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SIMPLE BUCKLINGS — A GROUP THEORETICAL INTRODUCTION
Hiroshi FUJII Masaya YAMAGUTT
Tnst. of Computer Sciences Department of Mathematics
Kyoto Sangyo University Kyoto University
Abstract : 1In this note, we discuss the structure of’singularities in non-

linear elasticity theory in the light of the symmetry group G and the class
( L or N) of the problem. The emphasis is on the discussion of structural
stability of simple bifurcation points with respect to small changes of the
equation. Sec.l is of introductory nature, where we give formal classifica-
tion of simple critical points. In Sec.2, we study the structure of those

singularities.

1.1 CLASSIFICATION OF SIMPLE CRITICAL POINTS

Let V be a real Hilbert space with inner product < , >and norm - Iy
We consider the equation:
(P) F (u,w) =0 _ (1.1)

where F is a continuous mapping R!xV -+ V.

Envisaging applications to numerical analysis, our object is, for a
known solution 0 = (ug,wy) € R'XV, to obtain all the paths in R'xV which
contain 0. By a path, we mean a connected component of S, or its subcomponent
where S denotes the closure of the solution of (P) in R!xv.

Notice that in Eq. (1.1), F (u,0) = 0 (VueR!) is not assumed, implying
that the problem (P) may not have a trivial path (u,0) € Rlxv,

We assume to F the following:

This note is a short version of Chapter I of Fujii and Yamaguti [2].



(A): F : R!XV > V of class CP, p>3,
A2 F : Fredholm mapping of index 0, namely,

dim ker F' (u,w) = dim coker F' (u,w) = d<+o,
(A) 3 F' (u,w) € B(V)® is self-adjoint.

Here, F' (u,w) denotes the Fréchet derivative of F with respect to w

at (u,w):

def. 3F
F' (u,w) =f o (W) (1.2)
We shall also denote by F (u,w) the Fréchet derivative of F with respect
to u at. (y,w):

o & . (1.3)
Higher order derivatives will be also denoted by, for example, F'" (u,w),
F'" (u,w) and so on.-

It in noted that every result in this section is applicable to non-
self;adjoint cases (with obvious modifications). The assumption (A)3 may
characterize the nonlinear elasticity theory, and since our main object is
the application to noniinear elasticity in numerical analysis aspects, we

assume (A)3; in the whole of subsequent discussions

Definition 1.1 Let 0 = (u,w) € R!xV be a solution of F (4,w) =0, Then, 0 is

called an ordinary (regular) point of (P), if F' (u,w) has a bounded inverse,

i.e., F' (u,w)~! € B(V), and a critical (singular) point if not.

~The following lemma is an immediate consequence of the implicit function

theorem (see, e.g., Nirenberg [9] ).

Lemma 1.2 Suppose 0 = (lp,Wo) € R'XV is an ordinary point of (P). Then,
there exist an interval Ig = {u; |u-1o|<8} and a unique CP function w(u): Is
+ V such that F (u,w(u)) =0, (1 ¢ 16).

Suppose now C = (u¢,w.) € R!xV is critical. We consider the problem in
the particular case that the kernel and the cokernel are one dimensional
(which we shall call the simple case). Denote by Fé, ﬁc’ ... the Frechet

derivatives of F at C.

def.
*) B (X,Y) denotes the set of bounded linear maps X - Y. B (X) =f B (X,X).



Let L Fo. Let {¢c} = ker Lc, and denote by TI¢ the functional Miu

c
= <u,¢.>, u e V. Let Rc = range L. = {ker Lc}* and denote by we the ortho-
gonal projection V + Rc. We let denote by LI the bounded map LZ V>V
such that LZ Lo = we-®)

Let:
Ac = Te FE (9cs ¢c)

1 "

Be = Ie Fe (d¢, g0 + Hé Fé bc

Cc = N¢ FE (ge, ge) + 2M¢ F' ge + Mg Fe . b (1.4)
De = e Fe' (e, dc» ) - 3ME FE (de, LE we FE(de, ¢c))s
fe = Fe,

where

gc = -Lf we fe.

Definition 1.3 A simple, critical point € = (uc,we) e R'xv is called a snap

point if N¢fc ¥ 0. Moreover, if Ac. % 0, C is a non-degenerate snap point.

Note 1.4 A snap point (a snapping point, a snap-through point) may also be

called as a limit point (a limiting point) or a turning point. See, e.g.,
[6], [7], [19] and [20].

Definition 1.5 A simple critical point C = (uc,wc) € R!xV is called a non-

degenerate point of bifurcation if N'fc = 0 and BZ - AcCc > 0. Moreover,
if Ac 5 0, C is called a non-degenerate, asymmetric point of bifurcation,

and if Ac = 0, Dc = 0, a non-degenerate symmetric point of bifurcation.

