On Pfaffian systems on $\mathbb{P}_2(\mathbb{C})$ with logarithmic singularities

R. Gérard*

Department of Mathematics

University of Tokyo

Hongo, Tokyo

and present address

Institut de Recherche Mathématique

Alsacien

7 rue René Descartes

67084 Strasbourg France

0. Introduction.

Let $\mathcal{A} = \bigcup_{i=1}^n \mathcal{A}_i$ be an algebraic subset of $\mathbb{P}_2(\mathfrak{C})$ where for each i, \mathcal{A}_i is irreducible and given by an irreducible polynomial equation in the homogeneous coordinates on $\mathbb{P}_2(\mathfrak{C})$:

$$P_{i}(x_{1}, x_{2}, x_{3}) = 0.$$

We are considering Pfaffian systems of the form

(1)
$$dz = \boldsymbol{\omega} z$$

$$\boldsymbol{\omega} = \sum_{i=1}^{n} A_{i} \frac{dP_{i}}{P_{i}}$$

^{*} J.S.P.S. visiting Professor July 1978 to the end of October 1978.

where the A_i's are constant square matrices of order m.

In this lecture we are going to speak about

1) the set R(1) of relations between the A i's implied by the condition

$$d\omega = \omega_{\Lambda}\omega = 0$$

- 2) the relations in $\boldsymbol{\pi}_1(\mathbb{P}_2(\mathfrak{C})-\boldsymbol{\mathcal{A}})$
- 3) the nature of the solutions of (1)
- 4) the Riemann-Hilbert problem.

In this lecture there are no deep results but only simple remarks.

1. Some examples.

1.1. $\mathcal{A}=\phi$, $\omega=0$, $\pi_1(\mathbb{P}_2(\mathfrak{C}))=1$ and $\mathfrak{C}^{\mathrm{m}}$ is the vector space of solutions.

1.2.
$$\mathcal{A} = \bigcup_{i=1}^{3} \mathcal{A}_{i}, \quad \mathcal{A}_{i} = \{x \in \mathbb{P}_{2}(\mathbb{C}) \mid x_{i} = 0\}$$

(1.2)
$$\omega = \sum_{i=1}^{3} A_{i} \frac{dx_{i}}{x_{i}}$$
.

Then
$$\mathbf{R}(1)$$
: $\left\{ \begin{bmatrix} A_{1}, A_{j} \end{bmatrix} = 0 & i \neq j \\ A_{1} + A_{2} + A_{3} = 0 . \right.$

And

$$\pi_1(\mathbb{P}_2(\mathfrak{C})-\mathcal{A})$$
 is abelian.

A fundamental matrix of solutions is given by:

$$x_1^{A_1} x_2^{A_2} x_3^{A_3}$$

and all solutions are elementary functions. The Riemann-Hilbert problem can easily be solved with a system of the form (1.2).

1.3. The Pfaffian system associated to the hypergeometric functions in two variables.

The hypergeometric function $\mathbf{F}_{\mathbf{l}}$ is given by the system of partial differential equations

$$x(1-x)(x-y)\frac{\partial^{2}z}{\partial x^{2}} + [\gamma(x-y) - (\alpha+\beta+1)x^{2} + (\alpha+\beta-\beta'+1)xy + \beta'y]\frac{\partial z}{\partial x}$$

$$-\beta y(1-y)\frac{\partial z}{\partial y} - \alpha\beta(x-y)z = 0$$

$$y(1-y)(y-x)\frac{\partial^{2}z}{\partial y^{2}} + [\gamma(y-x) - (\alpha+\beta'+1)y^{2} + (\alpha+\beta'-\beta+1)xy + \beta x]\frac{\partial z}{\partial y}$$

$$-\beta'x(1-x)\frac{\partial z}{\partial x} - \alpha\beta'(y-x)z = 0$$

$$(x-y)\frac{\partial^{2}z}{\partial x\partial y} - \beta\frac{\partial z}{\partial x} + \beta\frac{\partial z}{\partial y} = 0.$$

