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Let X be a compactum ( a compact metric space ) and let

El’l

be an n-dimensional Euclidean space. Borsuk raised several
problems concerning to embed X into g up to shape ( see [ 1 ]
and [ 2 ] ). Partial answers of them were given by Trybulec

and many other persons. In section ( 1 ) we shall trace their
works again.

The second toplc is the Chapman’s complementary theorem.

After [ 3 ] several attempts to modify it have been done. We

shall recall them in section ( 2 ).

31
Borsuk defined the index e(X) for every compactum. X.
But the trouble is that, between [ 1 ] and [ 2 ], definitions
of e(X) are different. So in this note, we use two simbols
el(X), ez(X) if we want to distinguish them.
In [ 1 1], el(X) is defined by

e (X) = min ( k | E<5 2y sn(x)

Sh(Y) ),

and in [ 2 ], eg(X) is defined by

e,(X) =min ( k1 ES5 7Y ; sh(xX) ¢ Sh(¥) ).
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Borsuk’s problems are followings
(1) To find a pure definition of e(X).
( 2 ) Sh(X) ¢ Sh(Y) = e (X) £ el(Y) ?
( 3 ) Dose there exist for every n a compactum X
such that FA(X) = n and e(X) = 2n+l ?
(4 ) TIs it true that for every n-dimensional movable
continuum X the number e(X) < 2n 2
Borsuk pointed out that for n = 1 Problem ( 3 ) has a positive
answer. A solenoid is its exampie (see [ 2 ] ).
Trybulec [ 15 ] proved the following theorem. It gives an

affirmative answer of Problem (4 ) for the case n = 1.

Theorem 1 ( [ 15 ] Th.3.6 ), The shape of every movable:

curve X 1is plane.

Recentry Ivand$ié and Husch investigated them. Their works
are essentially based on the embedding theorem up to simple

homotopy which was proved by Stallings.

Theorem 2 ( [ 14 1 ) If K 1is a polyhedron of dimension
k , M a manifold of dimension m, and f: K — M a map which
is (2k-m+l)-connected, then there is a procedure which, when
k £ m-3, yields a k-dimensional subpolyhedron KICL M and a
simple homotopy equiﬁalence K — Kl for which the diagram
K-L—)i"\

\, ¢/
K,

is consistent up to homotopy.
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Their theorems are following. All of them are pointed case.

Theorem 3 ( [ 10 ] Cor.3 ). Every continuum X which is
pointed l-movable and FdA(X,x) = n2 3 can be embedded up to

pointed shape 1in EZn.

A pointed space X 1is said to be r-shape connected provided
X 1s connected and has trivial homotopy pro-groups for 1 <& k < r.
A system map {fi} : {Xi} — {Yi} is said to be shape r-connected
if it induces an isomorphism of homotopy pro-groups of {Xi} and
{Y,§, denoted by ﬂj(z) and ‘ﬂs(g) for each 1 € jJ < r and.
epimorphism for Jj =r in the category of pro-groups.

A pointed compactum X has shape finite r-skeleton (r > 1 )
if there exists a finite connected pointed CW-complex K and
a tower of pointed CW-complexes {Xi} such that X = iEE{XiL
and a system map {fi§: (K} ——»{Xiﬁ such that .{fi} is shape

r—-connected.

Theorem 4 ( [ 10 ] Th.5 ). If X is a pointed compactum,

Fd(X,x) = n, which is r-shape connected, n-r 2 2, then (X,x)

can be embedded up to shape into E2n—r+l_

Theorem 5 ([ 10 ] Th.6 ). Let X be a pointed compactum
which 1is pointed shape dominated by a polyhedron and let- Fd(X,x)
=n 2 3. If (X,x) has trivial shape groups for 1 £ i < r,

n-r z 3, then (X,x) can be embeded up to shape into g,

Theorem 6 ( [ 8 ] Th.7 ). Let M be a PL-manifold of
dimension q and let X -be a continuum which has fundamental

dimension n, gq-~n 2 3, has steble pro—ﬂi which is pro-isomorphic
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to a finitely presented group and has a shape finite (2n-q+1)-
skeleton. If there exists a shape map {fi} : X — M which is
shape (2n-g+l)-connected, then there exists a compactum Z ¢ M

such that Sh(X) = Sh(Z).

