goooboooogn
0 3630 19790 41-58

41

Some Analysis of PASCAL Programs

Masaaki Shimasaki Shigeru Fukaya
Department of Information Hankyu Corporation
Science

Kyoto University

1. Introduction

Recently necessity and importance of measurement and analysis of
actual programs have been recognized in programming language study[1-5].
The aim of the-approach 1is as follows: '

(1) Utilizing statistical results, some characteristics of a programming
language and/or a pfogramming methodology can be made clear. Résults
can be hopefully feed back to designers of programming languages,
translators and high level language oriented machines to imprové ,
‘programming environment.

(2) A resulf, especially dynamic behavior of a program is useful to a
programmer -for better progfém development. Thus a program analysis
system plays a role of a software tool for program development and

improvement.

We have implemented a PASCAL program analysis system[6]. The second
version of the analysis system has been designed and is now under
implementation. There may be two kinds of analysis, i.e. static and
dynamic. A method and some results of static analysis of PASCAL. programs
aré-given in section 2. In section 3,‘a method of dynémic analysis is
described. In section 4, some experiments on code improvemeht of

Sequential PASCAL programs are discussed.

42

2. Static analysis of PASCAL programs and profile of PASCAL compilers

Static analysis is carried out by recording occurrences of various
statements of source language as they appear within user's program. The

result of analysis reflects how a language is used in an actual program

text. For gathering static profiles of programs, both manual and
automatic approaches are used. In automatic approach, there may be two
ways;

(1) to develop a special syntax analyzer for this purpose
and
(2) to modify an existing compiler.
Since a PASCAL compiler is usually written in PASCAL itself, it is quite

easy to insert statements for gathering static information.

In the second version of our PASCAL program analysis system, we have
decided to carry out 'control flow analysis' at the level of source
statements. We partition statements into 'maximal' groups such that no
transfer occurs into a group except to the first statement in the group.

It is obvious that once the first statement in a group is executed, all

the statementsviﬁ that group arebexecuted sequentially. We call such a
group of statements af'block'. In order to carry out control flow analysis
in recursive descent fashion, we adopt some 'worst case assumption' and

the 'maximality' of a block in our definition is based on this assumption;

in our control flow analysis, we assume that if there is a statement label
excluding case label, then there are at least two statements transferring

to that label. Generally speaking, a labeled statement should be the first
statement of a block. If there is only one statement transferring to that
label, +then the ' labeled statement can be possibly included in a larger
block. Even in such a case, we assume that a block is partitioned by the
labeled statement. If a procedure is referred to only one procedure

call statement, then the procedure call statement and the first statement of
the procedure can possibly belong to the same block. We again assume,
however, that even in such a case, a block is partitioned by a procedure

call statement.

43

the same block. We again assume, however, that even in such a case, a block

is partitioned by a procedure call statement.

It should be noted that some type of statement is always the first
statement of a block and some type of statement is always the last
statement of a block. Under our assumption, foliowing properties can be
utilized to partition statements into blocks.
(1) A goto statement is the laét’statement of a block.
(2) A procedure call statement is the lést statement of é block.
(3) A labeled statement is the first statement of a block.
(4) A if statement is the last statement of a block. ‘Thus a statement
following to then or an else clause becomes the first statement

of another block. Thé situation is similar with a case statement.

(5) A for statement is the first statement of a block.
A repeat statement is the first statement of a block.

A while statement is the first statement of a block.

Blocks are numbered and the number of a block'is determined by the
compilation order in recursive descent compilation. It should be noted
that if we check 'in degree' of ‘each node in the control flow graph after

.compiling all the statements, we can construct blocks with exact 'maximal'
property. If there is any block with 'indegree of 1', then the block
‘cane be appepded to its preceeding block. '

The control flow analysis may be utilized for 'dead code elimination',
though it is not expected that such a case occurs frequently in PASCAL
programs.\— The result of the control flow analysis is utilized by dynamic

‘ analysis described in section 3.

PASCAL is a language designed for use in stepwise refinement programming.
We are interested in how PASCAL is actually used, especially in the field of
compiler writing. We now describe the result of a case study of static
- analysis on two existing PASCAL compilers written in PASCAL[6]. PASCAL

compilers under investigation are: _ '

(1) a standard PASCAL compiler for FACOM 230~38[7], a descendant from

a compiler developed at ETH.
(2) a Sequential PASCAL cbmpiler extracted from the SOLO system

44

developed by Per Brinch Hansen[8] and adapted to HITAC 8350 computer, an IBM
360 type computer. Hereafter we designate them by St and Sq , respectively,
The two compilers have the following characteristics:

(i) They are fairly complex system programs. They are designed carefully
in the top-down stepwise refinement approach and may be considered |
well-structured programs.