But the map

$$z \longmapsto \begin{pmatrix} z \\ x \frac{\partial z}{\partial x} \\ y \frac{\partial z}{\partial y} \end{pmatrix}$$

transforms this "complicated" system into the following one of type (1) which is completely integrable. 28

$$dz = \omega z$$

$$\omega = \sum_{i=1}^{3} A_{i} \frac{dx_{i}}{x_{i}} + \sum_{i=1}^{3} B_{i} \frac{du_{i}}{u_{i}}$$

$$u_{i} = x_{j} - x_{k} \qquad j \neq k, j \neq i, k \neq i,$$

where

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 - \gamma + \beta' & 0 \\ 0 & -\beta' & 0 \end{pmatrix}$$

$$B_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -\alpha \beta' & -\beta' & \gamma - \alpha - \beta' - 1 \end{pmatrix}$$

$$A_{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -\beta \\ 0 & 0 & 1 - \gamma + \beta \end{pmatrix}$$

$$B_{2} = \begin{pmatrix} 0 & 0 & 0 \\ -\alpha \beta & \gamma - \alpha - \beta - 1 & -\beta \\ 0 & 0 & 0 \end{pmatrix}$$

$$A_{3} = \begin{pmatrix} 0 & -1 & -1 \\ \alpha \beta & \alpha + \beta & \beta \\ \alpha \beta' & \beta' & \alpha + \beta' \end{pmatrix}$$

$$B_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\beta' & \beta \\ 0 & \beta' & -\beta \end{pmatrix}$$

and we have $d \omega = \omega \wedge \omega = 0$. The singular set:

The same thing can be done for the functions $\,\mathbf{F}_2\,$ and $\,\mathbf{F}_3\,$ by using the map

$$z \longmapsto \begin{pmatrix} z \\ x \frac{\partial z}{\partial x} \\ y \frac{\partial z}{\partial y} \\ xy \frac{\partial^2 z}{\partial x \partial y} \end{pmatrix}$$

for F₂ the singular set is

$$A = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_1 = x_3\} \cup \{x_2 = x_3\} \cup \{x_1 = x_3\} \cup \{x_2 = x_3\} \cup \{x_3 = 0\},$$

for F_3 the singular set is

$$\mathcal{A} = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_3 = 0\} \cup \{x_1 = x_3\} \cup \{x_2 = x_3\} \cup \{x_2 = x_3\} \cup \{x_3 = 0\} .$$

We don't know if a transformation does exist for F_4 . If it does exist it will be more complicated than for F_1 , F_2 , F_3 .

1.4. Let $\mathcal{A} = \bigcup_{i=1}^n \mathcal{A}_i$ an arbitrary algebraic subset of $\mathbb{P}_2(\mathbb{C})$.

Then let $\{A_i\}_{i=1,2,\ldots,n}$ a set of permutable matrices satisfying

$$\sum_{i=1}^{n} \deg(P_i) A_i = 0.$$

Then the system

$$dz = \omega z$$

with

$$\omega = \sum_{i=1}^{n} A_{i} \frac{dP_{i}}{P_{i}}$$

is completely integrable and has ${\mathcal A}$ as singular set. But we cannot call this system "generic".

<u>Problem I.</u> For any algebraic set $\mathcal{A} = \bigcup_{i=1}^{n} \mathcal{A}_{i}$ in $\mathbb{P}_{2}(\mathbb{C})$ does there exist a completely integrable Pfaffian system of type (1) with singularities on \mathcal{A} and which is not example 1.4. ?

For some singular sets the answer is yes: examples \mathbf{F}_1 , \mathbf{F}_2 , \mathbf{F}_3 .

In example 1.4, we have a global fundamental matrix of solutions

$$\prod_{i=1}^{n} P_{i}^{A_{i}}$$

which is given by elementary functions. Then we can reformulate problem I in

<u>Problem I'</u>. Find the algebraic sets $\mathcal{A} = \bigcup_{i=1}^{n} \mathcal{A}_{i}$ in $\mathbb{P}_{2}(\mathfrak{C})$ for which there exists a completely integrable Pfaffian system having singularities on \mathcal{A} and which does not have a global fundamental matrix of solutions which is elementary.

- 2. The condition $d \boldsymbol{\omega} = \boldsymbol{\omega}_{\Lambda} \boldsymbol{\omega} = 0$. Let $\boldsymbol{A} = \bigcup_{i=1}^{n} \boldsymbol{A}_{i}$, $\boldsymbol{A}_{i} : P_{i}(x_{1}, x_{2}, x_{3}) = 0$ (irreducible).
- 2.1. The \mathcal{A}_{i} 's are normal crossing.

