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Scattering of Lattice Solitons from A Mass Impurity

Nobuo YAJIMA

Research Institute for Applied Mechanics

Kyushu University, Fukuoka 812

A‘perturbation theory for the inverse scattering trans-
fofms applies to the Toda lattice system with a mass impurity.
As an example, scattering of a soliton from an impurity is
considered. When the mass of impurity is slightly different
from that of host particles, the soliton nearly pass through

the impurity without changing its amplitude.
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81 Introduction
Since Toda proposed a solvable model of one-dimensional

lattice system, many works have been done on the lattice

1)

solitons. Flaschka first applied the inverse scattering

transforms to find the genetal method of solving the initial

value problem for the infinite Toda lattice.z)

Recently, the wave propagation in the anharmonic lattice
system with impurities has been studied numerically and ana-

lytically, i.e., the reflection of a lattice-soliton from the

3)

mass-interface , effect of aﬁ»impurity on propagation of a

4)

soliton , the excitation of localized mode due to the inci-

dence of a soliton to the impurity 4), and so on. In this
report,vuasﬁudy the propagation of solitons in the Toda lat-
tice with a mass impurity by using the "inverse scattering
transforms" method. Strictly speaking, this problem cannot
‘be solved exactly by applying the invérse scattering trans-—
forms. This is because the time evolution of the bound state
parameters just depends on the soluﬁion which is to obtain.
However, the perturbation expansion for the inverse scattering

5),6)

transforms has existed. This perturbation theory ap-

plies to our problem.

The system concerned is subject to the Hamiltonian

H=J [P /m - flexpl-(Q -0 _)1-(Q -0 _)}. (1)

The Pn and Qn-are the momentum and the coordinate of the n-th
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particle. The mass of particle is taken to be unity except

for n=0, i.e.,

14

m = (1 + €§ .
n n

-1
,0) | (2)

where Sn 0 is Kronecker's symbol. Throughout the paper, we

14
assume that the force strength is constant, that is, the in-
teraction between the impurity and the host particles is com-

mon to that between host particles. The eguations of motion

is given by

QO
I

= dH/dPn = Pn/mn , (3)

-9H/3Q = -{exp[-(Q_,;-2 )1-exp[-(Q -0 )1}, (4)

e
i

where the dot denotes time differentiation. In order to treat

Egs. (3) and (4) by the inverse scattering transforms, we in-

troduce new variables instead of Pn's and Qn's,z)
2a(n) = eXP[-(Qn-anl)/Z], 2b(n) = -P__;- (5)
It is readily seen that
a(n) = [b(n+l)/m - b(n)/m _;la(n), (6)
b(n) = 2[a(n)? - a(n-1)2]. (7)

In §2, Egs.(6) and (7) are studied by the inverse scat-
tering transforms. Owing to the existence of mass impurity,

the time evolution of the scattering data is different from
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that of the pure Toda lattice system (see Appendix I). The
effect of the mass impurity on soliton propagation is considered
in §3 as the simplest example. This report is preliminary and

the final one will be published with the detailed analyses.

§2 Inverse scattering transforms

We follow to. Flaschka, defining a linear operator L,
[Lul (n) = a(n)u(n+l) + a(n=1)u(n-1) + b(n)u(n), (8)
and considering the eigenvalue problen,
~[Lul(n) = Au(n), A = (z+z ')/2. (9

Vle now assume that a(n)=1/2 and b(n)=0 for n->z»,
If functions f and g are both solutions of Eqg. (9), the

Wronskian W(f,g)n,
w(t,g) = a(n){f(n+l)g(n) - £(n)g(n+l)1}, (10)

is evidently independent of n.
Introduce the Jost functions ¢(n,z) and ¢ (n,z), which

satisfy Eq. (9) and possess the asymptotic forms such as

¢(n,z) = z B for n+w, (11a)

Y(n,z) for n>-« , | (11b)

i
N

The WronSkian of these functions is

W(w<z),w(z"))n = —W(¢(Z),¢(Z"1))n (z-271) /2. (12)
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The solution ¢(n,z) is linearly independent of ¢(n,z"t), and

p(n,z) is then expressed as a linear combination of them,
Y(n,z) = a(z)¢(n,z"') + B(z)¢(n,z), (13)
where a(z) and B(z) are the scattering data. Similarly we have
¢(n,z) = a(z)y(n,z”) - B(z"HY(n,z). (14)

