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SOME APPLICATIONS OF TRANSCENDENCE
THEORY TO LINEARLY RECURRING SEQUENCES

K. K. KUBOTA
UNIVERSITY OF KENTUCKY
TOKYO UNIVERSITY

Our purpose here is to state several natural conjectures about
the behavior of linearly recurring sequences and to show how results,
originally developed for use in transcendence theory, can be used

to verify special cases of these conjectures.

1. Definitions.

Let us begin by setting up the notation which will be used

below. A linear recurrence is defined to be a sequence{an}n_,O of al-
v

gebraic integers not all zero which satisfy a recursion relation of

the form

— _ 191
(1) an+e - M2n4o-1 Myd 4o ¥ ooee F (-1) Mcan

for all n > 0. Clearly, the sequence {aﬁﬁis determined by (1) and

the initial values agr Byrecer g g The order of the recurrence
{ang is the least integer ¢ for which a relation of the form (1)

holds. 1In this case, the Mi are uniquely determined, and +1

_ T -1 i _ N 4
(2)  £(X) =X - MX e F G M= gz_(x-ﬁr)
is called the characteristic polynomial of {aﬁ§ the roots 51'~52”""
=" ;
@R of £(X) = 0 are called the characteristic roots gf_iahg. If none

of the characteristic roots and none of their ratios are roots of
unity, then {anE is said to be non-degenerate. By replacing %an}
H 0 (0 £« i < r), it is usually possi-

with a set of subrecurrences R
rn+i’ nr

ble to reduce questions about general recurrences to ones about
non-degenerate recurrences,
From the recurrence relation (1), it is easily verified that

e
(L ax o) = g(x)
n=0

is a non-zero polynomial of degree less than T. Conversely, the
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Taylor series coefficients of a function of the form g(X)/(XUf(X_l))
satisfy the recurrence relation (l). On the other hand, using (2) to
expand g(X)/(va(X-l)) in partial fractions, one obtains the closed
formula R

_ n
(3) a, = zl g . (n) B,

where the g, are polynomials of degree‘ﬂr. Thus, the three notions of
linear recurrence, power series expansion of rational functions, and
exponential polynomial are equivalent. In particular, it follows

that {arn+i}n30
sequence.

is either a linear recurrence or the identically zero

Examples. {i) If g is a non-zero polynomial, then ?g(n)}n&o is
a linear recurrence. The linear recurrences of order one are those
of the form ?g§n£7o with g a constant.

(ii) If the characteristic polynomial f£(X) has no multiple

roots thenia | is an exponential sum
4) : = 5 n
( 8n ~ E;i Iefr -

i.e. a linear polynomial in ﬁln, ﬁzn, ceey FI;R In the special case
where R = 2, we say that }an} is a binary recurrence. We say that

3an} is decomposable if it is a "product of binary recurrences".

More precisely, let G be a finitely generated subgroup of 6n containing
BirBor «ver Bgri S0 G =<§>X<\‘l7 X ... x> where < is a root of
unity and Xl’ Yz, ceey Es are multiplicatively independent. If k is

a positive integer withg'k = 1, then one can write

= F-(Xlkn, ® oo g \{skn)/M(Xlknl ooo,Yskn)

for 0 < i < k where Fi is a polynomial and M is a monomial. Then ?an}
is said to be decomposable if each polynomial Fi(xl,..., XS) can be
factored as a product of (monomials and) binomials. Using the
structure of subgroups of finitely generatégzibelian groups[ﬁ3], it

is easy to check that this definition does not depend on the particular
choice of G, €, \‘{i' k, Fy, or M.

The above classes of recurrences are those to which most of the
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results below are applicable. Note that, if the characteristic
roots of ?én} are of the form _
(5) B, =p¥* (wel,r=1, ..., R,
then the sequence is decomposable by the fundamental theorem of
algebra; in particular, binary recurrences are decomposable. Another

example of a decomposable recurzence is
n
(6) a = 5
n r=1 ‘Br

where ﬁl = (32, ‘63 = ‘54 (complex conjugates), and \F r\ = b for all
r; using Z = b, X = ﬁl/b, and Y = @3/b, the fact that {an} is
decomposable follows from the factorization

ZX + zx L 4+ 7y + 2y L = Z(XY + 1) (X + Y)/(XY).