Theorem 7 ( [ 8 J] Th.11l ). Let Y ¢ E2 be an n—dimensionai
continuum which has stable pro—ﬂi pro-isomorphic to a finitelyﬁ
presented group. Let X be a continuum such that fundamental
diménsion of X ¢n, X has a shape finite (2n-g+l)-skelton and
Sh(X) € Sh(Y). If 3n < 2g-2 and n 2 3, then there exists a

compactum Z ¢ EY such that Sh(z) = Sh(X).

Theorem 8 ( [ 8 ] Cor.12 ). Let Y ¢ Eq, qa 2z 5, be an~
n-dimensional continuum which satisfies cellularity criterion
( see section 2 ). If X satisfies the same conditions as in

Theorem 7, then X ~can be embedded up to shape into Eq.

Theorem 9 ( [ 9 ] Th.1 ). Let X Dbe a continuum of
fundamental dimension Fd(X) = k > 3 which is pointed (2k-g+1)-
movable. If there exist; a shape (2k-q+l)-connected shape map '
f:X—=M of X into a g-dimensional PL-manifold which is
either closed or is open and dominated by a finite complex and
if g-k > 3, then there exists a k-dimensional continuum Y £ M
and a shape equivalence g : X — Y such that 1g = f where

—

i 1is the shape map induced by the inclusion Y & M.

Theorem 10.( [ 9 ] Cor.2 ). Let X be a shape r-connected

continuum of fundamental dimension k 2 3 which is (r+l)-pointed

movable, then there exists a continuum Y ¢ E2k_r which has the



same shape as X.

They showed that in Theorem 9 the conditions of movability
and shape connectivity are essential. In section 4 of [ 9 ],
counter examples are given. But the condition of (2k-g+l)-mov-

2k-g+1

ability can be replaced with S -movability.

For Problem ( 3 ), Duvall and Husch constructed such spaces

for the case of n = 2k (k>1 ) (see[ 617).

§2
Before discussing complementary thecrems, we must see some
definitions of nice embeddings. Let X be a compactum in a space M.

(1) X is a Z-set in M 1if for every nonempty homotopic-
ally trivial open set U in M, UNX 1s nonempty
and homotopically trivial.

(2) X 1is a Zk—set ( k an integer 20 ) in ‘M if for every
nonempty k-connected open set U in M, UNX 1is
nonempty and k-connected.

(3 ) X 1is a strong kaset (k20 ) in E" if for each
compact subpolyhedron P of En having dimension
¢ k+1 and each €>0, there is an ¢-push h of ( Eﬂ,
X ) such that h(X)aP =¢.

(4 ) X satisfies the cellularity criterion ( CCv) if
given a neighborhood U of X, there is a neighbor-
hood VecU of X such that every loop in VNX 1is
null—hqmotopic in UNX. |

(5) X 1is globally l-alg in M if given a neighborhood
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U of X, there is a neighborhood VcU of X such
that every loop in VX which is null-homologous
in VNX is null-homotopic in U\ X.

(6 ) X satisfies the small loops condition ( SLC ) if
for any neighborhood U of X there is a neighbor-
hood Ve U of X and an €>0 such that each loop
in VNX of diameter less than £ is null-homotopic
in UNX.

( 7>) X satisfies the inessential loops condition ( ILC )
if for every neighborhood U of X there is a
neighborhood Ve U of X such that each loop in
VN X which is null-homotopic in V is élso null-
homotopic in U\ X.

Chapman’s complementary theorem is following.

Theorem 11 ( [ 3 ] Th.2 ). If X and Y are compacta Z-
embedded in the Hilbert cube Q, then X and Y have the same

shape iff Q~X and QNY are homeomorphic.