(ii) They are system programs written in a high level programming language.
It is expected they will reveal characteristics of system programs,
especially of compilers, written in a high level language.

(iii) St is a one-pass, in—gore compiler. Sq is, on the other hand,

a multi-pass (7-pass) compiler utilizing a disc as auxiliary storage,

They may be typical instances of compilers.

Specifications of the two languages are slightly different and statistical
results are described separately. Statement distribution in the PASCAL
compilers is given in Table 1. Approxiﬁately one-third to one half of all
the statements are procedure call statements. According to reports on
FORTRAN[1,3] and on PL/I[4], the percentage of CALL statements was between
2 percent and 8 pércent in both FORTRAN samples and in PL/I samples, which
was much lower than that in our PASCAL samples. Table 2 shows statistics
about how many times procedures are referred to statically in the source
program text. About one half of all the procedures are referred to only
once in the source program text. This is the case both with St and with
S . This result shows a role of procedures in stepwise refinement
programming. It should be noted that a procedure which is referred to at
only one place of source program text cannot be a recursivé procedures,
There is no difficulty with inline substitution of such a prbcedure.

The information about with of such procedures is invoked dynamically

for many times is useful from the view point of program optimization

by inline substitution of procedures. Thus we recognize the necessity

of a software tool for obtaining dynamic behavior of procedures.

-4 -

45

‘percantage of 'if statements is approximately the same as those in FORTRAN
[1,3] and in PL/I[4]. Goto statements are rarely used in PASCAL. Table 3
shows how many if statements have else clause. About 50 percent of

if statements have else clause. The result is interesting in view of
Elshoff's statement in his paper on analysis of PL/I programs[u]: " Only 17
percent of the IF statements in the programs analyzed had an ELSE clause.
gometimes it is very reasonable to not have an ELSE caluse but not that

often. Hand analysis indicates that somewhere between 50 perceﬁt and 80
percent of the IF statements should have ELSE clauses if the language is
properly used...." ‘ :

While , repeat , for and case statements are less frequently used

than the if statement.

Table 1 Distribution of statement types in two PASCAL compilers

St Sq (7-pass)
NO . % - NO . %
PROGRAM , 1 ’ 7
PROCEDURE 146 3.0 465 8.4
FUNCTION) 3 12
PROCEDURE FORWARD 1 48 0.86
FUNCTION FORWARD 0 0
LABEL 14 . 0.29 -
CONST 1. 19
TYPE)) 3 13
VAR 7 79 ' 16 192 35
Assignment 1763 36.0 1333 24.0
Proc. Call {user) 1508 308) 2302 41.4
Proc. Call {standard) 75 1.6 24 0.43
Proc. Call {I/o, system) 34 0.73 : 192 3.45
IF ~ v 926 18.9 567 10.2
WITH 160 3.7 193 3.47
WHILE 59 1.2 . 27 . 0.49
REPEAT 46 0.93 49 0.88.
FOR 32 0.65 61 1.1
CASE .) 30 0.61 - 56 1.0
GO TO 17 0.35 —
Total 4898 5560
1 .
Table 2 Number of static references of procedures Table 3 If statement and else clause
number of . number of procedures : : St Sq -
static reference in percent
s Sq Satements 926 567
1 ' 53.4% 48.1% " number of else 493 , 336
2 96 135 percent ratio 53.2% 59.3%
3 4.8 8.2 :
4-10 15.1 19.5
11- 171 10.7

-5 -

46

3. Dynamic anmalysis of PASCAL programs

Dynamic analysis is investigation of dynamic behavior of a pfogram. A
software system to feedback a programmer information about the execution
profile of his program is very useful for the purpose of improving program
efficiency. ‘For FORTRAN, results of dynamic analysis are reported in
[1,2]. 1Ingalls[2] says: " in a typical program only 3% of the statements
make up 50% of program's execution time. All the programs which I have
seen since fall into the same pattern, and I would expect it to be about
the same for most languages-also.”" In such a case monitdring the execution
profile is quite useful for detecting a program bottleneck and optimizing
it or improving an algorithm. Thus as one fundamental tool for program
development, a langﬁage processor s&stem should provide a user with a
software facility for monitoring execution of his program. Stncki[s] went
further and introduced the concept of automated tools for improving software
quality.