2. Growth of Linear Recurrences.

The case where § an} hag only one characteristic root (R = 1)

suggests that the following might hold.
Conjecture 1. If §an'§ is a non-degenerate linear recurrence, then

for every ¢ > 0 and n > N(g) one has

(7) la_} > max €11, «.up 1p ) 3792

Suppose henceforth that the characteristic roots of {an} are

ordered in such a way that

=gyl =gl = een = 1B Z 1BV 2 B gyl 2 - 7/\@1@(\.

and
Then, for every sufficiently large te N , the inequality (7) holds
for at least one integer n in the interval [t, t + S). This is a
consequence of Turan's Third Main Theorem [ 17, pp. 53-56]:

Theorem A (Turan). Let e{l, eees%,. be non-zero complex numbers in
the closed unit disc and set A = I}lir_l (i.,-\c(i —vk\ ). If 9y¢ eeer 9g
1+]

}

are complex numbers not all zero, then

s

| 9,7

max r=1 >
nélt,t+s)S_ n 4 s
> Vg et 52
r=1 .

AS—l
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Applied with o = @r/lpr\ for r = 1, ..., S, Theorem A shows

hat ‘
max \an\ > c”ltest
nelt,t+s)
or some c > 0 and all sufficiently large t e m*.

Note that without the hypothesis that fanlbe non~degenerate,
‘onjecture 1 is false; for example, the degenerate recurrence {ag}

There

2n42 T 2p4l T @pr 3 S0 2y =1 |
satisfies a; = 0 for all n 3 0. On the other hand, if fan} is
ron-degenerate, then Theorem 5 below says that no number can

sccur infinitely often in {aﬁ}.
Let fan§ be a non-degenerate linear recurrence whose characteristic
polynomial has no multiple roots, i.e. one of the form (4). With T
as above, to verify (7), it suffices to prove the analogous inequality
with ﬁ% .
al' = g
n =1 rﬁr
in place of{a&. Mahler [ 77} used Ridout's p-adic version of Roth's
Theorem to do this for second order linear recurrences. Mqre‘recently,
Mignotte [8 ,9 ] generalize@dthis result to linear recurrences of
rational integers with T £ 3 by using a version of Baker's Theorem
together with a trigonometric identity.
An appropriate wversion [1 ) of Baker's Theorem is the following.

Theorem B. Letcil, ...,o(n be non-zero algebraic numbers with

heights at most Al' ceoy An (> 4) respectively, and set

n-1
R=Q (A yeee s )y D=[K:01, a'=Tr log A., and Q= O'log A_.
n =1 j ‘ n
Then there are effectively calculable constants Cyr €y 7 0 such that
the inequality '
c,n
b b - {(c,nD) Nlog !
1 n 1
0<\°<l oo-«n "‘l‘ <B
4"1.
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has no solutions in integers by eee, b~ such that lbi‘AS.B (B 3 4) for

all io

Theorem 1. With the above notation, suppose that the linear
Theorem -

recurrence {aﬁ} is decomposable. Then there is a real number c > 0
depending only on fan§’that for all n > 1, one has

la | » max (‘Pl\’ ...,\ﬁIJ)nn-c

whenever aﬂ # 0. In particular, Conjecture 1 holds in caseﬁaﬁ}"is.

non-degenerate and decomposable.

Proof. Since {ag} is decomposable, there is a k such that one has
J

' _ kn kn _
qkn+i = Rgib ;r__‘—l (R332 1)
for 0 £ i < k, n > 0 where $ = max (Hsl\, ...,\FP\) and \aj\ =1

for all j. The result now follows by applying Theorem B to each of
the expressions Ajiajkn -1 (J=1,0e., J).
Theorem 1 explains the above mentioned result of Mignotte since
T = 3 and }an} real imply that the characteristic roots are of the
form ’
_ ié _ ~i6 _ .
Br= e, By =be™, = s s
and so iaﬂ}is decomposable by (5) above. Mignotte L 8,93 also
verified Theorem 1 in the special case of the linear recurrence 6)

which, as we have seen, is also decomposable.