Note 1.6 The term "symmetric or asymmetric point of bifurcation' often
appears in engineering literatures, e.g., [19]. However, as we shall intro-
duce the concept of group symmetry to nonlinear singularities, we prefer
to call the symmetric and asymmetric points of bifurcations as the fold and
cusp bifurcations, respectively, to. avoid possible confusions in terminology.
Our terminology corresponds to the first two elementary catastrophes in the

theory of universal unfoldings of singularities due to R. Thom [18],

*) Let= (LR Tl



Classification of Simple Critical Points

dim ker L. =1

simple, critical

(LE = Lo, self-adjoint)

1
. ]
e fe % 0 e fc = 0
snap point bifufcation point
A =0 Ac % 0 BZ - AcCc > 0
Dc % 0 non-degenerate non-degenerate
(cusp snap) (fold snap) .
Ac % 0 A, = 0
De = O
fold cusp
(asymmetric) (symmetric)
Fig. 1.1

We shall see, however, that the appearance of symmetric or asymmetric
points of bifurcation has a crucial relation with the existence or non-
existence of symmetry groups.

Remark 1.7 Suppose (P) has a trivial path (4,0) € R!xXV. Then, a simple

critical point can never be a snap point, since f¢

oF . _
v = §ﬁ-(u,0) = 0 for all
ueR.



1.2 BEHAVIORS OF SOLUTIONS IN A NEIGHBORHOOD OF SIMPLE CRITICAL POINTS

We now summarize results on local behaviors of solutions of (P) in the
vicinity of simple critical points. The knowledge about the critical eigen-
values on the paths will be indispensable in the discussion of numerical
solutions about those critical points, Hence, we state the lemmas as well
as brief proofs of them.

Firstly:

Proposition 1.8 (Snap point)

Suppose C = (uc,we) € R'xV is a simple, non-degenerate snap point of
(P). Then,
(i) in a neighborhood of C, there is a unique path, say a-path, which meets
C. In other words, there exist an interval Ig = {a;|a|<6} CR' (8: suf-

ficiently small), and two CP functions p(a): Is ~R' and w(a): Is >V,

such that
F (u(a),w(@)) = 0,
and u(0) = pc, w(0) = we.
(@) For a € 16’ u(a) and w(o) satisfy
[u(@) - u(0)| < ca?, (1.5)
and W) - welly < €' a.®) (1.6)

In fact, they take the form
u(a) =y + e 2 0(a?) (1.7)
¢ 2Mef. ’

and

u

A .
w(a) We + 0 + [iﬁ%%z-Lz we el a? + 0(a?) (1.8)
c

@) Furthermore, the linearized eigenproblem on the a-path:

By F' (M@,w@) 0@ = t(@ (), aely (1.9)

has a pair of Cp—1 functions Z¢(a): I6 +R! and ¢c(a): 16 + V such that

dzc
£c(0) =0, 7§f'(0) £ 0

(1.10)

and ¢c(0) = o¢.

*) Here and in the sequel, C, C' or C'" denotes a positive generic constant,

which may take different values when it appears in different places,



Remark 1.8' The (iii) of the above proposition means that an eigenvalue

changes its sign when it crosses a non-degenerate snap point of (P). See,
Fig. 1.2.°

Fig. 1.2 | "A non-degenerate snap point C"

We turn to the bifurcation cases.

Proposition 1.9 (Fold bifurcation)

Suppose C = (uc,we) € R!'xV is a fold bifurcation of (P). Then,
(i) there exist two paths, y, and u_ paths, in a neighborhood of C, which

intersect at C. In other words, there is an interval Ig = {v;|v|<é} C R!

(36: sufficiently small), and two Cp'zifunctions we (V) Is = V such that

F (uetv, we(v)) =0, v e Ig
and we(0) = w_(0) = we.

(il) For v ¢ 16’ w+ (V) are such that

fwe) - wely < Celv]. (1.11)
In fact, they have the form
wa(V) = we - v Liwefe + ar(W)de + 00A) (1.12)
where a4 (V) are cP2 functions Is > R! such that
a (V) = lﬁﬁflggléggﬁ-v + 0(v2). (1.13)

(i) Furthermore, each of the linearized operators on the u; and p- paths,
Ly(v) = F' (ue+v,wie(V)), v € Ig, has critical pairs of CP-2 functions

(CEV), 05 (V) : Is > R'xV and (CeW),bz(M)): Ig >Rixy, respectively, such



that

£&(0) = ¢c(0) = 0 and ¢&(0) = ¢c(0) = dc,

dzé . dze
and T= (0 - FE O <0 | (1.14)

Remark 1.9' Assertion (iii) implies that at any point of fold bifurcations,
the stability is exchanged from one path to the other path. This is an
" example of the famous exchange of stability of Poincare. A fold bifurcation

may be called a transeritical bifurcation by this reason.