In this theorem, if we replace Q@ with E? or 3™ what
kinds of conditions are needed ? Chapman showed the next theorem,

and Geoghegan and Summerhill improved it.

Theorem 12 ( [ 4 ] Th.1l ). Let X, Y be compacta such that
dim X, dim Y ¢ m.
(a) For any integer n 2 2m+2 there is copies X, Y'eE® ( of
X, Y respectively ) such that if Sh(X) = Sh(Y), then
E'N X' and E™\ Y’ are homecmorphic.

( b ) For any integer n 3 3m+3 there is copies X, YeE? ( of
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X, Y respectivery ) such that if E'\ X’ and En\ Y’ are

homeomorphic, then Sh(X) = Sh(Y).

Theorem 13 ( [ 7 1 Th.1.1 ). Let X and Y Dbe nonempty

n

compact strong Z -sets in E° ( k20, ngz?2k+2 ). Then X

n-k-2
and Y have the same shape iff En\ X and En\ Y are homec-

morphic.

Proposition ( [ 7 ] Prop.l.3 ). Every compactum of dimen-

sion ¢k can be embedded in E" ( n22k+l ) as a strong Zn—k—2”

set.
On the other hand, Venema proved the following theorems.

Theorem 14 ( [ 17 ] Th.l1 ). Let X and Y be compacta
in En, nz5, satisfying ILC and having shape dimension in the
trivial range with respect to n ( 2Fd(X)+2¢n, 2Fd(Y)+2§ n ),

then E"< X and E'N Y are homeomorphic iff Sh(X) = Sh(Y).

Theofem 15 ¢( [ 17 ] Th.2 ). Let X and Y be globally
l-alg compacta in En, nzb5, and let A, B be compact connected
abelian topolgical groups with 2dim(A)+2<n. If Sh(X) = Sh(A)
and Sh(Y) = Sh(B) then the following are equivalent:

(a) E'NX and E®NY are hOmeomorphic,
( b ) Sh(X) = Sh(Y), and

(¢ )A and B are topologically isomorphic.

In the case that X and Y are compacta in Sn, Coram and

Duvall proved the following theorem.
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Theorem 16 ( [ 5 ] Th.3.3 ). Let X, Y be s¥ 1ike continua
in S" such thet X and Y satisfy SLC, 1¢ k¢ n-4. Then S\X

and S"™\ Y are homeomorphic iff Sh(X) = Sh(Y).
More generally, there are Rushing and his students’ works.

Theorem 17 ( [ 13 ] Th.1l ). Let Xc Sn, nz 5, be compact.
Then, for k # 1 Sh(X) = Sh(sX) 1is equivalent to 8%~ x= sl ¥
if X 1is globally l-alg ( and if S\ X has the homotopy type

of S1 when k = n-2 ).

Theorem 18 ( [ 16 ] Th.l ). Let XcS", nz 5, be a globally
l-alg compactum, and let Sg be the ( k-1 )-fold suspension
of S; ( a solenoid ). Then S"\ x2z 8B\ Sg, k # 1, if and only
if Sh(X) = Sh(Sg) and in case k = n-2, 7Tl(Sn\ x) is'abelian

and ﬂi(sn\ X) = 0, i 2.

Theorem 19 ( [ 11 ] Th.2 ). Let X, Y be globally l-alg

n, nz 5, having the shape of finite complexes K,

continua in S
L ( respectively ) in trivial range such that ‘ﬂl(K), 771(L)
are abelian. If either ﬂl(K) = ﬂl(L) =0 or [T (K) = 772(L)

= 0, then Sh(X) = Sh(Y) iff s\ xzs"~vy.

Theorem 20 ( [ 12 ] Th.2 ). Let Xl and X2 be globally
l-alg continua in s™ ¢ nz6 ) having the shape of codimension
3, closed, 0K (2mi»n+1)—connected topological manifolds Mimi,

i = 1,2 (respectively). Then, S™x X, 2 SR X, iff Sh(x;) =

Sh(Xz).
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