3. Divisibility.

The natural)g-adic generalization of Conjecture 1 can be stated

as follows.

Conjecture 2. Let {an} be a non-degenerate linear recurrence of
rational integers and Pir eeer Py be rational primes satisfying (pm,§1)

= 1 for all m and r. Then, for every € >0 and n - N(g, Pyr eees pM),

one has
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> max (18| , ..r V@) 17O

The1§-adic analogue of Theorem B is as follows.

Theorem C (Van der Poorten [19]). Letol yreees¥yrByreee,B (;,ee),
1, K, and D be as in the statement of Theorem B and ;Xbe a prime of
K lying over the rational prime p. Then the inequality
by by 12(n+l) _D 2
80 > ord (dl ees dn - 1) > (16 (n+1)D) p__af{log B)
] log p
has no solutions in integers bl""' bn such that \bi\ <B (B 3 ee)

for all 1i.

Using Theorem C in place of Theorem B in the proof given for

Theorem 1, one obtains the following result.

Theorem 2. Let ?an§ be a decomposable linear recurrence. Then
there is a ¢ » 0 such that for every n > 1 either a, = 0 or else

D
\a \ > n~CP log n
n ,

for every primelg of K such that @l,..., @R.areis—adic units.

Since {aﬁ% is decomposable whenever fan}is decomposable,
Theorems 1 and 2 together give the following result. »

Corollary. Conjecture 2 holds for all deéomposable non—-degenerate

linear recurrences of rational integers.

Polya [j01 has shown that if Yan} is a non-degenerate linear
recurrence such that the set of prime divisors of §an} is a finite set,
then ?an} is of order one. 1In fact, one expec_ts that

lim P(an) = o0
N 00

where
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P(an) = max {NK/lei g\an for some n}.

Conjecture 3. If {an} is a non-degenerate linear recurrence, then

P(an) >> loglog n

unless {anx is of the form

a, = A(n - a)mgn.

In the case where ?aﬁ% has only one characteristic root (R = 1),
this has been verified by Tijdeman and Shorey [13] using Baker's method.
Also, Schinzel [11] has shown that P(a )>7nc for some ¢ s 0 whenever

ja } is a binary recurrence.

Theorem 3. Let %an} be a decomposable non-degenerate linear recurrence

of order greater than one. Then

c
P(an)'>> n

where ¢ > 0 depends only on the recurrence {an}.

Proof. Let (3 be an algebraic integer with (F) = (Fl, ""£8R) and
suppose that a, satisfies (4). Define

R
?E. gr(Fé/F)r = an/FP and ¢ = NKQe)/Q b_.

Since Theorem 2 can be applied to each of the conjugates of b }
is clear that the characteristic roots of §c } havz no common prime

divisor. Also,

P(a )[Q(F):Q—) P(C ),
and so we may assume at the outset that (ﬁl,...,FR) = 1 and that

%a 1 = 2. Choose ¢ » 0 small enough so that

2 c(D+l)

(log n)2 z: pD << (log n) = o(n).

p<nc
Then, by Theorems 1 and 2, a, must be divisible by a prime larger than

n® for all sufficiently large integers n.

Let A and B be relatively prime algebraic integers. A prime“i of
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Q(A, B) is called a primitive divisor of A" - B if 2 | A" - B" and

7-§'+ A™ - 8™ for all m < n. Using elementary methods, Birkhoff and
Vandiver [ 2] showed that,if A, B€ 2, then A" - B” has a primitive
prime divisor for all n > 6 provided‘ that (A, B) = 1 and A # +B.

As an immediate corollary, it follows that for every m > 0 there is
a prime p= 1 (mod m) (LetA =2, B=1, and n = 7m) .

Theorem 4 (Schinzel [127). Let A and B be relatively prime
algebraic integers such that A/B is not a root of unity and AB # 0.
Then A" - B" has a primitive prime divisor for every n > c where

c = c({oa/B):0]) > 0 is effectively calculable.