Fig. 1.3| "fold bifurcation and the
exchange of stability"

With regards to the cusp bifurcation, we have the following

Proposition 1.10  (Cusp bifurcation)

Suppose C = (Uc,we) € RV is a cusp bifurcation point of (P). Then,
(i) these exist two paths, u- and a-paths, in a neighborhood of C, which
intersect at C. The u-path is parametrized by v € Ig = {v;|v]<s} cRr?,
and is expressed as (ct+v, wH(V)) e RxV, v ¢ Is, while the a-path is
parametrized by a € Jg' = {o;]a]<s'} C R?, being expressed as'(uc+v(aj,
w¥(a)) € R'xV, a € Jgr. The functions wH(v), v(a), w¥(a) are all

of Cp_2 class, and satisfy the relations wHM(0) = w®(0) = we and v(0) =.0.
@) wH(v) is such that for v € Ig

W) - wely s €|V (1.15)



and has the form
W) = we - v [Liwcfc + E%% dc] + O(v3) (1.16)
On the otherhand, v(a) and w*(a) satisfy for a € J§',
V@] < Ca? - ~ (1.17)
W) - wely < € |af ‘ , (1.18)

and take the forms:

v(a) = 6?; a? + 0(a?) (1.19)
and
W) = e +ade +o? [ g Lhucfe - 5 LiucFE (6c.00) 1+ 0@

(1.20)
(i) Furthermore, let [M(v) = F' (uc+v, wH(v)) and L%(a) = F' (uc+v(a),
w*(a)) be the linearized operators of F on the p- and o-paths, respectively.
Then, LM and L® have, respectively, the oritical pairs (z¥(v),sE(v)) eRxv,
we lg, and (22(a), 92(a)) € R'*xV, a € Jgr, such that

zB(0) = z&(0) = o,
- ¢B(0) = ¢2(0) = ¢c.
They satisfy the relations:
deé gy - L (1.21)
d\)(o)“BC*O’ da(o)_AC_O : a
and moreover, if p 2 4
dzcc 0) = % Dc = —Zng (0) ——2 (0) x 0. (1.21) p

Remark 1.10' The relations (1.21) show the stability behavior on the two
paths near C. See, Fig. 1.5. If D¢ > 0 (Dec < 0), C is called a stable
(unstable) cusp bifurcation point. It is noted that in both cases, the
critical eigenvalue Cg(v) onn the p-path changes sign when it crosses v = 0,

while on the a-path z®(oc) does not change sign at a = 0.



(o)
"stable cusp bifurcation" mmstable cusp bifurcation'
Fig. 1.5

Remark 1.11 As may be clearly seen from the proof, there exist two paths,
u- and a-paths, which intersect at C, whether or not D, vanishes, provided:

C is simple and non-degenerate.

For proofs of the above propositions, we refer to Fujii and Yamaguti

[2].

2.0 SIMPLE BUCKLINGS IN THE PRESENCE OR NON-PRESENCE OF SYMMETRY GROUPS

So far, we have concentrated on the formal classification of simple criti-
cal points. In this section, we go further into the mechanism of simple
bucklings. In other words, we want to know how and when those simple critical
points appear stably. Two concepts will be introduced for this purpose: the
concept of symmetry group and that of class <L or N> of the problem. The
class of the problem is a path-dependent concept, which essentially implies
that the bifurcation problem is considered on eithér a linear (with respect
to the bifurcation parameter u) or a nonlinear path. (For example, even (P)
has a linear fundamental path, the secondary bifurcation from the firstly
bifurcated path should be considered as a <class N> problem.) We shall clarify
the relation of the type (fold, cusp or etc.) of critical points and the pre-
sence or non-presence of a symmetry group. We shall show, for example, that

a fold bifurcation is, if exists, symmetry preserving.
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An important result in this section is the uniform existence of sym-
metry breaking bifurcation points with respect to small changes (=perturba-
tions) of the equation under the presence of a non-trivial symmetry group G
(which we shall call the structural stability of the bifurcation points). As
an obvious analogue, we have the structural stability of <class L> bifurca-
tions under perturbations which do not destroy the <class L> property. These

'are obviously non-generic situations; however, it is this structural stability

that guarantees the numerical realization of bifurcation points in the actual

numerical computations.

The introduction of group theoretical arguments to nonlinear singula-
rities is not indeed new, particularly in pattern formation problems in
fluid mechanics. (See, e.g., Ruelle [13] and Sattinger [14-16]. Also, see
[11] and [10] for other problems.) However, the emphasis here is on the
discussion of structural stability in the sense described in the above; our
main tool is the standard decomposition of the Hilbert space V associated

with the symmetry group of the problem. A remark is that our arguments here
exhibit a sharp contrast with the general theory of imperfection sensitivi-
ties, e.g.; by Thompson and Hunt [19], Hangai and Kawamata {4] and Keener
and Keller ([5]. See, however, Rooda [12] for discussions of non-generic

imperfections.

10
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2.1 SYMMETRY GROUP OF F

Let Q c:mﬁ‘(l < m < 3) be a bounded domain with a piecewise smooth
boundary. Let V be a complex Hilbert space of functions defined on Q. Let

< , > be the inner product of V.

Definition 2.1 G -is the symmetry group of the domain &, if .

G={geom; gh =q} (2.1)

where O(N) is the classical orthogonal group.

Let T:G > GL(V) be a unitary representation of G on V.*)

Example 2.2 Let u, v, € HS(Q) with <u,v> = IQ Au+Av. The operators Tg
(g € G):

(Tqw) (X) = u (g7 x) (2.2)

define an (infinite dimensional) representation of G on V. Tg:V >V (g ¢

G) are unitary since
<Tgu,Tgv> = <u,v>, u,v € HZ (), (2.3)
noting that the Jacobian of the coordinate transformation is +1.