We have implemented PASDAP[6], a system for gathering the dynamic
behavior of a PASCAL programs. PASDAP is a preprocessor. It takes a
PASCAL program as input, and outputs an equivalent PASCAL program which
also maintains frequency counts ;f invokation of procedures and writes them
on to a file. When fhe converted PASCAL program is compiled and run, we

V will get the number of invokations of each procedure together with usual
result of execution.

In PASDAP, measurement is carried out for procedures and functions
rather than for statements.‘,The stfategy made‘PASDAP simple to a great
extent and runtime overhead éf PASDAP is kept small. Evéluation of
execution time or running cost of each procedure/function may be carried
out by a hardware clock or by sdme‘software method. The feasibility of
timing by a hardware clock depends greatly on the enviromment. We
implemented PASDAP system on HITAC 8350 computer system, -and its one-
second timer is‘of little use for the purpose. The Sequential PASCAL .
compiler translates a PASCAL program into virtual stack machine cdde and

the object machine code is executed by an interpreter. If the weight

47

for each virtual stack machine instruction is determined, it is easy to
construct a virtual software clock by summing up weights of machine
instructions executed by the interpreter. PASDAP uses the virtual clock
for time measurement. Table 4 shows.the result of dynamic analysis of
Pass 1 of Sq’ while compiling Pass 1 of S itself{ This pasé is rather
I/0 bound and drastic improvement of efficiency cannot be expected.

PASDAP was applied to analysis of PASDAP itself énd was very useful for its
improvement. - ‘

Besides static distribution of statement types, runtime distribution
of statement types is also very interesting. ' We have designed PASDAP-II
which carries out measurement on distribution of statement types executed
and statement execution counts, besides couhting numbers of procedurevcalls
and procedure timing. As mentioned earlier, runtime overhead of |
measuring statement counts will be very large, if we adopt a method like
one used in PASDAP. Instead of countihg number of execution of each
statement, PASDAP-II counts number of executions of each 'block'.

In the static analysis, we keep records of a Statemént type for each '
statement and the number of the block which each statement belongs to.
Statement execution counts and distribution of statements types: executed
can be computed fromx:'block' execution counts , utilizing the result of
static analysis. Thus the static analysis will reduce overhead of
dynamic analysis to a great extent. PASDAP-II is not a preprocessor

but a part of a ¢ompiler and dynamic analysis is a compiler option.

48

Table 4 An example of dynamic

analysis by PASDAP

S PROCEDURE NAME D WEIGHT
1 | MAIN 1 8.9°10*
1 | INIT_PASS 1 08 -
1 | NEXT_PASS 1 2.1
8 | WRITE_IFL 9885 4.6*10°
1 | LARGEST_REAL 1 1.1
3 | PUT_ARG 262 4.8"10°
18 | PUTONC 1899 3.9%10°
10 | PUTO 1294 2.4*10°
8 | PUTH 3215 1.2°10°
1 | PUT_STRING 50 | 1.3°10°
48 | STD_ID ° 48 45°10°
1 STD_NAMES 1 | 52010°
5 | END_LINE 1006 | 1.1°10°
4 | GET_CHAR 138 1.3*10°
1 | INIT_OPTIONS 1 4.2*10°
1 INITIALIZE 1 1.5*10°
1 | NUMBER 232 2.1*10°
1 | SAME_ID" 2719 2.0%10%
1 | INSERT_ID - 285 36°10°
1 | SEARCH_ID 2412 8.6”10°
3 | STRING_CHAR . 1034 7.0°10°
1 | STRING 288 5.4°10°
1 | IDENTIFIER 2412 4.2*10°
1 [.SCAN 1 8.7*10°

S: Number of static reference

D: Number of invokations

49

4. Some experiments on code improvement of Sequential PASCAL programs [g]

4,1 Code iﬁprovemeht by inline substitution of procedures

As investigation in preceding. sections shows, it.is often the case
that a program is composed, by many small procedures'inrsfepwise_refinement
Pmogramming.: It is therefore expected that '1n11ne' substltutlcn' of a
eprocedure body for a procedure call- statement improves runtlme efflclency.
If a procedure is referred to atAmany places in a source program, inline
substitution ofusuch a procedure for all the call statements causes

. jncrease in memory space required. ‘Therefore it is necessary to select’
‘appropriate’ procedures for 1n11ne substltutlon., In this context, ' PASDAP
system is useful for selectlon of procedures hut we try to set a crlterlon
of autonatlc selectlon by a compller. The crlterlon we set is to satisfy
all the following conditions: - S

(a) A procedure which is referred'to at only one place in a source

program text. , , .