In fact, Stewart [14] has refined Schinzel's argument to show
that one can take
c = max (2(2d - 1),
where d = [Q(a/B):0].

e452d67)

th

Proof of Theorem 4 (Sketch). Let@n(x, Y) be the n cyclotomic

polynomial written as a binary form, K = Q(A, B), and d = [K:Q]

Schinzel proves the following main lemma by elementary means.

Lemma. Let vil@ (A, B) where 15'15 a prlme of K and n > 2(2 - 1).
If 7,5 is not a primitive prime divisor of A - Bn, then ordg@ (a, B)
< ord n. In particular, A" - B™ has a primitive prime divisor

whenever

\NK/Q§n(A' B)| > n[K:Q].

Write A/B = o(/(éwhere «, @eK and (¢, @) =L, Using
T o(x, v) = W - yysrn/m,
n m{n

one obtains

) d -
[Q(A/B) :0] log lNK/Q§n(A' B) |
(8)
= L Z pta/m togle 07 - (@] - em) w0 L

< mjin

4
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where K' = Q(A/B) and © ran§es through the isomorphisms of K
into €. We want to apply the lemma. Using an estimate for v
]v(d)m'-'V(F)m\ as in Theorem 1, one sees that in order to give a
suitable lower bound for (8), it suffices to show that
(9) w(ol,‘é)>>d 1 '

where ‘ '

w(o(,(%) = log U max (lv‘ @) s\ (F»)\) - log N .
But, if o(/@ is not an algebraic integer, then

Wi, B) 3 log|Np, 0 B/ Ny oL 21og 2;
and, if « /p is an algebraic integer, then

w(a,F ) > max log\v @V?)\.

K'/Q

Thus, to verify (9), it suffices to note that there are but
finitely many algebraic integers ¥ of degree < d which are not
roots of unity and have no conjugates outside the disc of radius

2 about the origin. For further details, consult [12].

4., Multiplicity of Linear Recurrences.

R w_z
Let F(z) = Y_ pr(z)‘ e ¥ ~be an exponential polynomial where
the p,. are polyn&?&als of degree Fr 2 0. Let F?" 0 be a real number,
and define the quantities ' ‘

R
o= 3 (F’r + 1) and O = max\wr\.
r=1 r

Mahler [21] gave estimates for the number N(F, (>) of zeros of F in
the disc {zl« F in terms of v, €, F, and A = min \wr - Ns\. In

r#s
answer to a problem of Turan, Tijdeman [16] showed that N(F, f)) could
be bounded independently of &A . In fact, he showed the following
result.
Theorem D (Tijdeman). n(F,F ) € 2(v- 1) + 5().(2..

Since Z lies in the X-adic unit disc, one expects that a1g—adic"
version of Theorem D would be useful in bounding the number of times

zero occurs in a linear recurrence, Such results have been proved



20
10

by Laxton [5 1, Waldschmidt [29], and others. Van der Poorten [18 ]
simplified the argument as follows.

Theorem E (Van der Poorten). Let K be the Lg—adic completion of
a number fleld K at a prime ® lylng over the rational prime p. Let

o
F(z) = Zj p.(z) e r? yhere the e K’S are distinct and the p_(z)
r=1 ‘

are non-zero polynomials in K_[z] of degree ,D Suppose that ordpbé

Z(p - l)'":L +¢ (£>0), and setv = lo + 1). Then the number

of zeros of F(z) in K__ with lzL'S 1 1% less than

3 -1
(T -1+ ((p=-1)&) 7).

r

The proof depends on the following simpl'e case of the xg -adic

version of the Weierstrass Preparation Theorem.