We assume for the present that G C O(m) is a finite group of order
n(G). Let X1, X2, ..., Xq be the complete set of simple characters of non-
equivalent irreducible representations Ti, Ty, ..., Tq- By ny (k = 1,2,...,
q) we denote the dimensions of Ty (k = 1,2,...,q). Note that q is equal to
the number of conjugacy classes of G. See, e.g., Serre [17] or Miller [8],

for details.

We define a direct sum decomposition of V — the standard decomposition
of V:

*) A representation of G on V is a homomorphism T:g - Tg of G into GL(V),
where GL(V) denotes the group of all non-singular linear transformations

of V onto itself.

11
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V=V,® V,®... ® V. (2.4)
The standard decomposition (2.4) is uniquely defined, and indeed, there

exists a set of projection operators Py: V - Vi:

Pk = I xk(g) Tg, k=12,...,q. . (2.5)
get '

P (k =1,2,...,q) are self-adjoint and commute with Tg (g ¢ G).' It holds
that

q . .
I P =1 and PgPj = &;j P (2.6)

where Skj is the Kronecker delta.

We summarize some of elementary properties of G and its characters X

which will be used in later discussions.
(1) Xg(e) =ng, ke <1,2,...,9>,
(especially, Xk(e) =1 for ¥k such that ng = 1).

() if k € < 1,2,...,9> such that n = 1,

IX()] =1 for Ygeo | @7

and Tg¢ = Xx(g)¢ for Yeeo, , (2.8)
Yo e vy

@) Xg(g) =1 (Yg € G) if and only if k = 1.9 (2.9)

Note that the decomposition (2.4) is reducible, and in fact, each Vi
{(which is infinite dimensional, in general) can be decomposed into an
(infinite number of) direct sum of Wk's which are all homomorphic to Ty.
For the present purpose, we need only the standard .decomposition (2.4).
The subspaces Vk (k = 1,2,...,q) may be characterized as: each u g Vi
transforms according to Tk. Also, with each Vi, one can associate the maxi-
mal subgroup Gy C G under which every element of Vi is invariant, namely,
Gk = {g € G; Tgu = u, Vuce Vk}. Gk is the symmetry group of functions in
Vk. We shall call Gy the maximal symmetry group of V. Obviously, G is

*)  Thus, P, = I T, , ' (2.9)*

12
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the maximal symmetry group of V;, since Tg P1 = P, for all g € G(see, Eq.

(2.9)*.) In this sense, we may call V,; the G-symmetric space.

Example 2.3 (a); Cs = Cih; the reflection through a plane

G = {e,s}, s? = e.

character table: {e} {s}
X1 1 1
X, 1 -1

standard decomposition: V =V' @ V-~

(P* w) = 3 (I £ Tu, (Tsw)(x0) = u(-x)

Example 2.3 (b); C,y = D3; group of the equi-lateral triangle in a plane

G = {e’g’gz,s9g5:g25}

two generators g, s with g® = s? = e,

and sgs = g~*, where g: counterclockwise rotation through 120°

s: a reflection across a median

character table: {e} {g,g?} {s,gs,g%s}
X1 1 1 1
X2 1 - 1 -1
X3 2 -1 0

standard decomposition V = V; @ V, ® Vj

1 2y 1
Pr =3 (1+Tg+Tg") 5 (I+T7Ts)
_ 1 24 1
Py = g‘(I * Tg + Tg") 5 (I - Tg)
1
Py=1-5(I+Tg+ Tg?)

by = G> GZ = {e:g’gz}s G3 = {e}

13
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Example 2.3 (c); Du = Cyv; group of plane operations which sends q square
into itself

We omit the details.

We shall now define the notion of symmetry group of F, where F 1s a
smooth (at least C!) mapping of R!xV into V. We shall generally assume that

the mapping F is real in the sense that F(u,w) = F(u,w), for all (u,w) € R?
xV.

Definition 2.4 G is said to be the symmetry group of F, if G is the maximal

symmetry group of Q0 such that F is covariant under G.

Here, F is covariant under G means that

F(u,Tgw) = Tg F(1i,W), (2.10)

for all g € G, and (u,w) € R*xv.

Example 2.5 (a) The Laplacian A is covariant under O(m), namely, Tg A=

ATg, ¥ ge Om).

Example 2.5 (b) The von Kérmén-Donnell~Marguerre shell operator is covariant

under G, where G is the symmetry group of the domain Q¢ 0(2), provided the
initial deflection wy and the known Airy function corresponding the edge force

are invariant under G. See, Appendix A of Fujii and Yamaguti [2].

In the sequel, we shall assume that G is the symmetry group of F. G
may be either trivial G = {e} or non-trivial. Note that if G is trivial
(that is, if F has no group symmetry), the standard decomposition (2.4) is

the trivial one V = V.

Definition 2.6  Suppose V is decomposed into a direct sum

V=V ® V, ® ... ® Vq,

with Py: V> Vy (i = 1,2,...,q) the associate projections.

14
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We say that F: R'xV > V is enclosed in Vi, if
(i) Py F'(u,w,) Pj =0 (2.11)
for i,j = 1,2,...,q; i # j, and for Y(u,w,;) e R'xv;, and
(@ Pj Flu,wy) =0 (2.12)
for j = 2,3,...,q, and for ¥ (u,w;) € R'xv;.

