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INTRODUCTION

The inverse scattering method for evolution equations subject to
periodic boundary conditions has recently been the subject of intensive
investigation. At present, there is a rather complete theory of the
periodic analog of N-soliton solutions. One has explicit formulas, and
a.beautiful mathematical structure underlying the whole theory. Unfor-
tunately, these analytical results involve terribly transcendental opera-
tions: loop integrals, 6 functions of many variables, etc. Little has
been done to extract physically useful qualitative information from the
general theory.

For several years, we have performed computer studies and analytical
computations designed to understand, as simply and pictorially as possible,
the solutions of some periodic integrable equations and the spectral theory
of the associated Lax operator. We present here an outline of some of our
results; more details will appear in papers currently in preparation.

In Part I, we try to explain the most important features of the
periodic‘spectral theory in terms that should be understandable to a
scientist who knows the inverse-scattering method, but has not studied the
periodic groblem. The point is that one can guess the characteristic
features of a periodic problem without becoming involved with Riemann sur-
faces and 6 functions. Our discussion even points to some interesting
aspects of the periodic spectrum which have been completely ignored in
current work on periodic problems, because this work has been concerned
exclusively with the periodic N~soliton solutions (cf., for example, the
question of spectral spikes in the sine-Gordon equation).

In Part II, we show how one can use the periodic spectral theory to

predict the qualitative behavior of solutions of evolution equations. In
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principle, the method we describe could be applied to any of the equations
integrable by inverse scattering. For partial differential equations,
however, a lot of‘computer time would be required, and in fact, for most
equations the periodic spectral theory is not far enough developed - or

at least, not developed in the right direction for our needs. Therefore,
we illustrate the method on an important finite-dimensional system, the
periodic Toda lattice. We then describe some conjectures and ongoing work
on*an integrable discretization of the nonlinear Schrddinger equation to

illustrate some of the difficulties that must be overcome in other appli-

cations of our ideas.

I. CONTINUOUS PROBLEMS

A. Periodic Problem is Posed

Consider the initial value problem for the Korteweg-deVries equation,

with the initial data periodic in x (PKdV),

u = 6buu - u s - < X < o
t X XXX

(PKdV)

o Q o
u(x,t=0) = ux), ulx + P) = ux).
THis nonlinear evolution equation can be written in the Lax representation,
L, = [B,L]

L(t=0) = L.

Here L(t) denotes the Schrddinger opefator,

-2=
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L(t) = —D2 + u(e,t),

and B is the third order differential operator introduced by Lax,

B = 4D + 3(uD + Du).

This Lax representation shows that (PKdV) defines an isospectral family of
Schrodinger operators {L(t)}; that is, as u(*,t) flows in time ¢t
according to (PKdV), the spectrum of L(t) remains independent of t. The

o

spectrum of L(t) is identical with that of L. .
This situation should be compared with the initial value problem for

the Korteweg-deVries equation, with initial data which vanishes as lxl > @

(*KdV),

u = 6buu - u , 0 < x < ©
t X XXX
(»KdV)

u(x,t=0) = G(x), _G(x) ~ 0 as ‘xl > o,

The Lax representation also applies under these * boundary conditions;
the family of Schrodinger operators is again isospectral. This isospec-
trality hés led to a rather complete and thorough understanding of (*KdV);
however, (WKdV)’is considerably simpler than (PKdV). We describe a few of
the reasons for this simplicity.

The field u(x,t) under (*KdV) consists of two very distinct com-~
ponents - solitons and radiation. The radiation component behaves very
much like a linear-dispersive wave. As time increases, the radiation

spreads wider and wider; of course, conservation of energy demands its

-3-
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amplitude decreases as it spreadsi Thus, for reasonably large time, the
support of the radiation is very wide and its amplitude very small.
Physically, we think of the radiation as if it escapes any finite system

to x =, On the other hand, solitens are steady-localized pulses which
translate at constant speeds without change of shape. These localized
excitations remain in the field forever. This sharp, physical distinction
between radiation and solitons could not be.present under periodic boundary
conditions, for if one views the periodic probleﬁ of period P as on a
ring of circumference P, there is no point = toward which the radiation
can escape. All excitations must live forever on the finite ring, return-

ing time and time again to any point X on the ring. In spectral

0
language, this sharp distinction between solitons and radiation takes the
form of the distinction between point eigenvalues and continuous spectrum.
As we shall see later, this distinction disappears under periodic boundary
conditions.

Most scientists feel that the soliton component is the most important
part of the (»KdV) field. The real utility of the isospectrality of
{L(t)} for (~KdV) is the clear identification of the number, speeds, and
no—scattefing property of solitons with properties of the discrete eigen-
values (bound states) whose invariance in t permits these physical
characteristics to be extracted directly from the initial data. This
utility is absent under (PKdV).

More technically, the Lax representation for («KdV) leads to'the exact
linearization of (~KdV) through the scattering transform. The relative
simplicity of this transform arises because, for all finite ¢,

u(¢w,t) = 0. The field at the points x = #o is known to be zero for all

time; this fact permits the scattering transform, which maps u(x,t) to

-4
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this point at infinity in a very precise manner, to linearize the time
flow. Again, for the périodic problem, no distinguished point #O exists
for which u(xo,t) is known for all time.