(b) A procedure which is not declared as "forward'.

(c) A procedure which does not have a 'univ' type paremeter. _
Reasons why we set the conditicp.(a) are as follows: Since such a
procedure cannot be a recursive procedure, inline‘substitution of such a
procedure is relatively easy. If a procedure is,referred to only once,
inline substitution of such a procedure doeevnot_increase memory. space
required. Finally there are many procedures satisfying the condition in
the Sq compiler. . ‘ ‘

‘The condition{b) was set because a preliminary investigation showed
that most of procedures declared as forward were referred to more than
two times and many of them were recursive procedures. Table 5 shows the
result of the preliminary investigation of procedures in rhe Sa compiler.

The Sq compiler“iS'a 7-pass compilegkand treets 8»kinds of languages
including source, intermediate and object languages. - The intermediate code
produced by the compiler is a segence of integers. Each integer represents
either an operator in the intermediate language, or an argument of an
operator. We decided to carry out inline substitution of procedures for

the output language of Pass 3; By inline substitution of a procedure,

X Pass 1 : Lexical Analysis, Pass 2 : Syntax Analysis

Pass 3,4,5 : Semantic Analysis, Pass 6,7 : Code Generation

50

interprocedural program optimization is reduced to 1ntraprocedural program
optimization and it is therefore preferable to carry out inline substitution at
an earlier stage of compilation. At the end of Pass 3, syntax analysis and
name analysis have been done but allocation of memory space to each variable

has not been done. It is therefore easy to introduce new variables for 1n11ne _

substltutlon at the end of Pass 3.
An algorithm of inline substitution of a procedure is as follows:

(GD) If a 'called' procedure to be expanded has any locally declared
typeber variable, such a declaration is to be transferred to
the global area. ‘ ‘

(2) For 'call-by-value' formal parameters in a 'called' procedure _

'~ to be expanded, correspondlng new variable declarations are inserted
in the global area. ‘

(3) If a 'called' procedure to be expahded has a 'call-by-value' formal
parameter, then an‘assignment statement of the value of the actual
parameter (expression) to the corresponding newly declared variable
is inserted before expandlng the Drocedure bodv of the ‘'called’
procdeure. '

(4) A 'call-by-reference’ forﬁal parameter is replaced'by the corresponding
actual parameter variable.

(5) A procedure call statement is replaced by the cerresponding

"body of the 'called' procedure.

Fig. 1 giveé an example of inline substitution of procedures.. Although
actual expansion is carried out using an intermediate language, the example
is shown in the source program for clarity. It should be noted that in fhe
example, procedure expansion of the procedure b . is interrupted by the
procedure expansioh of procedure a. The procedure expansion is carried out
in a nested form. ‘)

In our implementation, procedure inline expansion is carried out using
3 phases. In the first phase, each procedure is determined to be substituted

or not. At the same time, necessary information for procedure expansion

- 10 -

Table 5 Summary of Procedure: in the Sq Compiler

[

PASS 11 PASS 2| PASS 3 | PASS 4 | PASS 5 | PASS 6 | FASS 7
(1) 32 68 o8 | 81 75- ug 4y
(2) 15 6 53 41 33 19 v 21
(3) 17 33 54 41 33 19 21
() . 18 62 47 32 29 28 32
(5) 5 4 6 3 4 10 - 13

(1) Procedures in total

(2) Procedires which can be expanded
(3) Procedures referred to only once
(4) Procedures with parameters

(5)° Procedures with parameters which can be expanded-

program test; . . program test;
type strg=char; tvpe strg=char;
var. ig,jg:integer; »stra=integer;
procedure a(ka:integer); . ’ tb=1..20; 1%
type stra=integer; { yar lasstra;
yar la:stra; - nb:tb;
begin : / 1g,Jg:integer;
la:=ka = ~>ka:integer; .
end; lb:strg; 2
procedure b{var, ib,jb,kb:integer; . mb:integer;
1b:strg; mb:integer); kd:integer;
type tb=1..20;] procedure c{var ic,jc:integer;
var nb:tb; scistrg);
begin 5
. a(in) N 3
end; . 3 |] }
2 clyar 1c,jc:integer; ™~ kai=ie] R ;
sc:strg); y 'L_.:"_}_E:-.“-kg_'- _____ ' j .
begin : end;” T TTTTTCT =
b(ic,jc,ic,scictic) begin "main® .,
ang; anigaga; P
spossdurs e(vargtd:intessrs RYTRTSIO P
kd:integer); {_cUeden)e 3
bhezln end.
c(1d,14,'17)
"end;
rocedure e; 2) scl program obtained by /
begin - inline substitution
c(1g,3g,"'n’)
end; panded procedures---a,b,d,e
begin "main” .
aljg,igtig*l);e
end.

