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NATURAL CONVECTION IN AN ENCLOSED REGION

KHALID RASHID

DEPARTMENT OF APPLIED PHYSICS.
FACULTY OF ENGINEERING.
NAGOYA UNIVERSITY. NAGOYA

The effect of localised heating at different pressures and
temperatures on flow patterns in a rectangular channel is studied
numerically. The governing equations for conservation of mass,
momentum, energy and equation of state for the problem are solved
by using explicit finite difference scheme. All properties of
the fluid, helium (He), are considered to be temperature depend-
ent. The flow patterns at pressure greater than 50 mm Hg are

found to be almost similar to that previously reported(l).

Introduction

Natural convection in enclosures has been receiving increas-
ing attention in recent years becéuse of the wide applications
of this problemlin everyday life, such as home—heating,_cyrogenic
storage, thermal insulation and in the industry such as in fur-

nance and nuclear designs. Theoretical studies of the problem
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has also of significant importance as experimental, since its
mathematical formulation leads to a set of non-linear partial
differential equations. The solution of which even in numerical
form is a difficult task.

(1)

Recently, Yatsuya et al. considered the problem on "For-
mation of Ultrafine Metal Particles by Gas-Evaporation Technique”
, and flow patterns are reported. The flow patterns are discus-
sed only on fhe basis of experimental results and no comparison
is made with theoretical predictions. Inspite of its industrial
importance this problem has been given scant attention and no
numerical solution is available yet.

The main purpose of this study is to present numerical solu-
tion for:"Natural Convection in an Enclosed Region", and further-
hore, to underétand the role of certain key features of the flow

patterns reported in the experimental study by Yatsuya et al.(l).

(2/3/4) 44 convection problems,

In most of previous studies
Boussinesque approximation wés frequently used. This approxima-
tion is very ﬁseful when temperature differences involved are
small, i.e., vertical density variation are small. However, for
problems as in astrophysics, meterology and the present study
whefe the temperature differences are very large, this approxi-
mation may lead to erroneous results. Therefore, the basic dif-
ferential 'equations for the problem consideted are numerically

solved with variable fluid properties, themal conductivity, K,

and viscosity, u.



' rormulation of the problem

The geometry of the problem is sketched in Figure 1. Car-
tesion co-ordinate (x,y) is introduced with origin at the centre
of the base of the outer duct. The size and location of the
heated duct (inner) is considered to be variable. The fluid,
He, is initially motionless at a uniform room temperature, Tc.
Helium gas which is compressible and viscous is assumed to
behave as an ideal gas. The properties of the fluid, thermal
conductivity, «, and viscosity, u, are assumed to be temperature

dependent and independent of pressure.

hot

> cold <«

ke— | —
(a) | (b)

Figure 1. Rectangular enclosure and co-ordinate system
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The steady-state governing equations for the conservation of
mass, momentum and energy with an equation of state, plus the
expressions for thermal conductivity and viscosity are expressed

as

AWPVB)

— ' =0 , = 1,2 (1)
9(-)({;) F |

2 Ve 2P 2
PV/Q 2 ):;g T T X« +9)cng_M(99Vio< g\)/(p;l 59)(0&“9\/ F)
+ PFa (2)

where Fa is the external force.
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Thermal conductivity and viscosity with variation in tempera-

ture may satisfactorily be estimated by the follwoing equations
K = ag + a;T + asz (6)

U =ocy + ;T + c,T? ‘ (7)
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These equations are based on the experimental results(5’6) fitted

by least square method and are shown in Figures (2-a) and (2-b),

respectively.
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Figure 2-a. Variation of Figure 2-b. Variation of

thermal conductivity with

temperature.

viscosity with temperature.

In equations (2), (3) and (5), pressure can be_writtenvas

P =pg +

Py

(8)

To get a suitable form of a set of equations for computation,

the following steps are adopted.

i) introduce a stream function, ¥, and vorticity vector, w, as

2V

PU = 3y

__ ¥

PV=— 3%
v ow
W = Fx 2y

(9)

(10)

(11)

wheré u and v are the velocity components along the x and y-axis.
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Equations (9) and (10) satisfy the equation of continuity.
ii) take the rotation (curl) of equation (2) to eliminate the
 pressure term.

iii) take the divergence of equation (2).

After applying the above steps, a set of equations can be

written as
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Equations (12) through (17) can be put in dimensionless form

as

Loy = “‘,o’fN/"-V*P— o (19)
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boundary conditions are
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Finite difference approximation and numerical solution

The numerical method employed in this study is based on
straightforwad explicit finite difference scheme. The eclosure

is divided into a finite number of grids having equal width along
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two axes. Then an approximation is made at all the grid pbints
~having the co-ordinates x=iAx and y=jAy, where i and j are
integers. Applying the Taylor's series expansion to the vari-

ables at a point (i,j), we may obtaine the approximation

Y#

=X [y (L +)

Chiy 6y e D

Rt ENCY DR U b

» X

Figure 3. Arrangement of grid points
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Equations (28), (29) and (30) are known as the forward, back-
ward and central finite difference forms, respectively, at (i,]).