For |z|=1, we have the relations

B(z™') = B*(z), a(z™') = a*(z), (15a)

la(z)|? =1 + |B(=z)]?, | (15b)

where the asterisk denotes complex conjugation. For |z|>1,

w(n,z)zfn, ¢(n,z)zn and o(z) are analytic functions of z and

the zeros of a(z) yield the discrete eigenvalue of Eq.(9).
According to the inverse scattering problém, a(n) and

b(n) are obtained as
2a(n) = Kn+l/Kn' 2b(n) = k(n,n+l) - k(n-1,n), (16)

where «(n,m) and Kn satisfy the next Gel'fand-Levitan equation,

oo}

k(n,m) + F(n+m) + J k(n,n")F(n'+m) = 0, (17)
n'=n+1

K'2=1+F(2n) + J (n,n')F(n'+n). (18)
n
n'=n+l

The kernel F(2) is given by

_ 1 -g-1a(z)
F() = 5og fcz Foraz, (19)
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where C denotes the integral contour closing anticlockwise
and involving zeros of a(z) and the unit circle |z|=1. Per-

forming the integration yields

N
_ -£ 1 (B(z) —-%-1
F (L) “rzlcézr o a2 4% (20)

|Z|#1

c2 =8 /(z0)), B, =8(z), oap= (da/az) ,_p + (21)

where zr's (r=1,+++,N) are the zeros of a(é), a(zr)=0. We
have also the foilowing relations among ¢ (n,z), k(n,m) and

K

n

¢(n,z) =K (z %+ «k(nmz™, . (22)

n m=n+1
: _ 1 ,
K(n,m)v— - ZﬂiK j 2§§;¢(n,z)z (m+ )dz, (23)
n ‘C
IS S O B(z) - (n+1)

K Kn = 50T fca(z)¢(n,z)z dz. (24)

The time evolution of a(z), B(z), z. and Cr are given in
Appendix I.

§3 - Example

In order to obtain the solufion a(n) and b(n) at an arbi-
trary time by solving the Gel'fand-Levitan equation, we must
know. the time evolution of scatteriﬁg data, which can be easily
obtained only for the case e€=0. 1In general, the scattering
data evolves complicately, depending on the Jost functions
$(n,z) and Y(n,z) at an each instant. These Jost functions

are determined by a(n,t) and b(n,t). Thus the method of solutibn
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falls into a circle.

Here we use the approximation that the eigenfunctions on
the righthand sides of Egs. (I-4)~(I-9) are replaced by those
for €=0. The simplest case is that of a one-soliton coming
from far left to the mass impurity.

The eigenfunctions and the scattering data of one-soliton
state are summarized in Appendix II . The time-evolutions of
the bound state parameters are approximated by substituting

the results of Appendix II into (I-6) and (I-8),

2 = -z-if—zl_l (2,427 - B+ M @ -2a),  (@s)
(':l/cl = - (z)-2]%)/2
* 2(z fz'l) c;; [(zy#21D) - ‘iii; ' 2;31)]
1 71 171
x [(z]+Ci+1)R(0) - (z]+27+3C3) 21 1. (26)

If € is small, we can estimate the change of zy and Cl

by the perturbation theory: Write

_ (0

(1)
1 1 1

Z + €2 + e, C., = C{0)+ eC

(1)
1 1

+ e e (27)
In the lowest order of e, we find
2(0)

100 =, 6{0) = - (z,-2]Y)/2. (28)

Using these results, we proceed to the next order, to find.z{l)
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S OO ‘fw ae(2(0)4o (O ALY, Alo)y o8 o7
e R s T o " B ) ,
where
R i M

=1
p(0), (0B, (07, T07m,)

-1 . . -1
(0 e (0 coyp (2L 20 /2] ana 2

In view of D {0)= const.,
the integral is easily carried out. We finally obtain
z{1) =0 . (29)

1

That is to say, the change of the soliton amplitude is at most
of the order e€? and the soliton nearly pass through the impurity.
This tendency is seen in the numerical experiments for the
incidence of small amplitude soliton on the impurity, in which
the perturbation theory can be applied in good approximation.
For the cése of large €, the naive perturbation method cannot

be applied and Egs. (25) and (26) must be carefully solved.
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Appendix I Time dependence of a(z) and B(z)
Solving the equation obtained by differentiating Eq. (9)

with respect to time,
[@-2)P(z)1(n) = -[Ly(z)]1(n),
we have

v n L
bin,z) = ~—2r(o(n,27") ) 0(3,2) (E¥(2)1 ()
J=-

n .
- ¢(n,z) } 63,z DLV}, (I-1)
]:—w i

where the boundary condition @(n,z)=0 at n=-« is imposed on
account of the asymptotic form (11). We put n»« in (I-1) and

use Eq. (13), to get

207 et v ), (1-2)
n=-

"

a(z)

y Y ¢(n,z7 Y [Ly(z)](n). (I-3)

n=-—o

fz) = =2

z=2-

Substitution of Egs. (6}, (7) and (9), together with Eq. (2),

yields
a(z) = -=2551b (1) [a(0) {6(0,2) ¥ (1,2)+6(1,2)$(0,2) }
- a(l) (6(1,2)¥(2,2)+6(2,2) ¥ (1,2) }] (1-4)
B(z) = -(z-271)8 + 22D (1) [a(0) {6.(0,2” ) y(1,2)+6(1,2” ) ¥ (0,2))