That F is enclosed in V; implies that the linearized operator of F at

(4,w;) € R'xV, has a block'diagonal form and that the problem P: F (u, (w;,

J
wz,...,wq)) =0 ( = 2,3,...,q9) has "a trivial solution'" wy; = w3 = ... =
wq = 0, for all (u,w;) € Rxv,. ‘
It is almost direct to show the following
Lemma 2.7 F is enclosed in the G-symmetric space Vi.
Proof. If G = {e}, the proposition is obvious. Hence, we assume n(G) > 1.

Firstly, from Eq. (2.10), we find that

1 1
——— I F (u,Tgw) = —G7 . T, F (1,w)
n(® geé ; n(© g e &

for all (u,w) € R!XV. 1In view of the relation Tgw = w for any w € V;, we

have
CF (M,w) = P1i°F (u,w), ¥ (u,w) e R'xV;.
Therefore, Eq. (2.12) follows.
Secondly, differentiating Eq. (2.10) with respect to w,
F' (u,Tgw)*Tg = Tg*F' (u,w), ¥ g e G, ¥ (u,w) e R'xv.

Hence, for w € V;, F' (u,w) commutes with T i.e.,

g’
F' (0,w) Tg = Tg F' (1,w). ‘ (2.13)

Multiplying the above relation by X;(g) and summing all the g € G, we have
that

F' (,w)+Pi = Py<F' (W,w), (1 = 1,2,...,9)

for all (u,w) € R'xV;, which in turn implies Eq. (2.11)

15
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2.2 SIMPLE BUCKLINGS IN THE PRESENCE/NON-PRESENCE OF A SYMMETRY GROUP

Under the existence of a symmetry group G, either trivial or non-trivial,
in any simple critical points a further structure is built-in there; namely,
(G-) symmetry preserving and (G-) symmetry breaking critical points. We
shall see that a symmetry breaking critical point is necessarily a bifur-
cation point, and which cannot be a fold. (Thus, a fold bifurcation
should be, if exists, symmetry preserving!) A symmetry preserving
bifurcation can exist formally, however, the essential nature of such bifur-
cations will not become clear until at the next paragraph, where we shall
consider them with the viewpoint of "structural" stability. We remark here
that when G is trivial, only the symmetry preserving case can appear as a
critical point. In this paragraph, we shall study such symmetry structure

of simple critical points.
We begin by recalling that our problem is given by
(P) F (m,w) =0 (1.1)

where F: R!XV >V is a cP (p 2 3) mapping of Fredholm type. Assume that
G is the symmetry group of F (not necessarily non-trivial). Assume also

G is of finite order. For a compact Lie group e.g., G = D, case, see
Remark 2.15. The standard decomposition of V, Eq. (2.4), is assumed; with
the corresponding projections p;: V -+ Vi (i = 1,...,9), given by Eq.
(2.5).7%) By Lemma 2.7, F is enclosed in V; — the G-symmetric space. We
shall sometimes denote by v’ the G-symmetric space V;, and by V™ the G-
asymmetric space V, @ ... ® Vq. Also, P* and P~ denote the corresponding

projections.

The following lemma may explain why we say that F is enclosed in V*,

Lemma 2.8 Suppose 0% = (uy,wo*) € R'xV* is an ordinary point of (P).

Then, the ordinary path which contains 0* 1lies in R!xV*. (cf. Lemma 1.2,

§1,)

*) When G = {e} (trivial), q = 1.

16
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Proof. Restricting the problem (P) on V*, we have an ordinary path which
lies in Rixv?* using Lemma 1.2 on the space V'. Here, the properties (2.11)
and (2.12) are essential. The uniqueness of the ordinary path in the whole

space V guaranteed by Lemma 1.2 shows the proposition.

This lemma shows that a G-symmetric ordinary path continues to be G-
symmetric until it arrives at a critical point C*, which <tself is G-sym-

metric by the completeness of the space V*.

We now suppose C* = (uc,we’) € R'xV* is a simple non-degenerate critical
point of (P) on a G-symmetric path. Let ¢, € ker L., where Lo = F' (u.,w.").
First, we note that since F (u,w*) € V* for all (u,w*) € Rixv* by Eq. (2.12),
e = é%—F (p,wc“)[u:uc e V*. Next, since L. commutes with Tg (¥ g G) by .
Eq. (2.13), if ¢c € ker L, then Tg ¢c € ker Lc. This fact together with
the simpleness assumption of C* necessarily implies that ¢. belongs to such
Vk (Zk e <1,2,..,9>) that the corresponding irreducible representation Ty

is one dimensional (i.e., ny = 1).
In view of the classification theorems in §1, we have the
following possibilities formally:
(1) Symmetry preserving snap buckling (k = 1):
0o € V* and <F,pc> # 0 - (2.14)

(i) Symmetry preserving bifurcation buckling (k = 1):
b € V¥ and <Fe,¢c> = 0. (2.15)

({i) Symmetry breaking bifurcation buckling (7 k € <2,..,9>):
¢c € Vi C V™ and hence, <F.,¢c> = 0. (2.16)

It may be immediate to see the following

Lemma 2.9

(i) Suppose C* is a symmetry-preserving, simple non-degenerate snap
point of (P). Then, the unique path emerging from C* lies inIR!
xV*, '

(i) Suppose C* is a symmetry-preserving, simple, non-degenerate
bifurcation point of (P). Then, both of two paths emerging from
C* (see, Lemmae 1.9 and 1.10, §1) lie in RIxv*,

17
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Fig. 2.1

"Symmetry-preserving critical points"

In case of the symmetry breaking bifurcations, we have the following

two lemmas, which exhibit an interesting nature of simple, symmetry breaking

bifurcations.