The central finite difference is used in the enclosure where

10
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backward and forward difference schemes are applied at the
boundaries. Similar forms exit for the derivative with respect

to y. It may also be shown

Qljt ~ FUAL 1) = F U=t P 1) = FEHL e+ F (=1, ) = 1)

[/ s (31b)
DY 4 Ax DY

The procedure for numerical solution of a set of Equations
(19) through (24) after linearization with help of Equations

(28) to (31), is given in Figure 4.

) OUTPUT BLOCK
TART READ SOURCE CALCULATION BLOCK ° (PRINTS&PLOTS)
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Figure 4. Flow chart for temperature distribution

and flowfield.

11
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Results and Discussion

Figure 5 shows that the fluid flow is surprisingly complex,
consisting of two individual anticlockwise eddies in the upper
and lower parts of the enclosure with the inner duct one fifth
of the outer_duct. It seems at such a higher temperature the
boundary layer flow is well established at the stronge vorticity
near the wall is able to sustain a weak return motion in the
outer part of the boundaryviayer. Moreover, this figure shows

that in the region of return flow the opposite boundary layer

(a) - (b)

Figure 5. Streamlines at (a) Re=4.9 (10 mm Hg) and temperature

1300 °C . (b) Re=24.0 (50 mm Hg) and temperature 1300 °C.

has almost no influence on the flow.

12



167

Figure 6 indicates the effect of temperature at constant
pressure. The minimum value of the stream function increases
with the decrease in temperature of the inner duct. Moreover,
at low pressure, streamlines move a little away from the centre
line toward the right hand wall. These results are obtained

with the flat inner duct (heating element).
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Figure 6. Streamlines at pressure 10 mm Hg (a) Re=6.56 T, = o

1100 °C (b) Re=6.04 T,=1300 °C (c) Re=5.58 Th=1soo °C.

When the numerical results are compared with the existing experi-
mental results(l), it is found that the theoretical flow patterns
are not exactly the same experienced in the experiments, espe-

cially at low pressure. This discrepency may be attributed to

the presence of metal. That is, as the matel evaporates at low

13
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pressures, the change in the density gradients become large and
thus affect the flow patterns. However, the numerical results
agree satisfactorily at pressure above 50 mm Hg as shown in

Figure 7. At such higher pressures gravity force is dominant

(a) | S ® (c) |
"Figure' 7; Streamlines at pressure 50 mm Hg (a) Re=32.0 Th=

1100 °C (b) Re=30.19 Th=1300 °C  (c) Re=27.90 T, =1500 °C.

which brings the flow directly up to the ceiling due to convec-
tion and then-returns back due to the boundary.

Temperature distributions ére illustrated in Figure 8. It is
quite apparent from these figures that the temperature of heatef
andlpressure have remarkable effect on the temperature distribu-

tions.

Figures 9 shows variation of pressure deviations from the

14
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(a) () (cy

Figure 8. Temperature distributions at (a) Re=6.56 (10 mm Hg).
Th=llOO °C (b) Re=32.0 (50 mm Hg) T.=1100 °C (c) Re=5.58 (10

h
mm Hg) T,=1500 °C.

-0.303

=0.23

-0.183

-0.063

Figure 9. Pressure deviation Figure 10. Density distribution
from static pressure at Re=6.56 at Re=6.56 (10 mm Hg) T =1100 °C.

h
(10 mm Hg) Th=1100 °C.

15
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static pressure. There is apparently no variation in pressure,
i;e., total pressure remains constant.

Figure 10 presents density distributions. This is the fact
that with an increase in temperature, density decreases as is

given by Equation (23).
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Nomenclature

apg, a;, a, =arbitrary constants as appeared in Egs. (6) and (25)

Cg, C1, C; =arbitrary constants as appeared in Egs. (7) and (26)

d =height of enclosure

c,r C =specific heats at constant volume and pressure,res-
P pectively

Fr =Froud number, =vV2/gf

g ‘ =acceleration due to gravity

=width of enclosure

m =molecular weight

M =Mach number, =v/gdm/yYRt
p . . =pressure

Pr =~ =Prandtl number, =cpu/K

R ‘ =gas constant

Re =Reynolds number, =pmV£/u
T =tempefature
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=horizontal component of velocity
=vertical component of velocity
=characteristic velocity, =vgd

=horizontal co-ordinate

=dimensionless horizontal co-ordinate, =x/{
=vertical co-ordinate

=dimensionless vertical co-ordinate, =y/l

Greek symbols

Ax

Ay

=grid spacing in the x direction

=grid spacing in the y direction
=Laplacian operator, =32 /3x? + 3% /3y?
=thermal conductivity

=thermal conductivity at maximum temperature
=density

=dimensionless density, =p/pm

=mean density, =psm/RTc

=viscosity

=viscosity at maximum temperatﬁre
=viscous dissipation function

=stream function

=dimensionless stream function,'=Y/pmV|
=vorticity vector

=dimensionless vorticity vector, =w/(V/{)
=ratio of specific heats, =cp/cV

=ratio of height to width, =4/t

=ratio of hot to cold temperature, =Th/Tc

7
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Subscripts
c =cold
d =deviation from static pressure
e =at the lower edge of the heater along the y axis
£ =at the upper edge of the heater along the y-axis
=at the very right of the heater along the x-axis
=hot
s ~=static
Superscript
! =dimensionless
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