. m N
(1) original Sq ProgY Fig. 1 An example of inline substitution

of procedures

..Vll'..

92

-is also collected. In the second phase, the systematic renaming of name
indecies is carried out. In the third phase, a procedure call statement is

replaced by the corresponding procedure body.

4,2 Some peephole optimizations

Peephole optimization is said to be effective with a relatively small
émount of effort and some kind of peephble optimization is carried out
in almost all compilers. Among peephole optimization techniques often
used are:
i) elimination of unnecessary load or store instruction to or from
registers
ii) constant folding
iii) dead code elimination
iv) operator strength reduction
v) machine dependent optimization
The Sq system utilizes a virtual stack machine and its software interpreter.
The virtual stack machine does not have usual registers for evaluation. of
expressions. Thus usual régister allocation technique for optimization
cannot be applied to our case. ‘It is not expected that the technique of
operator strength reduction is effective in our case. We thefefore, decided
to carry out the following peephole optimizations:
(1) constant folding o
If all the operands are constant values, the value of the expression
is computed at compile time. .
(2) machine dependent;optimization

The virtual machine has special instructions increment and decrement
which increments and decrements by 1, respectively , the value of a

'for-loop' control variable whose address is on the stack top. Extending
definition of these instructions, we use these instructions not only for

'for-loop' control variable but for usual variables.

Peephole optimizations may cause changes in code length, and peephole

optimizations should be carried out in advance of address calculation such

- 12 -

93

as jump address calculation. Pass 5 of the Sq compiler is - the body analysis
and Pass 6 and Pass 7 are code selection and code assembly, respectively.
The peephole optimization ia applied to output codes of Pass 5 in our
implementation. .

We define 21 delimiting operators out of 49 operators in the output
language of Pass 5. They delimit block of codes to which the peephole
optimizatién is applied. . Among them are 'deflabel'; Jump' , 'assgin', etc.
Operators such as 'add' , 'pushconst' are not delimiting operators.

Peephole optimization by the use of 'increment' and 'decrement'
operator is carried out in the following way. The technique can be applied
to the case when a delimiting operator is 'assign' operator and its operand
is 1. The operand 'l' implies that the operator is applied to 'word' type.
Code patterns to which the optimization teéhnique can be applied are shown
in Fig.2. If code pattern under consideration is one of patterns shown
in Fig. 2, then the block of code is replaé;d by corresponding optimized

codes.

4.3 Experimental results of .code improvement

Inline substitution of procedufes and peephole optimization were applied
to U4 test programs and improvement of execution time was evaluated. Execution
time or cost was evaluated by ; virtual software clock technique used in
PASDAP, summing up weights of virtual machine code executed by the
interpreter. Four test programs are as follows:

(1) A program'designed to print the first 999 prime numbers greater than

2 (54 lines). The prégram was quoted from Wirth[lQ]/and a routine
for conversion of an integer to a character string was added. The
additional routinevwas also quoted from the Sq compiler.

(2) A program to generate a sequence of 20 characters, chosen from an

alpfhabet of three elements, such that no two immediately adjacent
subsequénces are equal. (69 lines) This program was also quoted

from Wirth[10].

- 13 -

1:=1+1
T L L L L T T I e - — 1 o
a Ilc3 2 2 jel 1 2 -2, ¢
L3
3 :push— global 1(disg| push- word ~ global 1 | push-
— addr 1 var type 1 const
o L e e e e T e D e e - —
Bl €17 1 c9 1
el)
° co;St add word assign word
3 :’53"—*5'—":5—'%1&2
ol
§8 ipush- global 1(disp): incre-
58 :__a_t_i'd_l'__________ o __.jment’
:=pred(1)
o |3~ 2T T T T ,cl-'—'i——_—z._”f'_—'é—: c24
s h ; N . .
¥ lipush- global 1 (disp)\ push— word global 1 1 functlon
° Nadar type x
] S .- N T R et
=
E" 3 1 c9 1 ‘
& pred word assign word
G - 'é—"]clu
Bolr
fg'push- global 1 (disp}l decre-
Seolladar _ _ _ __ __ __ Ament
v{k]):=v[k]+1
:-53_ -TZzT- ———2585—'_’""1———-2- T8 T T es

ipush- global vldls@ push- word global k(disp) index

improved
codes

LT "3‘5— T2 TV esT T2 T 208 e 1|
O
B Imin max Size | push- global v {disp) push- word
© (2bytes) 4 addr var
I P R R R P e B
4 12 -8 ‘€5 1 36 2 g c2 1
sl
5. global k({disp) index min max size: pushind word’
c0 1 cl?7 1 c9 1
.h— const
ggﬁs T 1 add word assigp word
}33""’2"" To2084" el T 1 2 -8 c5

min max size : increment

otes‘ v:array[1..36] of integer;
i,k:integer; :

