goooboooogn
0 3630 19790 59-99

29

DESIGN AND IMPLEMENTATION
OF
A MULTIPASS-COMPILER GENERATOR

Masataka Sassa, Junko Tokuda,
Tsuyoshi Shinogi, and Kenzo Inoue

(Department of Information Science
Tokyo Institute of‘Technology)

Abstract

A compiler generator (compiler-compiler) 1s presented for
gutomatically generating compilers allowing multipass scan aﬁd
optimizatipn.

Descfiption to thé cbmpiler generator is designed so that it
is a coﬁplete and readable description of ‘compiler and user
program's. run-time environﬁents. Thé degcription includes those
for 1exical analyzer using regular expressions, syntax and
semantics of each pass -using an attribute-grammar-style
description, and run-time prelude. | |

For incrementally generating a compilér, the compiler
generator can partially (re)generate a compiler, i.e., create or
update a compiler parts by parts, with respect to user specified

parts among the whole description.
Keywords

compiler generator, compiler-compiler, multipass compiler,

compiler description, attribute grammar

This report 1is a revised version of Research Reports on
Information Science, No. C-2U4, Dept. of Information Science,

Tokyo Institute of Technology.

1. Introduction

In many recent programming languages, definitions and uses
of 1language constructs may appear in any order. This generdgity
causes some difficulties in compiling process.

One most commonly arising case 1is 1labels and "go to"

statements using the labels. In a situation

begin
. * . L: . . L]
begin
go to L ; (1)
e o o L o . .
end
end

what "L" at (1) denotes cannot be determined at this point.
Another commonly arising difficulty in Dblock structured
languages is the identification of variables in procedure bodies,

as follows (cf. [YonT761]).

begin ;
procedure £ ; ... X + g ... (2)
integer procedure g ; g := « . . 3 (3)
()

integer x
- L] L]

end
The exact specification of "x" and "g" at (2) cannot be foundv
until lines (3) and (4) are scanned.

Similar difficulties arise in processing mutually recursive
procedures, or in processing declarations and uses of operator
priority and mode in Algol 68 [Wij76].

As the above mentioned inverted sequences of definitions and
uses cannot be analyzed efficiently in a single-pass compller, we
have proposed in a previous note [Ino77] a compiler generator
which generates compilers allowing multipass scan and

optimization.

Although most of existing compiler generators are just able

D=

61

to generate single-pass compllers, some attempts were made at
automatic generation of multipéss compiler [Gan77]. The compiler
generated by the above system creates at the first pass a
(somewhat optimized) parse tree, and at later passes it gives and
evaluates semantic attributes and makes optimizing transformation
on the tree, However, 1t seems to proceed slowly, due to the
creation of the tree. Further, note that this tree construction
should be completed in the first pass, making the syétem
essentially single-pass. This would cause difficulties in Algol
68 compilers, as mentioned above. For example, the precise
analysis of "expression" cannot be made at the first pass in case
operator precedence is defined later in the source text.

In contrast to the above system, we have adopted a real
multipass parsing without <creating the parse tree. This note
discusses the design and implementation of our multipass-compiler
generator, which may be simply referred as "generator" in this
note, with its underlining design philosophy and its evaluation.

Description to the compiler generator is designed so that it
is a complete and readable description of compiler and user
program's run-time environments. The description includes those
for 1lexical analyzer using wregular expressions, syntax and
semantics of each pass using = an attribute-grammar-style
description, and run-time prelude.

For inerementally generating a compiler, the compiler
generator can partially (re)generate a compiler, i.e., create or
update a compiler parts by parts with _respect to user specified

parts among the whole description.

62

2. Design philosophy

In designing our compiler generator we have stressed on)the
following criteria:

‘(l) a complete, readable and easily modifiable compiler
descriptlion language,

(2) an efficiently usable generator structure which can flexibly
regenerate a compiler whenever part of the description 1is
modifiled, and

(3) machine independence considerations.

These criteria are briefly discussed in the following.

2.1. Complete and readable compiler description language

Compiler generators are not only designed for saving human
labor, but are also a tool for formalizing compilers, which’are
rather complex objects. Our point of view on the ‘input
description for the generator 1s that it should be ideally a
complete documentation of "compiled language and its
environments". However, since we are to make actual compilers, we
search for a point of compromise with making an effort for
formalizing the compller description. The description includes
user programs and data, the run—time prelude which méy be
considered as the middle level "environment", in addition to the
usual compiler description which may be considered as the outmost
"environment”"., In other words, our generator system unifies
compiler generator and compiler. As the result of formalization,
each description unit can be written in an appropriate and
readable description language which will be discussed 1in 1later

sections.