Given such difficulties, it was natural to pose the mathematical
problem: 'How can the isospectrality of the family {L(t)} be used to
integrate (PKdV)?" Several mathematicians [for example, H. P. McKean, Jr.
and P. van Moerbecke, Inventions Math. 30 (1975), 217; B. A. Dubrovin,

V. B. Matveev, and S. P. Novikov, Uspekhi Mat. Nauk. 31 (1976), 55-136;

E. Date and S. Tanaka, Prog. Theor. Phys. Suppl. 59 (1976), 107-125]
throughout the world contributed to the solution of thié problem, which is
now rather compietely solved from a mathematical perspective. Unfortun-
ately, the mathematical methods employed are rather abstract, and there
remains the problem of making the solution of (PKdV) concrete enough to be
useful for applications. In this lecture, we will describe several tricks

which are designed to provide qualitative insight into the periodic spec-

tral transform and its connection to (PKdV).

B. Summary of the Mathematical Solution of the Periodic Problem

We begin with a concise summary of the mathematical solution of (PKdV).
Fix t, and consider L(t) = —D2 + u(*,t). (1) The first step is to trans-
form variables from u(x,*) to appropriate spectral data for L, and to
prove that‘this transformation is invertible. It turms out that sufficient
spectral data consists of the eigenvalues {Aj} for L under periodic
boundary conditions, eigenvalues {uj} for L under vanishing boundary
conditions, and, for each j, an assignment of a * sign which indicates
on which side of a branch cut the eigenvalue uj resides. (Consider a

~

solution of the Schrddinger equation at energy E, Y(x,E):

—5-
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Ly (~D2 + u)y = Ey.
Then {Aj} are those values of E for which w(x,kj) = y(x + P, xj) and
{uj} are those values of E for which w(O,uj) = w(P,uj) = 0.) The map
from {u(x,-)} » {Aj,(uj,t)} is invertible.

(2) Next, one asks how the spectral variables {Aj,(uj,i)} evolve in
t as u(x,t) flows under (PKdV), which, feor convenience of interpretation,

we consider as an infinite dimensional Hamiltonian system

2
SH P U

u =Dzo, H@ zj dx[~2’i+u3}.
0
The existence of the Lax representation guarantees that the periodic eigen—
values {Aj} are constant in time t; thus, one half the degrees of
freedom are constants of the motion and the (PKdV) is a completely inte-
grable Hamiltonian system. On the other hand, the variables {pj}, satisfy
an infinite dimensional system of coupled, nonlinear, differential equa-
tions. These equations can be obtained from a canonical description of the
spectral transform in the framework of Hamilton-~Jacobi transformation
theory. Formulas for the natural frequencies of oscillation exist; indeed,
tEe entire transformation can be viewed in action-angle form [H. Flaschka
and D. W. McLaughlin, Prog. Theor. Phys. 55 (1976), 438-456].

(3) Finally, the actual integration of the system, constrained to
admit only N degrees of freedom, can be accomplished using 6 functions
of many variables.

We take the point of view that the most important physical information
is contained in the amplitudes and frequencies of vibration, both of which

are fixed by the constants of motion. Indeed, the beauty of the Hamilton-

—6-
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Jacobi method of integrating (PKdV) is that this formalism concentrates
upon these physical chafacteristics. Using standard constructions from
classical mechanics together with the spectral transformation, one obtains
concrete formulas for the action variables and- the vibrational frequencies.
The action variables admit a rather explicit pictorial representation
through the Floquet discriminént, a representation which we will use rather
extensively in Part II. Thus, our general goal is to understand, as con-
cretely as possible, qualitative relations between the constants {Xj}

°

(or equivalently the action variables), the initial data u, and the

physical characteristics of the wave u(x,t).

C. Insight into Periodic Problems from Whole-Line Problems

Consider a solution u(x,t) of (PKdV) which evolves from initial data
:(x). Isospectrality guarantees that the spectrum of L(t) = -—D2 + u(-,t)
'i{s identical with that of L(0) = —D2 + :(-). Denote this spectrum by
o(L). Quite generally for any periodic potential, the spectrum o(L) is
‘displayed through the Floquet discriminant A(E), which we now define.

Consider two solutions ¢, (x,E) of the Schrddinger equation which are de-

fined by the initial value problem

[-D° + u(x)l¢, = E¢,
¢)i(x=0’E), =1

8x¢i(x=0,E) = +i/E.

This pair {¢+,¢_] is a basis of solutions at energy E. Since the poten-

-7-
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-]
tial u(x) 'is periodic of period P, $,(x + P, E) are also solutions
and the pair {¢+(x +P, E), ¢ (x+ P, E)} is also a basis. These two

bases are related by

$,Gc + P, E) 8, G, 1)
= T(8)
o_x+p, E) | 6_(x,E)

where T(E) is a 2 x 2 matrix which transfers the function ¢, (x,E)

across one period of the potential. Mofe compactly, we have
$(x + P, E) = T(E)$(x,E).

If we wish to transfer across N periods, we have
$(x + NP, Ej = ™NEF (x,E).

Now E belongs to the spectrum o(L) if and only if $(X,E) is bounded

for all x; equivalently, if and only if g(x + NP, E) is bounded for all
> N > >

N. But since ¢(x + NP, E) = T (E)¢ (x,E), ¢(x + NP, E) will be bounded

for all N 4iff the eigenvalues of the transfer matrix T(E) have unit

modulus. If we denote the eigenvalues of this 2 x 2 matrix by p, (E),

det [T(E) - p,(E)I] = O,
we have

E€o(L) iff [p,(B)] = 1.
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Computing the 2 x 2 determinant, we find the eigenvalues

tr T(E) + /(er TE))? - 4
2 b

oi(E) =

where tr T(E) -‘denotes the trace of the transfer matrix. Clearly,

|p+(E)l =1 demands tr T(E) is real and |tr T(E)] < 2. Thus, we find

E€ o(L) iff A(E) is real and [A(E)| <-2, where A(E) = tr T(E) is
called the Floquet discriminant.
o
This characterization of the spectrum of L = -D~ + u for periodic

(-] o

u(x) is quite general; however, if we restrict ourselves to wu(x) which
have compact support within -the period P (Figure I.1l), we can obtain
rather concrete information about o(L). 1In this case,

+i/Ex

¢, (x,E) = e near x v 0.