Lemma (Strassman [15]). Let W€ K13 be such that ordﬁ’hr = 1, and

[24]
F(z) = 2 fk(z)’h'ké K _I1z1] where the fk(z) are polynomials whose
coeffickelts are w-adic units and fowi 0. Then F(z) = G(z)H(z)
where G(z) is a polynomial of degree deg fo, H is a power series
with H(0) = 1, and the coefficients of G and H arezg-adic integers.,
In Earticular, the equation F(z) = 0 has at most deg fo solutions
in K‘S with \z\_ls <1l.
Proof. Write Ifk‘h'k = (Lgi’ﬁi)( P hj”\Tj) = Z”r Z gibhp_y-
—_— : i=0
Letting hO = 1 and 99 = fO' one can solve successively for gy hi
with deg g; < deg 99 using the division algorithm for polynomials.
If Iz\.‘g < 1, then H(z) is aw,g-adic unit, and so F(z) = 0 only if
G(z) = 0. Since G is a polynomial of degree deg fO’ it follows that
F(z) = 0 has at most deg :f:‘0 vg-—adic integer roots.

Proof of Theorem E. By elementary calculus, we know that F is a

solution of the differential equation

D’F = ¢.DY 1F + ... + ¢ F
1 T c

where DF = dF/dz and

e
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R P+l - ‘
T Xx-w)f =% —exX 1., -c.
r=1 r '

Letting

F(z) = ) ahz = ~bhz /hl
h=0 h=0 .

where we may assume that min ord a, = 0, we have
h

= h
i bh+iz /hl

h=0
and so ‘
(10) b te= 1Py * oo ¥ ¢ by
for h = 0.
Since ord cﬂ > (p - l)’-l + € = g and ordp bh‘; 0, it follows
that ordP c; 7 q, and so ordp bn+¢—l » gh by (10). Bgt then
ord_ ay. . = ordp b ie-1 ordp (h +‘G“— 1):

P
2> qgh - (h+v=-1)/(p=-1) = ((p - l)—l +¢&)h - (h+v-1)/(p-1)

¢h - (= 1)/(p=-1) > 0if h 2 (v- 1)/(e(p - 1)).
Thus ordp a, > 0ifny (-1 /(e(p-1)) +T~-1-= (T=1) (1+(&£(p-1))
Therefore, Theorem E follows from Strassman's;Lemma. ‘

“1y.

The multiplicityiﬂ_of a linear recurrence ?an}-is defined by

/M= sup Card. 3 n | a = c}.
ce®

We have already seen an example of a degenerate recurrence with
infinite multiplicity. On the other hand, using elementary

calculus, it is a stralghtforward exercise to show that, if all the
characteristic roots of a linear recurrence are real, then it has mul-

tiplicity at most equal to its order.

Theorem 5 (Skolem, Mahler L¢ 1). Every non-degenerate linear
recurrence {aﬁg has finite multiplicity. In particular, if faQ‘is

a non-degenerate integer recurrence,then lim man) = 29,
o

Proof. Letf% be a prime with 1§+ F and d €|N+ be such that

r=1

H
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a - (-1t
‘ﬁi - l\p-< P . Now apply Theorem E to each subrecurrence
{adn+i}n;0 with 0 € i < d.

In the thirties, Ward conjectured that @ <5 for every
non~degenerate second order integer recurrence. In fact, using the
argument of Theorem 5 with a more complicated scheme for choosing
an appropriate primeug, it has been shown [4 3 that the following

is true.

Theorem 6. /u.s 4 for every non-degenerate second order linear

recurrence: of rational integers.

An extreme example is the segquence §a5§ where

qh+2 T TCn+1 T 2an' a8 < 0, ay = 1

which has a, = a3 = a; = a;45 = -1.
Various authors have conjectured that the following must hold.

Conjecture 4. The multiplicitigsof non-degenerate linear recurrences

in a number field K are uniformly bounded in terms of their orders
and the degree [K:0].

We have already remarked that this is true if the characteristic

roots are all real.

Theorem 6. Let faQKbe a non-degenerate linear recurrence in a
number field K whose characteristic polynomial has no multiple
roots and whose characteristic roots are of the form

'Br = F?lr (ure ﬂ, r = l' e e e p R)
where F and ¥ are algebraic. If c E'EX, then the number of solutions
of a, =c is bounded by a number effectively calculable in terms of

the order v of 3 aﬁ§, the degree [@(¥):0], u = max \ur\) and the
o r

numbexr of prime divisors in Q(X,c) of ¢ which do .not divide X‘— 1.