Lemma 2.10

Suppose (C+;¢c) = (uc,wc+;¢c) e RIXVxVyx C R'V*xy™ is a simple,

non-degenerate symmetry breaking bifurcation point of (P). Then,

(1)

(i)

there imerges a G-symmetric path (u,w*(u)) e R'xv* for U-Ue € Ig =
{v;]v] < 8} such that w'(uc) = wet.

The other bifurcating path (see, Lemma 1.10 and Remark 1.10", &1,
Chapter I.) (u(a),w*(a)) eR'xV for a € Igr = {a;|a] < 8'} is in

. + N . - - + - +
the Gy-symmetric space V(k) C V, which is deflned by V(k) = P(k) v,

where
def 1
p_+ "= —— X T.. (2.17)
© T Al 4 8

Here, Gk is the maximal symmetry group of Vi in the sense of §2.1, Vg being

the subspace of V to which ¢, belongs. See, Fig. 2.2.

Fig. 2.2
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This lemma shows a situation that the symmetry group G on the fundamental’
(= G-symmetric) path breaks to a subgroup Gy on the bifurcating (Gy-symmetric)
path. '

Proof. Restricting the problem (P) on V+—space, the assertion (i) is easily
checked using a similar reasoning as in Lemma 2.8. To show (i), we return

to the Lyapounov-Schmidt decomposition of F at (uc,w.*),

wcle (v,ac+y) = 0, (2.18)

TeGe (v, 0pc+)

0, (2.19)

where y € R, = range F! = {ker Fé}i. Il is the projection of V onto ker
Fl, and we = I - [c. By Lemma 1.8, we know the unique existence of ¢ = ¢
(o,v) such that Eq. (2.18) is satisfied. We show that y is covariant under

G, i.e.,

Tg ¥(a,v) = Y(Tg0,v), Ygeo. (2.20)
Here, we understand that if u = a*¢ € Vi, a € C?,

Tgu=Tg ap = a Xk(g) ¢
using the relation (2.8), so

Tg o = Xk(g) a. (2.21)

We first note that . and Tg, and hence wc and Ty commute. In fact, if we
let u=opc +y (YueV), Tg o u =Ty a ¢ = o X(g) ¢c, but T Tg u =
<Tgu,¢c> be = <u,Tg*de> ¢¢ = Xk (8) <u,¢c> ¢c = Xk(g) o ¢c. Next, the G-
covariance of Gg, which follows obviously from Eq. . (2.10), and

we Tg = Tg we yield

Tg we G (v,0pc+p(a,v))
= we Ge (v,0Tgdc+ (Tgd) (V) ' (2.23)
=0

The uniqueness of the solution of ¢ = Y(a,v) in Eq. (2.18) implies the
relation (2.20).

Now, reéalling that G is the maximal symmetry group of Vi (see, §2.1),

we have that

19
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Tgo = o for Vge 6. (2.24)
Accordingly, Eqs. (2.20) and (2.24) show that
Tg ¥(a,v) = ¥(a,v), ¥ g e G, (2.25)
from which follows
+ =
P(k) Yla,v) = yY(a,v). (2.26?

Thus, (ii) is proved.

Lemma 2.11 A simple, symmetry breaking bifurcation point (C*;¢c7) = (Mes

weti o) e R!'xV*xV~ can not be a fold bifurcation. Namely, it holds that

Ac = <F" (c,We™) (be™,0c7),0c7> = 0. (2.27)
Remark 2.12  Accordingly, a fold (= transcritical) bifurcation should be,
if exists, symmetry preserving.

A proof of the above lemma may follow from the following observations.

Firstly, the bilinear mapping F" (uc,Wct)(e,+) is covariant under G:

Fo (Tgu,Tgv) = Ty FE (u,v), Ygeo, (2.28)
Yu, vev,
here F{ (+,*) = F" (Meswet) (+,+). Indeed, from the G-covariance of F, Eq.
(2.10),

F! (U,TgW) (Tg.’Tg.) = Tg F" (H,W)(',' .

Using the relation Tgw =w for Ywe VvV, = V+, Eq. (2.28) is immediate. Now,

since Tg is unitary, the form

Ac) Y <P (0.0),00, ¢ € Vi (2.29)
is invariant under G in the sense that

Ac (Tg0) = Ac(0), ¥ g 6. (2.30)

On the other hand, Eqs. (2.7) and (2.8) yield

Xk (g) Xk (8) |2 Ac(d),
Xk (g) Ac 9),

he (Tg®) (2.31)
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Therefore,
Xk(g) - 1) A(¢) =0 for ¥ g e 6. (2.32)

o

It is however only for k = 1 that Xk(g) = 1 for all g € G (see, Eq (2.9)).
The symmetry breaking assumption ¢ € Vk C V7, i.e., ke <2,3,..,q9> implies

Ac (¢c) = 0. This completes the proof,

We can perform similar arguments to know whether and when the other
coefficients of the bifurcation equation, for instance D., vanish. However,
this is a reflection of a more general situation that the G-covariance of
the problem is inherited by the bifucation equation as was shown by Sattinger

[14] -

Lemma 2.13 (D. Sattinger) The bifurcation equation T' (a,v) is covariant

under G:
Tg I' (a,v) =T (Tga,v), g e G, (2.33)

where Tg T is understood in the sense of Eq. (2.21).