To compute ¢, (x,E) near x ~ P, we need consider only one period (Figure
° ’ «
I.2). Since u(x) = 0 near x v P, ¢ (x,E) must be linear combinations

of {e' Ex,e_l BX)  jear x n P

¢+<x,ﬁ) - B e VX 4 5 /E) el B

¢_(X,E) = —5(/§)ei/ﬁx + ax(v/ﬁ)e“i‘/ﬁX near X~ P,

Here the coefficients {a,b,a,b} are the familiar scattering coefficients
from whole line scattering theory. They are the scattering coefficients

[} o
for one period of u(x) with the rest of u(x) set at zero (as in Figure

I.2). They possess all the familiar properties, in particular

-9-
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b(/E){a(/ﬁ) = reflection coefficient
1/a(/E) = transmission coefficient
]az(/ﬁ)l =1+ |b2(/E)l, E real and positive
a(/E) » 1 as IEI - oo
a(/ﬁ}) = 0 at the bound stétes ‘E_ <. E < ... < E_ < 0.

Using this representation of ¢, (x,E) yields

¢+(x + P, E) 5(/§)ei/EP —b(/ﬁ)e—i/gp e_i‘/EX
= y x0,
' . e /B
¢_(x + P, E) —b(/f)el/g? a(/E)e_l/EP el Ex
that is,

$(x + P, E) = T(B)$(x,E), x O,

where the transfer matrix T(E) dis given explicitly in terms of the scat-

tering coefficients by

a0l e

T(E) =

-~ iVE _ /P J'
-—b(\ﬁﬂ)e1 EP a(V/E)e IVEL

-10-
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From this formula, we obtain an extremely useful representation of the
Floquet discriminant A(E) = tr T(E),

VEP N 5(@)61/173?.

AE) = a(/E)e t (I1.1)

This formula for the discriminant A(E) is valid as long as the
(-]
potential u has compact support within a. period; it can be used to dis-
iplay rather detailed information about the spectrum o(L). Since L is

self-adjoint, we know that o(L) lies on the real axis. Fix E real and

positive. Then 5(/E) = [a(/E)}*, and
A(E) = 2[a(/E)I cos (VEP - ph a(VE)),

where ph (a) denotes the phase of a. Since Ia(fL:)I2 =1+ [b(/E)fz,
Ia(/E)I > 1 and |A(E)l can exceed 2. This forces gaps to exist in the
spectrum 0 (L) (unless {b(/E)] = 0). For a reasonably sized period P,
the oscillation of A(E) wvs. reai E>0 arisés from the cos (*), not
its—ampiifude 2!3(/E)I. As E > 4=, |a(/§)| gets very close to 1 and
the gaps reduce in size. Their spacing becomes very regular, approaching
(/E; - /E;;I)P o for.large E. Thus, A(E) vs. E > 0 appears as in
figure I.3. Finally, as’the period: P > oo vthe oscillations of A(E)
densely fill the entire positive real axis and yield the radiation spectrum
of whole‘Iine scattering theory.

Now consider E < 0. In this regime,
R

vV~EP + -V-EP

A(E) v a(iv-E)e 0(e )s

~11~
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the discriminant has no oscillations due to the exponential7 However, the
amplitude a(i/-E) can have a finite number of zeros which occur at the
bound state energies of the whole line problem (for one period of S(X)).
For E < 0, |A(E)| < 2 only near these bound state energies. For other
values of E, IA(E)I is exponentially large. 'Thué, for E < 0, A(E)
appears as sketched in Figure I.3.

To summarize, from representation (I.}) of A(E), we can easily
understand the qualitative behavior of A(E), and thus of the spectrum
o(L), from our knowledge of whole line scattering theory. We find two
rather distinct classes of spectrum, and therefore two rather distinct
classes of excitations in the KdV field. From a practical viewpoint, the
periodic problem tends to have radiation and solitons, although the border-
line between the two excitations is not as distinct as in the whole line
case. Somewhat differently stated, if one begins with the spectrum of the
whole line problem as depicted in Figure I.4, together with the formula
(I.1), one can get a rather concrete feeling for the structure of the
periodic spectrum and for the types of excitations present in the periodic
wave. In particular, the continuous spectrum in the whole line problem
(radiation) develops gaps while the bound states (solitons) spread into
narrow bands of spectrum.

This method of understanding the band-gap structure of the spectrum
is really.unnecessary in this well-known case of Hill's equation. ﬁow—
ever, we've found the method very useful when studying less familiar

eigenvalue problems. Consider, for example, the sine-Gordon equation
-u _+sinu=20
XX

u
tt

-12-



184

ul(x,t=0) = u periodic (mod 2m)
ut(x,t=0) = m  periodic.