Consider
$$\omega = \sum_{i=1}^{n} A_i \frac{dP_i}{P_i}$$
 then it is easy to see that

$$d \omega = \omega_{\Lambda} \omega \iff [A_i, A_j] = 0$$
 for all i, j $i \neq j$.

And $\boldsymbol{\omega}$ is well defined on $\mathbb{P}_2(\mathbb{C})$ if we add the condition $\sum_{i=1}^n (\deg P_i) A_i = 0.$

And in this case problems I and I' are solved and the solutions are all elementary functions.

The Riemannn-Hilbert problem can be solved with a system of type (1). In fact $\pi_1(\mathbb{P}_2(\mathfrak{C})-\mathcal{A})$ is abelian, then any linear representation

$$\chi : \pi_1(\mathbb{P}_2(\mathfrak{C}) - \mathcal{A}) \longrightarrow GL(\mathfrak{m}, \mathfrak{C})$$

is abelian.

The fundamental group has n-generators g_1, g_2, \dots, g_n related by

$$\prod_{i=1}^{n} g_{i}^{\text{deg }P_{i}} = 1.$$
 Set $\chi(g_{i}) = D_{i}$ and $\widetilde{A}_{i} = \frac{1}{2\pi i} \log D_{i}$. Then
$$[\widetilde{A}_{i}, \widetilde{A}_{j}] = 0$$

and

$$\sum_{i=1}^{n} (\deg P_i) \tilde{A}_i = 2m\pi i I$$

and by choosing in a suitable way the determination of $\log D_{\dot{1}}$, it is possible to find the set of A,'s satisfying

$$[A_i, A_j] = 0$$

and

$$\sum_{i=1}^{n} (\text{deg P}_i) A_i = 0.$$

- 2.2. The \mathcal{A}_{i} 's are not normal crossing.
- 2.2.1. An example.

And
$$d \omega = \omega_{\Lambda} \omega$$
 gives
$$A = \begin{cases} 3 & A_1, & A_1 = \{x_1 = 0\}, & A_2 = \{x_2 = 0\} \end{cases}$$

$$A = \begin{cases} x_1 = x_2 \}.$$

$$x_1 = x_2$$

$$x_1 = x_2$$

$$x_1 = 0$$

$$And \quad d \omega = \omega_{\Lambda} \omega \quad \text{gives}$$

$$[A_1, A_1 + A_2 + A_3] = 0$$

$$[A_2, A_1 + A_2 + A_3] = 0$$

$$[A_3, A_1 + A_2 + A_3] = 0$$

which are trivial consequence of

$$A_1 + A_2 + A_3 = 0$$

which has to be satisfied to have a system on $\ \mathbb{P}_2(\mathfrak{C})$.

This means that any set of matrices A_1 , A_2 , A_3 such that $A_1 + A_2 + A_3 = 0$ solves the problem I, the solutions are not elementary but nearly related the hypergeometric Gauss function of one variable.

2.2.2. Let us consider a Pfaffian form

$$\omega = \sum_{i=1}^{n} A_i \frac{dP_i}{P_i}$$

 \mathcal{A}_i : P_i = 0, P_i irreducible. Then by a finite number of monoidal transformations (blowing up), we construct a manifold X with an analytic map

$$\sigma: X \longrightarrow \mathbb{P}_2(\mathbb{C}).$$

There exists in X, a divisor

$$\mathcal{A}^* = \bigcup_{j=1}^m \mathcal{A}_j^* \qquad (m > n)$$

where the \mathcal{A}_j^* are normal crossing and for each $i \in [1,2,\ldots,n]$ n] there exists $j(i) \in [1,2,\ldots,m]$ such that

$$\sigma: \mathcal{A}_{j(i)}^* \simeq \mathcal{A}_i$$
.

But ${\cal A}^*$ contains some exceptional divisor coming from blowing up of the singularities of ${\cal A}$. Moreover ${m c}$ is an isomorphism from

$$X - A^*$$
 onto $\mathbb{P}_2(\mathbb{C}) - A$.