For completeness, we sketch the proof for our simple case. From the

G-covariance of G¢ and of y, we find that

T (a,\)) = <GC (\)’ad)c + .‘\U(a’\)))) ¢C>

i

<Tg Ge¢ (v,ade + Y(a,V)), Tg ¢c>

<GC (V,G.Tg¢c + W(Tga’\)))) Tg ¢C>

Xk(2) *T(Tga,v)

which is nothing but the relation (2.33).

Remark 2.14 We return to the question: whether and/or when the coefficient
D, vanishes. We have similarly that (1 - Xyx(g)?) Do = 0 for all g € G.

We may have to check whether/when Xx(g)? = 1 for all g € G. In every case
in Example 2.1, Xkx(g) = *1 for all g € G provided Xx(e) =1 (i.e., nk = 1),
inplying thus D¢ does not vanish (at least, not by group theoretical reason-
ings). We can say that a simple symmetry breaking cusp bifurcation actually
realizes.

However, there are cases where D. does vanish identically even in a
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simple, symmetry breaking bifurcation. For example, a problem with symmetry
group C;— the cyclic group of order 3 consisting of a rotation through 120°
and its powers, which may correspond to, e.g., a shell of revolution with

C3;-loadings. The character table of C,; is given by

C, e c, C2
X1 1 1 1

T
Xy 1 W w? , W= exp (%;-1).
X3 1 w? w '

For k = 2 or 3'(i.e., simple symmetry breaking case), it is not true that
Xk(g)2 =1 for ¥ g € C,. Note, however, that the coefficient of a* in the

bifurcation equatidn vanishes identically by the group theoretical reasoning.

Remark 2.15 (4 Remark on Shells of Revolution. D —a compact Lie group
case) So far, we have assumed that G is a finite group. An important case
arises in non-linear elasticity in which G is not a finite group, but a
‘compact Lie group. Shells of revolution or any other shells with rotational
symmetry are such instances. Most of the techniques we have used so far
‘are, up to modifications, applicable to classical Lie groups.*) However,
it should be noted that in, e.g., Do — the group of rotations and reflections
bthat sends a plane into itself—'the irreducible representations are two
dimensional except two represéntations including the identity. This may
lead to a bifurcation problem with double singularities, However, this
group-theoretical double eigemvalues are in a semse only in appearance, as
was pointed out by Sattinger in [14] . There bifurcates a one parameter sheet
of solutions, which is merely a sheet obtaiped by rotating a one parameter
path bifurcating from the double critical points C. Thus, in conclusion,
we have only to restrict the problem to the subspace V(C) = %-(I + Tg)V of
V, where s is a reflection, reducing the problem to a simple critical case.

For more discussions, refer Fujii-Yamaguti [3] .

*) The standard decomposition (2.4) equally holds with q = + . The
projection operators Py are defined with the aid of Haar measure of D .

See, Serre [17] for these materials.
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2.3 STABILITY OF CRITICAL POINTS UNDER THE PRESENCE OF A SYMMETRY GROUP

~

At this final paragraph of Chapter I, we would like to discuss the
stability of critical points, in particular that of bifurcation points, with

respect to small changes of the equation (P).
Suppose we have a e-family (€ ¢ EC:]RIj of perturbed problems:
(P F (g5u,w) = 0, EXRIxV >V : (2.34)
with the condition that
F (0;1,w) 2 F (u,w), ¥ (u,w) e RIxV. (2.35)
F (g;u,w) is assumed to be sufficiently smooth in each variable.

We want to discuss in what class of problem (P)¢ or, under what kind
of perturbations, a bifurcation point appears stably, or more precisely

appears uniformly in |e| € [0, eol, for some g, > 0.

We shall introduce two classes of (P)g, in which bifurcation points

appears stably. Firstly,

Theorem 2.16 Suppose F (eg;u,w) is covariant under a non-trivial symmetry
group G uniformly in ¢ ¢ E. Suppose F (0;u,w) possesses a simple, symmetry
breaking bifurcation point (C*;¢c) = ((uc,we*);dc) € RI'xV;xVk, for some k

€ <2,3,..,9>. Then, there exits a constant g > 0, such that a e-family of
simple, symmetry breaking bifurcations (C*(e);0c(e)) = ((uc(e),wet(€));dc
(€)) € R!xV,xVk exists in (P)¢ uniformly in |e| e [0, eol-

Proof. The standard decomposition (2.4) being taken in mind, we have as

the symmetric component:
P, F (g;u,w1) = 0, (u,w;) e RIxvV,. (2.36)