This evolution equation is rendered completely integrable by the unortho-

dox eigenvalue problem

p + L + v=YEY, @
_ 16VE -iu

where w = u + u . What is the spectrum of this eigenvalue problem when
. iu . i o
the potentials e and w are periodic?
Just as in the case of Hill's equation, one defines a discriminant
A(E) which is analytic in E except at E =0 and E = «», where it has

essential singularities. The spectrum consists of
{E € ¢|A(E) is real and |A(E)] < 2}.

Since the eigenvalue problem is not self-adjoint, this spectrum need not
be real.

Tahtajan and Faddeev [L. A. Tahtajan and L. D, Faddeev, Theor. Math.
Phys. 21 (1974), 1046] have investigated the whole line problem and its
connection with the sine-Gordon equation. Their results are well known.
In particular, the spectrum is as depicted in Figure I.5.

- If u and w have compact support within a period, we again find

A(E) = a(/g)e—ik(/E)P N 5(/E)eik(/§)P

-13~-
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where a—l(/ﬁ) is the transmission coefficient as defined by Tahtajan and
Faddeev, and k(/f) = t/E - l/(lG/E)].

In this case,

la¢BD) |2 = 1 - |b(/D)|%, VE> o0,
and la(/E)] < 1. Thus, on the positive real axis,
A(E) = 2|a(VE)| cos (-k(VE)P + ph a(VE)), |a(VE)| < 1;

IA(E)I never exceeds 2; no gaps develop on the positive real axis; the
entire positive real axis consists of spectrum.
Moreover, since A(E) is analytic, its real part cannot have a maxi-

mum in the E plane. Thus, a maximum E_ of A(E) on the positive real

0
axis is actually a saddle point in the complex E plane. At this saddle
point, a curve of Im (A(E)) = 0 crosses the real axis (which is also a
curve of Im A(E) = 0). On this curvé, A(E) 1is real, increasing away
from EO, and less than 2 for a small distance into the complex E
plane. There is a small spike of spectrum (Figure I1.6). In addition, the
bound states of the whole line problem (kinks, antikinks, and breathers)
spread into small bands of spectrum. Thus, the spectrum of (I.2), when the
potentials eiu and w are periodic, takes the generic form of Figure
I.6. The periodic sine-Gordon field comsists of kink trains, antikink
trains, breather trains, and radiation. The spectrum associated with the
radiation has spikes.

In this manner, the whole line problem can give considerable insight

into the periodic problem. Let us close this section by briefly consider-

~14-
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ing one more example of this principle. Return to the Schrodinger-Kdv

Case,‘
AE) = a(/Bye VP 4 3(/E)el ER

From the whole line problem, a(/E) provides one-half the degrees of free-
dom and is constant in t under KdV. Since A(E) is fixed by a(/g)
alone, we expect the‘same to hold for A(E). Indeed, A(E) does provide
one-half the degrees of freedom and is constant in t. Periodic theorists
tell us that the vanishing boundary condition eigenvalues uj provide

the remaining half the degrees of freedom. This fact can be made plausible
by consiaering the case of compact support within a period, for then the

uj can be computed rather explicitly, and are seen to depend upon phase

of b(/E). But this phasé of b(/E) is exactly the remaining half of the
information néeded for the inversion in the whole line pfoblem. Since uj

depends upon this phase, it seems less surprising that the map
u(x) > {A(E), (u;,%)}
is invertible.

II. DISCRETE PROBLEMS

A. Outline

We now show how the considerations of Part I can yield qualitative
information about the solutions of completely integrable periodic evolution
equations. The idea is to find the Floquet discriminant A(X) from the

initial conditions, to identify soliton-like and radiation-like spectrum

-15-
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from A()), and then to predict the general behavior of these components
of the solution as time increases. It is quite time-consuming to find the

discriminant A(X) for the Lax operators associated with partial differ-

ential equations such as PKdV or sine-Gordon; to get A(A) one would have

to solve an o.d.e. numerically for many values of A. Therefore our work

has been restricted to integrable ordinary differential equations, pri-

marily the Toda lattice. We explain, in thé case of the Toda lattice, the
connéction between A()A) and the action variables. We then show how one
might distinguish "solitons" from '"radiation" in the periodic lattice
(which is not always possible). In favorable cases, one can even predict
soliton speeds and the speeds of radiation wave-packets from A()).

Another application of this spectral analysis is found in perturbation
problems. The unequal mass Toda lattice, for example, is not integrable.
A(A) 1is therefore not constant in time. By ;bserving the change of AQX)

in time, one can estimate the interaction of solitons and radiation due to

the perturbation.

B. Basic Formulas

The Toda Hamiltonian is

-(q -q_ .)
_ 1 2 n ‘n-1 _ _ .
H= i {5 P + e f (qn qn-l) 1}.

We consider the sum n =1 to N, with periodicity conditions Uty = 9y

pn+N = pn. For motivation one sometimes looks at the infinite lattice,

where the sum goes from -« to ®, Set

a =%e (2.1)

~-16-
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1 .
= - 2
by 2 Ppo1” (2.1
Then the Toda equations become
“n - an(bn+l. - bn)
» 2 2 .
bn = 2(an - an_l).
This system is precisely L= [B,L] for the Lax pair
- — — —
bl a; 0 .. ay 0 ay 0 . ay
a; b2 a, -a; 0 a,
L= 0 a, R B = -a, 0
N by Ay 0

The eigenvalues of L are constant in time. Hence det (3I - L) is con-

stant in time. Define
A(A) = 2 det (}\I - L) + 2. (2...,7)

This is really quite analogous tc the A (X)) defined for the Schroédinger
equation in (I.C), although perhaps it does not aépear so. One can see
the analogy in two ways.