Fig.‘i’ Fxample code patterns of peephole
optimization

- 14 -

29

(3) Pass 1 of the Sq compiler (the lexical analysis pass). (1006 lines)
(4) Pass 3 of the Sq compiler (the name analysis pass). (1862 lines)

Programs (1) and (2) are examples of short programs, and programs (3)
and (4) are examples of relatively large programs. Table 6 shows execution
time or cost of these programs. In Table 5, four results are giveh for each
program. They ave: '

(a) the result of the original program,
(b) the result of a program obtained by 'inline substitution' of
procedures, ’ ‘
(c) the result of a program obtained by peephole‘optimizatiohs,
(d) the result of a program‘obtained by ~inline substitution of
procedures and by peephole optimizations.
In Table 6, inputs to programs (3) and (4) are programs. . . (3) and (u4),
respectively. Table 7 gives results of programs (3) and (4) by changing
input data. Judging from these results, results given in Table 5 might be
considered as typical ones. In these examples, the time for execution of
'callsys' operator , i.e. the time for input and output operations is
excluded.

Scheifler[11] carried out inline substitution of procedures for programs
written in CLU and evaluated improvement in execution time and change in
memory space. According to his results, improvemehts in execution time were
28%, 5%, 17% 13% and 7%. He says that " execution time saved directly by
inline substitution is small, even for féirlyxinefficient procedure call:
mechanisms; however, the enlarged context made available to othér techniques
may lead to much more optimizétion than would otherwise be péssible." The

effect of inline substitution of procedures in our examples is smaller than
_that'in Sceifler's examples. Reasons might be as follows: In our examples,
the S system uses a virtual Staék machine system and the overhead of
procegure call and return on the virtual machine is relatively small.

Therefore, if implementation of procedure call and return mechanism is

- 15 -

96

4% N. . : mm.m mm.H oo.o adejuaoaad =
Ze'vL9t ey | 86°829°2zL‘s | ££°6v0°510°L | 00°0 panogdus m
6€°182°256°€s| £L°2€€ L96°yS| 8E*9L6 PL0°LS | 1L°196°680°8S @-2) >
2397 ©3 Teos | 33T 03 Tenbs | ageT o3 tembs | OE°SE9*LE SASTIES g m
69°226°686°ESf £0°896°400°SS| 89°165°2L1°LS | 10°L65°L2L°8S 18383 .5 m.
066°00%°1 2esoey L 962°905°1 8£8°525°1 a-v| 7
13eT o1 Tenbe | 3j2T ©3 Tenbe | 3zeT o3 Tenbs | 92§ P2R0RRES g w
915 10v* L 850°12b°1 728*905°1 $9£°925°1 PRIRIRE3 v | °
298°1 L 53UBWRIRIS
] 88°¢ 1 10°0 sae3us0aad |
95°£59°085°2 | €8°t18°919°L | ££°8£8°€96 00°0 panogdur | L.
SL°651°S19°€S] 88°L656°8L6°¥G| 86°€L6°1€2°G5 | .1L°218°S61°5S a-a2| ®
1397 03 Tenbe | 3397 03 Tenbs | 3geT o3 Tende LE°0L9°HL8 0L sasyres | m-
9v*628°68v° ¥9] 61°899°€5t*59| 62°¢t9°901°99 | ~ 20°€8Y°0L0°L9 153893 .o | %
§62°26£°1 651607 1L gLy Lyt L 22 9L 8-v| a
3387 o3 Tembe | 3391 o3 Tenoa| 3397 03 TED2 | sgG¢1SL PR3 . oﬂ
2y2°7v5° 1 9v1*195°1 S0b°665° L 60E°919° L PoISEREs wv | 9
@O O .ﬁ . sjuawalels E]
¢8'01 198] 96°1 . 00°0 ase3uadaad
0v°10£°890°S | 1£°096°051°Y | 60°L¥ELLE 00°0 pPaaoadur §2
$5°0b6°8SL 1| £9°182°929°2y | $8°006°606°SY| ¥6°1vz‘L28°9Y a-o|8§ m
2397 03 Tembs | agel o3 Tenbs | 35eT o3 Tembs | €B*L6¥*929 sasyzgs .o (88
Lee2ev sge ey | 9y £LL°208°E | 89 26E°9ES 9| LLEEL €SV LY 8383 . ¥
86 2Ll L £20°621°1L L1€ 0521 00t*992°tL E-v] £
33eT 03 Tenbe | 338 o3 Tenba | 3387 03 Tenbe 9s.°'8 vmwmwmww - m
#69°L2L*L £8L°LELL £90°652°L 951°622°1 Pa3InIB%e v
mm siusualeys
104 AR Z'0 00°0 odr3usoaad 7
le°588°2€£°2 | 1L 965°€29°2 | 65°062°60L 00°0 panosdyr |
Y0 pLLLE2°9€E | 9 by 0bE 9E | 92°89L°958°8E| SE°650°¥96°8E a-2
3387 03 TEND® | 3307 03 Tend@ | 3307 o3 Tenbs | 2/°078°82Y saspres W
9L°¥90°099°9€ | 9£°5EE°69L°9¢ | 8Y°6E9°EB2°6E| L0°0£6°26E°6E 15383 .5 w
6.5°566 8/5°966 | ESY°2BO'L 2sy"e80°L pnznoses 3
3397 03 Tends |3F°T O3 TeMD? [31:57 03 Tenbe +66°S sAsiied m m
£L5°100°1L 245°200°L Lht°880°L 9py°680°1 Po3n3esd iy | 8
.VW sjuswalels
*.,.NMMMHMHM SUSTIZZINRANS [CP i TeuTsta0