When € = 0, there exists a G-symmetric path (u,w;(n)) e R!xV, for p ¢ Is»
such that p; F (O;u,w;(n)) = 0 and Py F (O;u,wi(w)) = 0 (k 2,3,..,9).
For each y e Ig (fixed), there exists a unique function w; = w; (e;u) € Vi,

for |e| < E €0, Such that w; (O;u) = w; (W) and that [w; (e;1) - wy (u)"v

< C [g[(V !gl < g9), since p; F' (O;u,w; (1)) is invertible on the space V,.
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_ Tstability of symmetry breaking bifurcation
under symmetry preserving perturbations’

The pair (u,Wi(e;u)) satisfies Eq. (2.36), and consequently Eq. (2.34)
since (P)g is eﬁclosed in V;. The next stage is to study a (g,u)-family
of eigenproblems on Vy: for |e| ¢ [0, go], u € Ig,

Lk'(e;u) dc(esn) = ge (e51) d¢ (e51), oc (e3u) € Vi, (2.37)

where ,
Lk (e5) = Py F'Oo(esm,wa(e,m)) . (2.38)

By hypothesis','gc (0;n) vanishes at u = uc, and

o G (Osue) # 0, (2.39)

ker dim Ly (O;uc) = 1. (2.40)

See, Lemma 1.10. Here, .(g;u) is the continuation of Z¢ (0;u). We want

to seek g = yc(e) such that

e (e5u) =0 (2.41)

holds for each |e| € [0, €;[, for some 0 < g1 < €o. By virtue of the
relations g¢ (O;uc) = 0 and (2.39), we have the unique existence of p = y¢
(e) such that Eq. (2.41) satisfied and that |uc(e) - uc| < C |e| for |e| <

E 1. (O <3 €1 < go: sufficiently small).

Thus, we have again for each ¢ ¢ [0, £;[, a symmetric breaking bifur-

cation on a G-symmetric path. Especially, the bifurcation buckling load
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pec(e) is in an e-neighborhood of that of unperturbed problem.

Suppose now (C+;¢c) is symmetry preserving, where G may or may not be
trivial. There is a class of problems in which symmetry-preserving bifur-

cations may occur stably.

Definition 2.17 A linear path of F is a pair (u,uewy) € R'xV, u ed 1C

R}, such that F {p,uewg) = 0 for y € I, where I is an open interval C R?,
aﬁd wo € V is a fixed function. In particular, if wy = 0, the pair (u,0)

is the trivial path. A bifurcation problem (P) from a linear (trivial) path
is called a problem of class L (0).

If (P) is neither of class L nor O, it is called of class N (i.e.,

nonlinear path).*)

We remark that class L (class 0) problems appear in many engineering

and mathematical literatures.

For class L-problems, we have an almost trivial analogy of the previous

proposition.

Proposition 2.18  Suppose (P) is of class L, and that F is simple critical
and non-degenerate at (C;d¢) = (Mc,He'Wo;dc) € RIXUXV, (ue € I). Then, (C;¢c)

is a bifurcation point. Moreover, this bifurcation is stable under any small

change of equations, provided it does not destroy the class L-property of F.

Proof. Since
F (M,Hw) =0, Vuel, (2.42)

we can differentiate (2.42) on the path:

0= él F (1, 1eWo)
H (2.43)
oF oF .
gﬁ-(u,u‘wo) + 5;‘(u,u Wo) *Wg

*) Note that ''the class of (P)" is a path-dependent notion. See, also,

remarks at the introduction of §2.
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Thus, at Y = Yc, using the self-adjointness of F',

-
<FC’¢C> = - <Fé‘Wo’¢c>

. (2.44)

which shows the first assertion.

~ Suppose now the perturbed problem
(P)g F (e5m,w) =0

is still of class L uniformly in € € E. Namely, we assume that for each
€ € E, there exists a function wo(e) € V such that wo(0) = wo, [wo(€)-woly
< C Ieland that F (e;u,uwo(e)) = 0 for u € I, € € E.
'Letting
Liesw Y F (euumo (), (2.45)
we consider a family of eigenproblems in V:
L(e;u) dclesm) = gelesn) dclesm), dc(esum) € V. (2.46)
At € = 0, Z-(0;u) = 0 (simple) and %ﬁf—(O;uc) # 0 by Lemma 1.9.*) Here,
Cc(e;n) is the continuation of 7o(O;u). Hence, the implicit function theorem
applies to zc(e;u) = 0 at (e,u) = (0,uc), obtaining a unique y = yc(e) for
each €, |e| € [0, €1] ( €;: sufficiently small.) Accordingly, we have

again a bifurcation for each small €.

Fig. 2.4

"stability of (symmetry preserving) bifurcation under
perturbations which does not destroy the class L-
property".

*) Also, by Lemma 1.10 for cusp case.
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Remark 2.19 - As was stated in Remark 2.12, a fold bifurcation is necessarily
symmetry preserving, and such fold may appear stably if (P)E preserve the
class L-property. However, a symmetry preserving bifurcation is not neces-
sarily a fold. A cusp or more degenerate bifurcation may appear by virtue
of the degeneracy of F itself. For discussions including non-simple cases,

see Fujii and Yamaguti [3].
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