(1) Write the eigenvalue equation Lu = Au as a second-order dif-

ference equation

i

a bu Au . (2.3)

u + a u +
n-1 n-1 n nt+l nn n

~-17-




189

There is a discretized'Floquef theory; one has a 2 x°2 transfer matrix
T(), and A(X) = tracé T(x), Jjust as in Part I.

(2) One can think of (-D2 + q)y‘= Xy with periodic B.C.'s as an
infinite-dimensional operator equation. The periodic eigenvalues are then

the roots of
2
det (-D" 4+ q - A) = 0;
this can be made quite rigorous with Fredholm theory, and one sees that
2
det (-D" + q - Ax) = A(N) - 2,
up to a constant factor. This is just like (2.2).
The following properties of A(A) can be established:

A(}X) 1is a polynomial of degree N.

A(A) = 2 and A(A) = -2 have N real roots each. " Hence, the
graph of A(\) must intersect X = *2 N times eachj.a tangency

counts as two intersections.

One can predict some characteristics of A(X) by using the scattering

theory appropriate for the infinite lattice. This works just as in Part I.

The infinite lattice is solved by inverse scattering for

bu = Au

a u + au + -0 < < o,
n-1 n-1 n ntl nn n’

There is continuous spectrum, corresponding to radiation, on -1 < X < 1,

~-18-
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and bound states corresponding to solitons for X,>‘l and/or X < -1,

- . , 2 2
There are scattering coefficients a(A), B(A) satisfying |a[ - IB] =1
for -1 < A < 1, and for a localized potential, repeated periodically with

period N,
A0) = o) + A2 - DY+ E'(‘J\_)'()\-»K2 -\,

(The funny X + V 2 _ 1 arises because in the scattering theory it is
qénvenient'to set A = (z + z_l)/2; this is the analog of A = k2 in the
Schrodinger equation. () # VAZ - 1)N is then ziN, which is the analog
 of eiikx.) The A VAZ -~ 1 reminds one of Cebysev polynomials. When
there is no potential, a(i) = 0, A(QX) is the Cebysev polynomial. In
general, it is a modulated Cebysev polynomial. Our pictures of A(A) .show
some evidence of this, e.g., the oscillatory nature of A(A) and the more
rapid oscillations near A = *l. ;
. The connection of A()A) with the scattering theory suggests the fol-

lowing rule of thumb:.

"Oscillations of A(A) din -1 < X < 1 are related to radiation.

Oscillations of A(X) in XA > 1 or X < -1 are related to solitons."

This is of course quite accurate for disturbances localized inside a
period. It is a very poor rule for short lattices (N < 10) or for some
larg;, wide disturbances. Surprisingly, it is quite a good rule for cer-

>
tain non-localized disturbances in long (N A 25) lattices. We show some

pictures below.
A very important feature of A(A) is this: The N action variables
of the periodic Toda lattice can be read off immediately from the graph of

AN).

-19-
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The folldwing result has been established. Let

%—(sign A) cosh_l (1A]/2) if  |a] > 2

m(A) =

(=]

if Al < 2.

m(x) has "bumps" whenever |A(A)| > 2; there are at most N - 1 bumps.

Theorem: The N - 1 action variables are numerically‘equal to the
areas under the N - 1 bumps of m{(}).

Remarks: (1) If A(A) has a tangency at X = 2, we think of this
as a bump of area = 0. Then the corfesponding action variable = 0.

(2) Why are there only N - 1 actions, not N?

Physically, all the degrees of freedom are oscillatory except one which
is translation of the center of mass of the entire lattice. Action varia-
bles are only associated with oscillatory degrees of freedom. These
variables-are defined as follows in classical mechanics texts. A given
phase point qy» e P lies on certain surfaces I, = c¢

1 1> "7 N N’

where Il’ N IN are the N independent constants of motion. Let Yy

be any closed curve lying simultaneously on all these surfaces, and define

N
I() = §> I p_dq_. (2.4)
vy 1
;s . - ...+ i I = ;
In the perlodlg Toda lattice, Il = Py Py and 1 < is an
infinite plane in phase space. The intersection of the remaining Ij = Cj
leads to an N - 1 dimensional torus, which has N - 1 '"independent"
closed curves Yo for each of which we define J(Yi). It is the presence

of Il which causes this system to have only N - 1 action variables.
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(3) Im most integrable Hamiltonian systems the loop integrals (2.4)
are difficult to evaluate. It is very interesting that for the Toda
lattice, these integrals can be done '"graphically" in a few seconds of

computer time by plotting m(A).

C. Practice Problems

We illustrate the above facts by a couple of simple examples.

Example 1 (Near-linear disturbance): N = 25. Set

£
i

.05 sin K,ﬁ
3
= .05 w, cos k.,n
P J 3

where

~
i

213/ 25

)
il

2 sin k./2.
J

These are‘harmonic normal modes. They have low amplitude, so the Toda
léttice may be expected to respond linearly. We compute a; bn (see
(2.1)) and graph A(}), for j =1, 2, 3, 6, 12.

The amplitudes of these linear modes are essentially the action
variables of the harmonic lattice. We therefore expect that we are excit-
ing, successively, actions Jl, JZ’ J3, J6’ le of the Toda lattice.
Figure 1 shows that indeed bumps i, 2, 3, 6, 12 are made nonzero, all
other bumps being zero to plotter accuracy. Noté also that the bumps are

inside =1 < A < 1; these initial data lead to radiation in the Toda

lattice.
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Example 2 (Pure solitons): N = 25. The initial condition is a very
narrow cnoidal wave, essentially an infinite lattice soliton with

-(q -q__.) )
e D n=1" _ 1= (sinh2 w) sech”™ (nw - t sinh w + no)}

Figure 2 shows one very large bump at A < -1. The bump is so large that
we use a log scale where |A[ > 2.