(1) auswaaoadut 2pod jo 3Tnsay g oTJeL

L 00'0 ns's 00°0 S
2EhL9'LeL'y [000 16°455°6v9°y | 00°0 ponsgzis | 5
6E°(82°2G6°ES| 1L°196°680°8S} LL°LEL*SIL 9ZL| 89"262°S1H° €L i-o |z
3397 03 Tenve| OE°SE9*LE 3ot o3 e | L0°51s*02L°02 | sOsfzey | B
69°226°686€S| 10°465'L21"8s] Bs 252 268" ov1| 69°L08" v ISl Tmgy o | B
066°005° L 868°525°1 096°952°€ 8Y6°98E € a-v |7
3397 o3 Tenve| 925 3397 03 Tenbds | £62°182 P2EgeNs .o | B
91s 108t | poetozset £52°8ES E 1v2°899°E peinosKe .
. Sap v
15°/ OD.O mm.: oc.c 23=3uaoaad xm.
89°268°6252 | 00°0 95°£59°085°2 | 00°0 panoddys &
2€°L15°£89°82| 00°0LE°L10°1E] S1°651°519°€S | 1£°218°S61°9S A
33°1 o3 tente 0€°250°61 3397 03 Tenbe 1£°029°¥28°01 m>wmmmw Hf m
29°6v5°90£°82| 0£°20v°950° L€} 9v°628°68V°49 | 20°E8H°0L0°L9 13883 o5 |
4
$80°6EL 10v°608 552°26E° 1 22 19b° L g-v|e | §
3397 03 Temda| gga © . 3397 03 Tenbe 186° 151 vmw_.m—mwuw ' w. AR
1SE*6EL £99°608 vz bseL 60E°919*L PoIggRN M g
1]
66°h OO.Q m:.m 00°0 mmmucuoh.on 20 M
Lezes'vle | 00°0 01°695°5SY 00°0 poaoiddl 1381 3
- . - c « -) rpt IS - 8 g
20°£91°686%S | £1°666°C0E*9 | 64°820°6L8'L | 68°L66°YEE"S @-ojeel 3
359% oF embs | L£°0LL*9LE | azet o3 tenbe | OLmzBvsotL | I8 uq 33
6L°418°596*9 | 06°60.°089°9 | 6v°L06°cv6'8 | 65°9r8*66E* 6 588 o | UK
T 3 N E
610°191 s9LtLL 580° 112 29e°£22 2-v|>s
1307 03 Tenve | §92°S a3eT o3 tents | £88°HlL P2REFPEB g (X6
] - 'y 3 -
v82°991 0Ep*9LL 896°522 sv2*8E2 PoIDRRXI .
Hw.m . OO-O NN-M CO.G 23e3usdaad
83°859°¥EL | 00°0 25" LLs* g9l 00°0 panoides g2
£2°2vE°v81°2 | 11°986°81e*Z | 9705822y | ®8°280'z6C°Y } 1725z
3397 03 Tenbe | 09°682°2 - 17oT o3 Tenbe | gy gzLtads S g g8
£8°989°981°2 | 1£°ss2*1ze*z | 67829 visy | 1e°s0z°selcs RPN
m
820°45 o121 gzreotl L1s8*v1t a-v) 2
13eT o1 Tenoe | 2¢ 3397 03 Tenbe gzv ol . vm»mwwmw : m
090°L$ 2v2°19 1580zl - 692°s21 P23038E3 1y
poaocadut Teuidiao pasoadut Teurdtao
weadoxq sisATeuy ouey weadoag sysATeuy TeOTRI]
weasoaq 1s9]