R
Proof. Let a = grgrnand suppose that there is a ve W' and a
1

r= 12
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prime 1 with :
v ,
ordp (¥ - 1) > 2/(p-1), ordp 9, 7,0, and ordp ‘3 = ordp c = 0.
"Let w be the multiplicative order of FV (mod p2/(p—l)). Then
R u_i . .
— r i+vj 2/(p-1)
qywn+vi+i :(J.Ei gr‘{ ) F) (mod p )
for n 20 where 0 £ i< v and 0 <£3j < w. Thus, if c occurs in
w-1

jgo {avwn+vj+i}n;0 '

precisely one of these w subrecurrences. By Theorem E, it follows

u_ i
then Z gr\g o .,i_' 0 (mod 'LX) and c occurs in
r

i

that a =¢ has less than v(v - 1) (3/2) solutions. Thus, we need only
find an upper bound for v,
Let ?}l = A/B where (A, B) = 1 and A, B are algebraic integers.
We know '\( is not a root of unity since %an} is non-degenerate. We
will take forﬁg a certain primitive prime divisor of aY - BV. v
Since the ramification index of LS is at mest 4 = [Q(¥) : 91,
one has ordp(’yv -~ 1) =22/(p -~ 1) except when p £ 2d. Further, we -
have made an exception of no more than 2d2 primes . '

By Cramer's rule applied to
< ) :

N J =
R
we know that ~ Agr iz an algebraic integer for all r where

(Jz 0'.1; ’-"-’-lv" l)r
_ j _ “u_- u
A =det (fy 5= th.p(‘gs -¥h.

Thus, if ordp(?» = 0 and 2(2u)! ‘ v, then ord

3 is a primitive prime divisor.

p 9r > 0 for all r since
Now we may assume that any prime divisor of (‘Ql’ es ey E‘;R)

also divides c. In fact, LS ]an for all n > < by the recurrence

relation. Thus, K] Yc = a, # ¢ for n » v. In particular,

ordp (\‘gv - 1) > 0 and ordp p > 0 implies 3 \ c. Thus, in order to

fulfill all the conditions on us we need only avoid those primes

dividing c but not Y - 1 and at most 2d2

this gives a total of P primes in all, then we can choose zg from

additional primes. If

amongst the primitive prime divisors of AV - BY where v ranges

through the first P + 1 multiples of 2(2u)! larger than c where

¢ = ¢c(d) is as in the statement of Theorem 4.

13
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Corollary. The multiplicity of a non-~degenerate second order linear
recurrence {an} is bounded above by a number depending only on

[ (f/py) 01

Proof., It suffices to bound the number of occurrences of a

— 0

?an'j. Let a, b be algebraic integers satisfying
a (a,a)andb=(f>’,/3),
2 = (ags 3y) LB
and define g_ = (?>r/b, a =aDb /a. One readily verifies that

n
-1 -1
Fﬁn - an

ﬁl - Pz

in place of F;r, a. respectively.

in

n Il n
- S
n . ,
Py -8,

and the analogous formula with Fr’ a

for n =0

a o Flﬁéao

n
Since ab" 1 ] a, for n 7 2, we may assume that ab | ag (ox else

a, # a, for n 7, 2). One has

7 n

& n -
(11) a :E,)i______.z_

n —— ———
ﬁ]_ =
Let m = inf fn \ (g - ﬂéln)/(-é -8.) =0 (ﬁodE ) Since
‘ B TR/ B - ) = o’ *
a, # a, for n » 0 if m = 0, we may assume that m <s4. We have by (11)
that '

a; (mod ao) for n > 0.

i |-l

2

T;,)n_*én /
3, =0 (mod 50) = 'T_l——"—:-_z— 0 (mod *50) < m ‘ n.

B1 - &2
Further, for any prime Lj, one has
515 = 3R € (/" =1 meds
by the choice of m. Thus the result follows from Theorem 6 applied
to fé_mn‘kn;O' c ='§0, and Y= ((31/‘62)m.

e
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