- a(M) {61,z ) v(2,2)+6 (2,2 Hw(l,2)}]1. (1I-5)
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Let z_ be a zero of (z), that is, (zr)=0, and differ-

entiate with respect to time. We then get

v, = - . .
alz [aa(z)/at]z=Zr '

where aé is defined in Eqg.(21). The time evolution of the

discrete eigenvalue z. is thus obtained

4ez
— r 2 - -
r - Zr_Zr-lcrb(l)[a(0)¢r(0) a(l)¢r(2)]¢r(l), (1~-6)

where ¢r(n)=¢(n,zr) and wr(n)=w(n,zr)=5r¢r(n) are used and

C

' Br are defined by Eq. (21).
Substituting (I-5) and (I-6) into the equation,
By = dB(Zr)/dt = B;zr + [38(2)/3t]z=zr;
1)
where Br = [dB(z)/dz]z=z , and using the relation
r
v -1 = -
aré(n,z ") = (d/dz) [y (n,z)-B(2) ¢(n,2)], __

r

we obtain

By = = (2,726,

2¢ b(l) 4
— =1 1 -y
z,.-z ar dz

+

[a(O){w(O,Z)w(l,Z)-B§¢(0,Z)¢(l,z)}

- a(l){W(l,z)W(Z,z)—B; ¢(1,z)¢(2,z)}]z=Z . (I-7)
: r

It follows directly from (I—4); (I—6)Iand (I-7) that

> _d 11 1/2
Cr/cr T dat lrl[BJ:'/ZrOLr]

- 10 -
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1l

(1/2) [B./8, - 2z /2, - (a;ér+[d&(z)/dz1z=zr>/ar1

- (z_-z2Y)/2 - ((zr—zgl)-l + a;/Zaé)ér

+ €b(1)/(‘Zr‘zzl)“éﬁr)é%[v‘o'z"v‘l'z’1z=zr' (1-8)

V(n,z) = a(n) [V(n,z)P(n+l,z) - B§¢(n.2)¢(n+l,2)

+ Br{¢(n,z)w(n+l,z)+¢(n+l,z)¢(n,z)}]. (1-9)

Here we note that for the case e€=0 the time-evolutions of the
bound state parameter reduce to that obtained by Flaschka except
for the difference of the sign. This difference comes from

the difference of asymptotic behaviors of the Jost functions.

Appendix I Eigenstate for a one-soliton state

We consider the case that B(z)=0 for |z|=1 and a(z) has
only one zefo, Zqy . i.e., a(zl)=0, Izll>1. This case corfesponds
to the one soliton state unless the mass impurity exists. 1In

this case, we have

-2

F(L) =ciz,”, (Im-1)
. _ B Y a2y q=1 2)
1 =z 7! I oeim1 . (m-2)
n=-—0

The solution of the Gel'fand Levitan equation is given by

k(n,m) = CiA(n)z]" m>n+1, (I-3)

- 11 -
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Kn-2 = z,A(n)/A(n-1), (m-4)
_ 2_1,1/2 n n, -1 _
D = (zi—l)l/z/Cl. ” (II-6)

We substitute (II-3) and (II¥4) into Eq. (16) and then obtain

2a(n) = A(n)/(A(n+1)A(n-1))1/2, (IT~7)

I

2b(n) = [A(n-1)/A(n-2) - A(n)/A(n-1)]. (Ir-8)

i

Multiplying the eigenvalue equation (9) for y¥(n,z) by

z-n/a(z) and taking the limit |z|-+~, we obtain

- (n+1)

Ile z_nw(n,z)/a(z) = 2a(n)Ile Z PY(n+l,z)/a(z)
Z | >0 2 | >0
= T 2a(m)
m=n

From the asymptotic behavior of ¥(n,z), we have

-1 (o]
lim a(z) = lim z ™y(n,z)/a(z) =1 2a(m) (II-9)
lz]—»oo ]zl—»oo m=-o
n -

Substituting (II-7) into (II-9) gives

lim a(z) = 27! ' (I-10)

| z |+ :
From the assumption that o(t) has a zero at z=z, and is analytic
for |z|>1 and |a(z)|=1 for |z|=1, we have

VAl A

= 1 ’
a(z) = z2,1 (fr-11)

- 12 -
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Y 2_. -1 " o 2_ -2 -
al = (z1 1) ’ oy Zzl(zl 1) . (II-12)
We use Egs. (22), Cﬁ—B) and (II-4), to get
6,(n) = ¢(n,z)) = (€273 Aa-1am 12, (IT-13)

l .
From this, wl(n) is given by the relation wl(n)=Bl¢l(n)} and

== 12 2 -— -1
By=2709Cy = Cy 7/ (zy-2717),
_ 2 =1 _
Yy(n) = (Cl /(zl z] ))d)l(n)- (II-14)
We obtain from Egs.(22) and (II-3)
_ -n, - -n _ _
¢(n,z) = an [ 1 + ClA(n)zl /(zzl 1]. (II-15)
Futher, we can obtain from the similar calculation
_ -1, 0N =1y =1 - n - -
Y(n,z) = (ZlKn) z [l+(z1 2] )Cl A(n 1)zl/(zzl l)].»(I[ 16)
By using (H—ll); (I -15) and (II~16) , we can show
Y(n,z) = a(z)¢(n,z ). (Z-17)

Further, it can be directly shown from (II-14) and (II-15)

that

B(z) = (2/(z-2" ' NW((z™ 1), ¥(2))

=0 for |z|<|zl|. (II-18)

- 13 -
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