(2) 3uswaacadui apod go

aTnsay L a1qel

- 16

97

appropriate, then the overhead of procedure call and return is not so large,
even if there are many procedures in stepw1se refinement programmlng.

The improvement in execution time attalned by constant foldlng was
less than 0.2% therefore negligible in our examples.

Tt is interesting that the extended use of 'increment' and 'decrement'
operators results improvement in execution time by 2.8%- 8.8%. Those
operators were originally designed for changing 'for-loop' control variables.
The result shows that code patterns, "increment by 1' and 'decrement by 1!
frequently occur not only for 'for-loop' variables but for ﬁsual variables.
It can be expected that investigation on 'code patterns' and introduction

of new high level operators may make further improvement in execution time.

5. Concluding remarks

Static and dynamic analysis methods of.a PASCAL program are discussed.
It is preferable to utilize static analysis to reduce overhead of dynamic
 analysis. A static profile of PASCAL compilers is sho&n. The result
is different from those of FORTRAN and PL/I reported before. It
indicates the impact of programmjng discipline on program structure.
Experimental resulfs=of code improvement by inline substitution and by

peephole optimizations were also discussed.

Acknowledgements

Authors express their éincere gratitude to Emeritus Professor T. Kiyono
of Kyoto University and Professor K. Tkeda at the University of Tsukuba
for their valuable discussions at the early stagebof the project.
Acknowledgements are due to Professor Per Brinch Hansen and Mr. M._Takeichi

for kindness of supplying us with their PASCAL system tapes.

- 17 -

28

References

[1] D. Knuth: An Empirical Study of FORTRAN Programs, Software-Practice

& Experience, Vol. 1, pp. 105-133(1971).

[2] D. Ingalls: The Execution Time Profile as a Programming Tool, in

[37 s. K.
[u] g. L.

[5] L. G.

Design and Optimization of‘Compilers, pp.107-128, Prentice-Hall,
New Jersey,11972.‘ . ' ‘

Robinson and I. S. Torsun: An Empirical Analysis of FORTRAN‘
Programs, Cdmputer Journal, Vol. 19, pp.56-62(1976). ‘
Elshoff: An Analysis of Some Comercial PL/I Programs, IEEE Trans.
oﬁ Software Engineering, Vol. SE-2, pp.113—126 (1976).

Stucki: New Directions in Automated Tools for Improving

Software Quality, in Trends in Programming Methodology, Vol. II
Program Validation, pp.81-111, Prentice-Hall, New Jersey, 1977.

[6] M. Shimasaki, S. Fukaya, K. ITkeda, T. Kiyono: A PASCAL Program

Analysis System and Profile of PASCAL Cdmpilers, Proceedings
of the Twelfth Hawaii International Conference on System Sciences,
Vol. I, Selected Papers in Software Engineering and Mini-Micro

Systems, pp.85-90 (1979).

.[7] M. Takeichi: PASCAL Compiler for the FACOM 230 0S2/VS, Dept. of

Mathematical Engineéring, University of Tokyo, 1975.

[8] P. Brinch Hansen: The SOLO Operating System, Software-Practice &

Experience, Vol.6, pp.l4#1-205(1976).

[9 1 S. Fukaya: On Code Improvement of Sequential PASCAL Programs, Master's

Theéis, Dept. of Information Science, Kyoto University, 1979.

[10] N. Wirth: Systematic’Programming: An Introduction, Prentice-Hall,

[11] R. M.

1973. v
Scheifler: An Analysis of Inline Substitution for a Structured

Programming Language, Comm. ACM Vol. 20, pp.647-654 (1977).

- 18 -