Compare Figures la and 2. In both cases, action Jl is nonéero; the
other actions are zero. The location of the bump gives additional informa-
tion about the physical motion—radiation vs. soliton.

Example 3 (Two solitons and radiation): The initial condition is:
two infinite-~lattice solitons on a 25-particle periodic lattice. The
exponential tails are cut off at the ends. This gives rise to two large
bumps in A(X), at A < -1, and some small bumps inside -1 < X < 1. The
latter correspond to radiation which is caused by the truncation of the
exact soliton (Figure 3a).

Figure 3b shows the graphs of a  vs. t for n=1, ..., 25. The

solitons would be very tall at this scale, so their tops have been cut off.

The radiation is very evident.

D. Zabusky's Experiment

In Comp. Phys. Comm. 5 (1973), p. 1, Zabusky solved numerically a

200-particle lattice with cubic force law, subject to a large amplitude,
long-wave initial condition. The initial displacement broke up into 46
narrow pulses, of which 20 had super-acoustic speeds and 26 had sub-
acoustic speeds.

We plot the Toda discriminant, A(X). For the given initial condi-
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tions, the two forée—laws don't differ very much. At N = 200, AQA) is
so large that a log log scale is used outside !A[v< 2. The picture is
cut off just inside A = -1.

Notice now that there are 19 bumps at A < -1 (solitons) and 26
bumps inside -1 < A < 1. Zabusky's subacoustic spikes (he calls them
L-solitons) therefore correspond to excited radiation-type action varia-
bles.

Zabusky measured the speed of the pulses. We can reproduce his
measured speeds from A(\) by using the infinite~lattice soliton speed

bound state relation

n [A + sz - 1]

at A < -1, and the harmonic formula

sin k

speed =
inside -1 < X < 1.
From this point of view, the subacoustic pulses are essentially

harmonic wave packets.

E. When the Method Does Not Work Well

One can plot A(X) for any initial condition of the Toda lattice,
and one can read off the action variables as explained earlier. It is
not always possible, however, to predict the features of the resulting

solution in a useful fashion.

-23-



195

Figure'S shows thg P vs. t plot for a four-particle lattice. It
is clear that one cannot make a distinction between '"solitons'" or 'radia-
tion" here. One could, using our formulas, compute the oscillation
frequencies (we have done so).

Figure 6 éhows another extreﬁe case: a 25 pafticle lattice subject to
a large-amplitude mode 12 (= highest frequency) initial condition. One
can see ﬁhe huge middle bumps in A(X),b as expected,'but4it is hard to
correlate this with aﬁyvpatﬁern in the a  vs. t plot.

In some seﬁse, the motion hés to be of "long-wave typé” on a "long"
lattice for the division intd solitons and radiation to be‘meaningful.

'The concept ofi"long—wave type" is not very well defined, and quite
subtle. Zabusky's initial condition, for example, was long-wave, but’yet
broke up into narrow pulses only 4 lattice‘points widé; it does not
remain a long-wave disturbance as far as one can tell from the physical
shape of the lattice. What can be said about it, however, is that there

is no significant excitation of the short-wave action variables, and that

appears to be a crucial requirement for the applicability of our method.

F. A Light Mass Impurity

We take a periodic, N = 25, Toda lattice with a light mass at
n = 1. A narrow soliton is sent in. Figure 7 shows A()A) before the
interaction, at several stages during the interaction, and after the first
interaction. Figure 8 shows an vs. t. Observe the oscillation of the
light mass (bottom curve).

The big bump at A > 1 is the incoming soliton's action Qariable.
It decreases during the interaction, then grows back a little. At

A < -1, one sees a growing bump representing the reflected soliton. Just
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inside X = -1 are some radiation actions.
PartiCularly interesting and unexpected is the growth - and later
decay - of a second soliton bump just outside A = +1. This bump comes

and goes away within one second, and could never be seen on the time line

plot of Figure 8.

This suggests a possible analytical approach to soliton-scattefing
off impurities. To a first appfoximation, there is only the transmitted
and reflected soliton. To a second approximation,;there is a three-mode
interaction, in which a part of the incident energy is transferred to the
reflected soliton by a coupling to a third soliton-~type action variable.
At Kyoto, we learned of relaﬁed work on the impurity problem by Yajima
and by Nakumura and Takeno. This work must still‘be related to our pre-

liminary modal analysis.

G. Diffusion of Action

One very useful aspect of the above theory is that action variables
can be computed quickly and efficiently. This makes possible a variety
of other experiments. The unequal-mass Toda lattice was shown by Casati
and Ford to be non-integrable; there are stochastic regions in phase space.
We ask: How do the (equal mass) action variables change along a stochastic
orbit? On the basis of a different model, Chirikov has argued that they
execute a diffusion process. We are in a position to investigate this
problem for lattices of several particles. Such a study is currently in

progress (in collaboration with J. Ford and F. Vivaldi).