This implies that

$$\pi_{\!_{\scriptstyle 1}}(\mathbf{X}\,\text{-}\,\boldsymbol{\mathcal{A}}^*) \cong \pi_{\!_{\scriptstyle 1}}(\mathbf{P}_{\!_{\scriptstyle 2}}(\mathbf{C})\,\text{-}\,\boldsymbol{\mathcal{A}}).$$

Denote by $\sigma^*(\omega)$ the inverse image of ω by σ , then $\sigma^*(\omega)$ has logarithmic poles on \mathcal{A}^* . Then we have for each i \in [1,2,...,n]

$$Rés_{A_{i}}(\sigma^*\omega) = Rés_{A_{i}}(\omega) = A_{i}$$

and for each exceptional divisor ${\cal B}$

$$\operatorname{R\acute{e}s}_{\mathcal{B}}(\sigma^*\omega) = \sum_{i=1}^n r_i \operatorname{R\acute{e}s}_{\mathcal{A}_i}(\omega)$$

where the r;'s are integers.

By local computations in X, we can easily prove the following

$$\omega_{\Lambda}\omega = 0 \iff \sigma^*\omega_{\Lambda}\sigma^*\omega = 0 \iff [\text{Rés}_{A_{\dot{1}}}^*\sigma^*(\omega), \text{Rés}_{A_{\dot{1}}}^*\sigma^*(\omega)] = 0$$
 for all i, j i \neq j with $A_{\dot{1}}^* \cap A_{\dot{1}}^* \neq \phi$.

This result can also be seen by using the following remark.

Locally in X near a point $M \in \mathcal{A}_i^* \cap \mathcal{A}_j^*$, choose a simple path Y_i surrounding \mathcal{A}_i^* and a path Y_j surrounding \mathcal{A}_i^* having the same origin and such that

Denote by $\hat{m{Y}}_{\mathbf{i}}$ and $\hat{m{Y}}_{\mathbf{j}}$ the local homotopy classes of $m{Y}_{\mathbf{i}}$ and $m{Y}_{\mathbf{j}}$. We have

$$\hat{\gamma}_{i} \hat{\gamma}_{j} = \hat{\gamma}_{j} \hat{\gamma}_{i}$$

(the local fundamental group is abelian). This means that

there exists a two cell S homotopic to zero such that

$$\partial S_{ij} = \gamma_i \gamma_j \gamma_i^{-1} \gamma_j^{-1}$$

and

Proposition 1.

$$\int_{S_{i,j}} \sigma^*(\omega)_{\Lambda} \sigma^*(\omega) = + 4\pi^2 [\operatorname{Rés}_{A_i^*} \sigma^*(\omega), \operatorname{Rés}_{A_i^*} \sigma^*(\omega)]$$

and as a corollary

$$\omega_{\Lambda} \omega = 0 \Longrightarrow [\text{Rés}_{A_{j}^{*}} \sigma^{*}(\omega), \text{Rés}_{A_{j}^{*}} \sigma^{*}(\omega)] = 0$$

for all i, j $i \neq j$.

Let us summarize the results:

The complete integrability condition is equivalent to the commutation of the résidues of $\sigma^*(\omega)$ for A_i^* and A_j^* when $A_i^* \cap A_i^* \neq 0$.

This means that for $\omega = \sum_{i=1}^{n} A_i \frac{dP_i}{P_i}$ we have

$$\omega \wedge \omega = 0 \iff \begin{cases} \sum_{i=1}^{n} (\deg P_i) A_i = 0 \\ [\operatorname{R\acute{e}s}_{A_i^*} \sigma^*(\omega), \operatorname{R\acute{e}s}_{A_j^*} \sigma^*(\omega)] = 0 \end{cases}$$
where
$$\operatorname{R\acute{e}s}_{A_i^*} \sigma^*(\omega) = \operatorname{R\acute{e}s}_{A_i^*} \omega$$

where \mathcal{A}_{i} is not an exceptional divisor and

$$\operatorname{R\acute{e}s}_{\mathbf{4}_{j}}^{*}^{*}(\boldsymbol{\omega}) = \sum_{i=1}^{n} r_{i}^{j} \operatorname{R\acute{e}s}_{\mathbf{4}_{i}}^{\boldsymbol{\omega}}$$

where r_i are integers.

2.3. The group of the relation $\omega_{\Lambda} \omega = 0$.

Let us construct a group G in the following way.