63

2.2. Generator structure allowing efficient partial regeneration

No compiler description will immediately be error free, nor
will it be the final ‘description when it 1s 1nput to the
_ generator for the first time. The completeness and easiness of
modification of the description as discussed 1in the previous
section can only Dbe guaranteed by a system which avoilds
unnecessary efforts, such as the redoing of the whole generation
process, on account of a single bug in the compiler description.
We have designed a generator structure where the task of
generating a compller may be incremental by making the task
divisible into efficient partial {re) generation steps

corresponding to each of the description units,

2.3. Machine independence considerations

In designing the generator, the generated compiler and the
object code, we have taken care to make machine-dependent parts
be logically well discriminated from other parts. We shall

discuss this point later in chapter 9.

3. Overview of the generator system

Our objective is to automatically generété a combiler which
analyzes source text by multipass parsing. Schematic view of
multipass parsing is shown in Fig. 3.1; The parser of each pass
usually reads input text of the pass (blank portion in the
figure) and copies into output text of the pass. When the parser
catchesJ the starting position of the partial grammar parsing for
this pass, it enters the parsing mode, analyzes the input text

(shaded portion in the figure), and outputs the goal symbol. Thus

64

the 1length of intermediate text decreases as the text gbes
through passes. ‘

Now, the schematic view of the multipass-compiler generator
is shown in Fig. 3.2.

The input description to the generator consists of the
following description units, written respectively in appropriate
description languages:

(1) Lexical analyzer : regular expressions.

(2) Syntax and semantics for each pass : attribute grammars-style
description + procedure-oriented language (Algol 68—sty1e
macro-extended Fortran, to be briefly shown in a later section).
(3) Lexical and semantic subordinate routines : procedure-
oriented language (as above).

(4) Run-time prelude (standard environment) : the language
acceptable by the generated compiler, or others. (
(5) User program and data : the 1language acceptable by tﬁe
-generated compiler.

The generator inputs the above description and creates a
multipass compiler. The generator consists of a master control
program, several sub-generators, and interface files for passing
information among those sub-generators. The presense of interface
files affords a key for the efficient partial regeneraﬁion of a
compiler. This subject will be descussed in detail in chapter'7.

The compller generated by our system analyzes source te;ts
by multipass parsing, and outputs object codes. The compiler vis
usually made 1in a structure where analyzers for each pass are
overlayed with one another., Further details will be discussed in

a later section.

6=

65

4, Description of lexical analyzer

There are several tools for automatically generating lexical
analyzers, for example LEX [Les75]. We adopt here a similar
‘approach using regular expressions. v

Figure 4.1 is an example description of lexical analyzer., It
consists of a set of "class"es, the first characters of terminal
symbols (tokens), a set of "table"s, the table of keywords etc.,
and a set of "symbol"s, the specification of terminal symbols
corresponding to each "class" wusing a description in regular
expressions together with procedure names and terminal symbol
names., Names prefixed’by "?" are procedures which are pieces‘of
codes to be executed whenever a terminal symbol specified by the
relevant regular expréssion is recognized. Names prefixed by "!"
1ndicaté terminal symbols which are to be used in the description

of syntax.

Example of identifier :

In Fig. 4.1, suppose that "I10" is given as input. The
lexical analyzer first reads the letter "I", selects the "class"
LET, and "jumps" to the "symbol" IDSEQ. Then, it scans input
while the input character belongs to LET or DIG or space. (< ...
| oo | «.. > in the description means (vee | eee | .. O)¥ 1in
the wusual mathematical notation.) Thus, "1" and "O" are scanned.
Scanned characters are usually stored 1in a string area.
~Afterwards, the procedure IDENT, provided by compiler-writer, is
called perhaps for making an entry "I10" 1in the symbol table.
Finally, the lexical analyzer returns ID as the indication of the
token, which can be used as a terminal symbol in the description
of syntax. Of course ID is internally represented by an integer

number,

66

Subordinate routines such as IDENT can be written by
compiler writer using an Algol 68-style language (Fig. L4.2). They
are translated into Fortran using a pattern matching macro
processor [SasT79].

The description style for lexical analyzer extends regular
expressions in several aspects. They are illustrated by examples

using Fig. 4.1.

Example of bold tag symbol:

Let wus assume that the hardware representation of "bold tag
symbols" in source text is preceded by ".". When the lexical
analyzer reads the first character of ".BEGIN", it selects the
"class" PERIOD and "jumps" to "symbol" PERSEQ. It skips the first
character which belongs to PERIOD (in our description, "-" means
skip, 1i.e., do not store iﬁ the string area) and scans input
while LET(LET|DIG)* 1is recognized. Now, the string "BEGIN" 1is
saved in the string area. Then, 1t searches for "BEGIN" in
"table" TERM2, and since it will succeed the indication of token
becomes BEGIN., (If it failed, the .OUT part of the description

would be selected.)