H. Discrete Nonlinear Schrodinger Equations (DNLS)

The analysis of A(A) can, in principle, be carried out for other
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integrable systems. With some carefully designed computer experiments,
.one could hope to get insight into the response of integrable systems to
perturbations. We have carried out some computations on the system

P _ ' 2 4
iQ =Q - 2Q +Q _,+ lcznl (Qq *0Q

),

n-1

Qn complex, = Qn. This was shown to be completely integrable by

Qn+N

Ablowitz and Ladik. The associated eigenvalue problem is

= -+
Vn+l &vn ann
(2.5)
1
= —— —— *
Yntl z 'n ann'
We write (2.5) in vector form:
v B z Qn v
= o ,
w [nt+l -Q* z w /n
n
. T
or, with ¢ = (v,w) as
=M ¢ .
¢n+l n¢n
The transfer matrix across,ohe period N 1is then
T(z) = MNMN_l e Ml’ (2.6)

and the discriminant A(z) is again defined as Trace T(z). It follows
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immediately from (2.6) and from the form of Mn that A(z) = A(1l/z*)%,

and because of‘this symmetry, it suffices to study A for .]z[ < 1.
The behavior of A(z), and the solutions of the DNLS, appear to

be quite complicated for an integrable system. We describe a few pre-

liminary observations.

1. Hamiltonian structure

The DNLS is a Hamiltonian system: Set Qn =X, + iyn,
2 2
+ x5 +
1 x, ty; 0
2 2
1+ X, + Y,
D = .
) 2 2
. +
0 1+ Xy Yy
0 D
J = . Then with-
~D 0
N 2 2
= + -
H i (yn+lyn Xn+lxn log (1 + xn + yn))

one has

x

dH/dx

9H/3y

One can introduce ordinary conjugate variables q_, P> €8 by

n
2
fp“ :
X = e - 1 sin g
n n

2p .
= e "-1 cos q ;
y .

=27~
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in terms of these 45 = BH/Bpn, ﬁn = —aH/Bqn, but the Hamiltonian be-

comes very complicated.

2. Action variables

Since the DNLS is a Hamiltonian system, one eipects the eigenvalues
of (2.5) to be a complete set of integrals in involution. By analogy
with our earlier results for the Toda lattice, there ought to be a
‘direct relation between the function A(z) and the action variables.
This has not been investigated. Graphical studies of A(z) are not very
convenient because one needs plots for complex |z] < 1, which are quite
time-consuming on the computer. Theory is needed to tell us what to look

for in the graph.

3. Stationary solutions

We now consider stationary solutions of DNLS. It will be seen that
these are quite complicated already, which indicates that the full phase-
space structure of DNLS is probably even more involved.

A stationary solution satisfies the nonlinear difference equations

) |
Qup =29, *+Q ; + 1 [7@Q, + Q) =0 (2.7)

n n-1

if N 4is the period, then Q0 = QN’ Ql = QN+1' (2.7) can be rewritten

as a mapping of a discrete phase plane. Let P = Q - Qn, then

Qn+l = Qn + Pn

2
o+ 2 2@, + )

>
1+ (Q +p3°
n n

-28~
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If we define the mapping T of the Q, P plane (Q, P complex) by

lQ + ‘P|2(Q + P)
1+ (Q+P)>2

T(Q,P) =| Q+P, P~ 2
we may rewrite (2.8) as

Q ) = T(Qn,Pn).

n+l’Pn+l
. 2
In general, points (Ql’Pl)’ (Q2,P2) = T(Ql’Pl)’ (Q3,P3) =T (Ql’Pl)’

Q . To get a

... will not satisfy the periodicity condition Qn+N =Q,

stationary period-N solution of DNLS, we need to find fixed points of
the Nth iterate, TN.
Example: (1,0) » (1,-1) - (0,-1) + (-1,0) > (-1,1) »~ (0,1) » (1,0)

is one orbit of T. So Ql =1, Q, =1, Q, =0, Q4_= -1, Q.= -1,

3 5

Q6 = 0 1is a stationary (real) solution of period 6 for DNLS.

2

The mapping T 1s symplectic; if we write Q =x + iy, P =0 + irt,
then T leaves the form dx A do + dy A dt invariant. In that sense,
it is a discrete~time Hamiltonian system with 2 degrees of freedom. The

mapping T is also integrable - it leaves invariant the function
F(Q,2) = |7]% + aox - kox + [q + 2 %|of?
All iterates TN(Q,P) will therefore lie on the complex curve

F(Q,P) = F(Q,P).

The existence of F can of course be verified by direct computation,
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but it is instructive to derive it a little differently. This leads us
to a short digression.
Whenever an evolution equation possesses local conservation laws,

e.8.,

then the stationary solutions will satisfy XX = (0, di.e., the expression
X is an integral for the o.d.e. defining»the stationary solution. Con-~
sider, for example, a higher KdV equation,
t H
6Hn+l din 6 1

= _..+ —
ut 8q + cn 8q + ¢y 8q X,

(2.9)

where éﬁj/dq is the gradient of the jth conserved functional, and

cj's are fixed constants. The stationary solutions (ut = 0) are known

"

to be n-gap (= periodic or quasi-periodic "n-soliton") potentials.

(2.9) possesses infinitely many local conservation laws,
+ = i = e
@)+ &) =0, =12

Hence, the stationary equation (2.9), viewed as a nonlinear o.d.e. in x,
of order 2n + 1, has n integrals Xj' In fact, it is known to be a
completely integrable Hamiltonian system in__x. (The other Xj,‘

j > n+ 1, depend on the first n for stationary solutions.)

Returning now to DNLS, we check that

d . @
dt Qan—l bn Sn—l (2.10)
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2 ; 2
= - * . .
where Sn Iin anlQn—l(l + IQn[ ). In general, with period N, we

have an integral of DNLS:

d N
— % =
dt i QnQn—l 0.