To each irreducible component \mathcal{A}_i of \mathcal{A} is associated in an abstract way a generator g_i of G. Then to each relation among the A_i 's we associate a relation between the g_i 's in the following way.

To
$$\sum_{i=1}^{n} P_{i}A_{i} = 0$$
 $P_{i} = \deg P_{i}$ les us associate
$$g_{1}^{p_{1}} g_{2}^{p_{2}} \cdots g_{n}^{p_{n}} = 1 \text{ and } \boldsymbol{\tau}(g_{1}^{p_{1}} g_{2}^{p_{2}} \cdots g_{n}^{p_{n}}) = 1$$

for all circular permutation au of the factors.

and
$$[\mathbf{R\acute{e}s_{A_i}}^{\star} \mathbf{\sigma^{\star}}(\boldsymbol{\omega}), \ \mathbf{R\acute{e}s_{A_j}}^{\star} \mathbf{\sigma^{\star}}(\boldsymbol{\omega})] = 0$$

$$[\mathbf{g}_1^i \ \mathbf{g}_2^i \ \cdots \ \mathbf{g}_n^n, \ \mathbf{g}_1^j \ \cdots \ \mathbf{g}_n^n] = 1$$

$$[\mathbf{\tau}(\mathbf{g}_1^{i_1} \cdots \mathbf{g}_n^n, \ \mathbf{\tau}(\mathbf{g}_1^{i_1} \cdots \mathbf{g}_n^n)] = 1$$

for each circular permutation au of the factors.

Examples.

1. See 1.2.

 $G = \left\{ g_1, g_2, g_3; \left[g_i, g_j \right] = 1, g_1 g_2 g_3 = 1, \boldsymbol{\tau}(g_1 g_2 g_3) = 1 \right\}$ and G is a free abelian with two generators.

- 2. See 2.1. Normal crossing case.
 - G is a free abelian with (n-1)-generators.
- 3. See 1.3. Hypergeometric function F_1 .

The group G has 6 generators

corresponding to \boldsymbol{A}_1 , \boldsymbol{A}_2 ,

$$\mathbf{A}_3$$
, \mathbf{B}_1 , \mathbf{B}_2 , \mathbf{B}_3 .

The relations are up to cyclic

permutations as indicated above:

$$[a_1, b_1] = [a_2, b_2] = [a_3, b_3] = 1$$

$$[a_1, b_2 a_3] = [a_1, b_3 a_2] = 1$$

$$[a_2, b_3 a_1] = [a_2, b_1 a_3] = 1$$

$$[a_3, b_1a_2] = [a_3, b_2a_1] = 1$$

$$[b_1, b_2b_3] = [b_1, a_2a_3] = 1$$

$$[b_2, b_1b_3] = [b_2, a_1a_3] = 1$$

$$[b_3, b_1b_2] = [b_3, a_1a_2] = 1$$

and

$$a_1 a_2 a_3 b_1 b_2 b_3 = 1.$$

4. See 2.2.1.

The group G has three generators g_1, g_2, g_3 and up to

cyclic permutation as indicated we have the relations

$$[g_1, g_1g_2g_3] = 1$$
 $i = 1, 2, 3.$

but also $g_1g_2g_3 = 1$. As a consequence G is a free group with two generators.

- 3. Some problems.
- I. If problem I in section 1 is solvable for an algebraic set $\frak{4}$, what are the relations between
 - 1) the monodromy of the Pfaffian system and the group G
 - 2) $\pi_1(\mathbb{P}_2(\mathfrak{C}) \mathcal{A})$ and \mathbb{G} ?
- II. In which cases is the Riemann-Hilbert problem solvable by a Pfaffian system of type (1) ? Or such that $\sigma^*(\omega)$ is of type (1) in each coordinate system in X ?

Remark: In many particular examples when $\pi_1(\mathbb{P}_2(\mathfrak{C}) - \mathcal{A})$ is known we have $G = \pi_1(\mathbb{P}_2(\mathfrak{C}) - \mathcal{A})$.

To finish this summary let me thank Professor M. Oka of the University of Tokyo with whom I have had a very interesting discussion about fundamental groups of the complementary of an algebraic curve in $\mathbb{P}_2(\mathbb{C})$.