ;
I L e ShA i b ] I ES
<, _

452 (1425w ¥V (1= * (1477 ]

It turns out that X, is negative for all possible values of
g . It is found that any solitary wave solution to eq.(5.4)
approaches to non-zero uniform state at infinity. More pre-
cisely, a convex solitary wave approaches to a negative uni-
form state, whereas a concave one to a positive uniform state.
If we impose the boundary condition that‘§>M{+>C§ as %’f>~—oo
(which is relevant to the present problem), we have no soli-
tary waves at all, that is, the amplitude of the solitary
wave with zero uniform state becomes zero! Therefore, in
order to clarify the behaviour of the slow mode solitary waves
across the critical thickness ratio‘ﬁyfg, one must examine the
slow mode near the critical rati0f7yg<.

Assuming E;;E7n,_7ﬂ?s:: C}(EJﬁz), and carrying out simi-
lar calculations to those leading to eq.(5.4), we have a mixed

K-dV and modified K-dV equation of the following form:
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(1)/\’( ) (1) (‘i) 1)
Y TOC*Y A + B \r;g =0, = (5.6
where OO = E 5 C?’O(— /B?ﬂ) .z and o(% C according as

S, 0 . The solitary wave solution to eq.(5.6) is easi-

ly obtained as

S0 a w&z[/g C%—?x’t)]

with E T (a*z"*/d)-lﬁamg\ [//\ (5 - %T)] 71 (5. 7)

A =2 (ay 25y

Q

where O<CL<—0(*\/0(¢_ for o(*>o , whereas —o(i*/o((._<a<'o
for O(%<O . Thus the behaviour of the slow mode solitary
waves across the critical ratio ’r}’L* can be fully understood,
that is, we have convex, zero, and concave solitary waves for
the lowest order elevation of the interface according as
’)7’L>"n/z,’6 s ) =?7’L*, and O‘ﬂ{(ﬂ’?*. It should be noted
that the amplitude is of the order of &€ far from the criti-
cal ratio e » but it is of the order of & Vznear »* and
it becomes rapidly zero just at M

In conclusion, it should be remarked that eq.(5.6) has

the shock like solution:
V0= - 2 [+ ol [ AT

"/\ _— — '%2/(69&_)

with (5.8)

X .
when (Q =-— /r){C. This may be regarded as a sort of disper-

- 14 -
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sive (lossless) bore or hydraulic jump (if we move with the
wave velocity). It should be compared with the usual bores
or hydraulic jumps on a single layer which are accompanied

with dissipation.
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