For stationary solutions, it follows from (2.10) that Sn = const, and
some simple algebra converts this into
' 2 2 2
P x - P Q% + + P e = .
| nl +Q P¥ nQn IQn nl lin constant

If we restrict our attention to stationary solutions for which all Qn

are real, then the mapping T becomes an area-preserving map of the Q,P

plane to itself. All orbits under T 1ie on the invariant curves

P2 + QZ(Q + P)2 = const.

In the complex case, one can compute that the stationary points of DNLS

lie on a compact surface

|2 2 2
- - + = = cee
(Xn xn—l) + (yn yn—l) + (ann—l ynyn—l) ¢, n=1, !
in phase space (Qn =x + iyn). For a given period N, ¢ must of course
have a very particular value.

In this connection, it is interesting to note that another discretiza-

tion of the nonlinear Schrddinger equation,

1, = Q

2
n ntl an + Qn_l + an!QnI (2.11)
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leads to an area-preserving phase-plane map, say S, when stationary
real solutions are sougﬁt. The computer suggests right away that S is
not integrable (not every orbit lies on an invariant curve). It is then
highly probable that (2.11) is a non-integrable éystem of o.d.e.'s. We
have here a computer test for integrability of certain kinds of large-
dimensional systems. It should be possible to adapt these ideas to some
p.d.e.'s as well, and we are currently investigating a problem of this
type. At any rate, the stationary solutions of DNLS, as the above dis-
cussion shows, are the simplest analogs of the n-gap solutions familiar
from the Better studied systems.

Consider now, for definiteness, the period 6 stationary real

solution 1, 1, 0, -1, -1, 0. For it,

6z = 22+ 28— 2@t w2 3R 2 + s (2.12)
The corresponding phase points Qn, Pn = Qn+l - Qn lie on the curve
p? + Q%@ + »)? = 1. (2.13)

It is a well-known fact about area-preserving maps that any other point
, 6 |
P i i : = .
(Ql, l) on this curve also has period 6: T (Ql,Pl) (Ql,Pl) The
curve (2.13) therefore defines a one-~parameter family of distinct, sta-

tionary real solutions of the period 6 DNLS. It turns out that A(z)

is given by (2.12) for all of these solutions.

If we recall that A(z) determines all the integrals of DNLS, we’
conclude that there is a one~dimensional invariant torus in the phase

space, each point of which is a real stationary point for DNLS.

-32—



204

To prove the assertion about A(z), one considers the Hamiltonian

1
Hl =25 Yar1®n T Farn”

=t =

It is in involution with the DNLS Hamiltonian.- One can show that the
set of real stationary DNLS solutions of period N is a closed solution

curve for the Hamiltonian system H Since H, leaves the integrals

1’ 1
of DNLS invariant, A(z) must be the same for all real stationary DNLS
solutions of a given period. A(z) is actually constant for the ;omplex
stationary solutions as well, but from now on we only consider the real
ones. |
One quickly sees that these real stationary points are unstable for

the time—dependent DNLS. For, they are real, and the ién term drives
the complex part of Qn away from zero. There should be separatrices
emanating from these unstable stationary points. Where do they go?
Thgy go into the complex—Qn domain, but it is not implausible that at.
least some of them end at real Qn. Because all the integrals of DNLS
must be constant along such a separatrix, -A(z) cannot change, and keeps
the value (2.12). It is then very likely that the other end of the
separatrix is again a phase-point arising from the invariant curve (2.13):

| We have done a lot of "supposing"’here, but the picture we propose
has been supported to some degree by a few computer experiments carried

out in 1976. At that time, we were trying to understand the work of

Bogoyavlenskii (Comm. Math. Phys. 51 (1976), 201) on perturbations of the

Toda lattice. He discovers, for the Toda lattice, a phase-space portrait
related to the one we propose for DNLS; however, for the Toda lattice,

the unstable stationary points are out at infinity of phase space; they
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are reached when one spring is stretched infinitely far. An unphysical
change of variables ié necessary to bring them in to a finite region.
Fof DNLS, the unstable real stationary points are there from the begin-
ning (we have not tried to determine the stability of the complex sta-
tionary solutions). On the other hand, DNLS,ﬁas far fewor such points
than do the models studied by Bogoyavlenskii.

Certain conjectures and problems pose themselves quite naturally
after a reading of Bogoyavlenskii's paper. A solution of DNLS which
starts near an unstable stationary point will follow the separatrix to
another one. Then it will move near a possibly different separatrix to
the vicinity of perhaps a third unstable stationary point. Is there a
simple law describing this reflection amongst stationary points? In
Bogoyavlenskii's work, the reflections are associated with the Weyl sub-
groups of certain simple Lie groups. What happens to this whole picture
when a perturbation is added to DNLS? One would hope perhaps for a
qualitagive description of thevorbits in a stochastic region of phase
space.

All this is conjecture, and some of the ideas may not be applicable,
but yet the whole problem, understanding the action variables, A(z),
the reflection of separatrices, and the role of the area-preserving map
T in thg dynamical theory, seems to be intéresting and not altogether
easy.. We plan to resume a‘study of these problems some day, but as we
have not had time .to pursue the matter for the past two years, this sketch
of dﬁr ideas was included here in the hope that a reader might become

interested in one or another aspect of the DNLS system.
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e

Figure I.1. Periodic potential u(x) with compact support within period P.

°
Figure I.2. One period of u(x).
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