Example of string:

The description of string in Fig. 4.1 assumes a string
denotation_ form which is enclosed by either single-quotes (');or
double-quotes ("), To include a single-quote or a double-quote
itself in a string enclosed by the same characﬁers, this
denotation form implies a representation by their succession.

Suppose for example that 'DON''T' is given as .input. The.
lexical analyzer selects the "class" QUOTE, "jumps" to ?symbbl"

STRING. (Here, "$" specifies any character 1f it appears the

8-

67

first time 1in a regular expression. Otherwise, 1t specifies the
character which matches the character previously designated as
""" Y The lexical analyzer skips the first character (by "-$")
.which 1is a single-quote in this case; scans input while the input
character is not a singlé—qucte (by "™$"), or skips the first
occurrence of single-quotes if they succeed (by "-=-3$"), until
finally finding a Single—quote which is to be skipped (by "-3$").
Thus in the above <case, DON'T is stored in the string area.
Now, the procedure STORE 1is called, which should feturn an
integer 1 or 2. According to this return value, either CHARCON or

STRCON is selected as terminal symbol.

Example of colon-~-sequence:

The reader will easily find that the "symbol" COLSEQ accepts
the following inputs
=1 .= /=1 :

("!" not followed by names. specifies that the token scanned until

that time is used as\Qhe terminal symbol. "/" means empty.)

5. Multipass parsing.

In order to achieve multipass parsing, only partial portions
of the 1input +text of each pass are analyzed by the parser, and
the information resulting from semantic actions is carried to the
‘next pass (Fig. 3.1). Upon the end of the final pass, the
' complete object 'code corresponding to - the source text can be
generated., This partial grammar parsing of a pass is illustrated
in Fig. 5.1. The 1-th pass parser is given a partial grammar
(i=th pass syntax) G; which 1s a subgrammar of the whole grammar

G, It scans the i-th text which is the text output by the

68

(i-1)-th pass. The parsing is made on partial portions of the
text (shaded portion of the text in the figure) which correspond
to sentences of the language specified by G;j. The goal symbol 34
of the partial grammar G; is output to the (i+l)-th text. This
goal symbol Si is treated as a terminal symbol at the next pass.
For the other portion of the text not in the language specified
by G; (blank portion of the text in the figure), the 1-th pass
parser only copies i-th text into (i+l1)-th text. Thus, in
general, plural analyzed portions are interspersed in the input
text of a pass.

Although more detailed and formal description on multipass
parsing can be found in [Shi78, Shi79], we shall briefly present
the main features of +the facilities provided in our parsing
scheme, drawing on an example description of a parser for Algol
68 (Fig. 5.2). In the research reported here, we have restricted
ourselves to the application of SLR(1l) parsing techniques in all
passes, though, 1in the general case, each pass is independent

from the others with respect to the class of grammars accepted.

5.1. Starting and terminating partial grammar parsing

Let L(Gy) be the language generated by Gy;. In order to catch
the starting position for i-th pass parsing, two terminal symbol
sets must be given (Fig. 5.1). The first is the set of terminal
symbols preceding L(Gi), which will be called Precy. The second
is FIRST134(S3), the set of first terminal symbols of L(Gy).
While the latter can be computed automatically, the former cannot
since it 1s not part of the language L(Gy). Thus, 1t should be
included explicitly in the description of the syntax of each

pass. Given the above two sets of terminal symbols, the i-th pass

-10-

69

parsing is "triggered" whenever a terminal symbol a e Precy is
followed by a terminal symbol b e FIRST134(S3), in the i-th
text.

Similarly, to find the terminating position of partial
grammar parsing, we must explicitly specify in the description
the set of terminal symbols succeeding L(G3), which will be
called Succy (Fig. 5.1). The parsing proceeds until the parser
goes into the accept state. Precisely speaking, the set Succy 1is
required so as to decide whether the parser goes into the accept
state when it is in the LR(0) conflict state.

To specify these two sets, a description

Sy .BEFORE Succy .AFTER Precy . . .

is used (see #(D)# in Fig. 5.2).

5.2. Extra goal symbol

The determination of starting position for parsing by two
adjacent input terminal symbols as mentioned above has a weak
point. As an example, suppose that we are collecting declarations
of an Algol 68 program 1in the first 4pass. We encounter a
difficulty arising from the similarity between "declaration" and
"cast" (Fig. 5.3) :

(1) declaration
e ¢« e« 3 refint x 5 . . .
(2) cast
e « « 3 ref int (y) =2z 3 . . .
In these two cases, assuming that
;3 € Precy and ref e FIRST1g;(Sy)
hold, the parser enters the partial grammar parsing when catching

"M and "ref", It is undesirable in the cast case.

-11-

70

In order to escape from this difficulty, we adopt a strategy
to exit from parsing as soon as we see "(". Namely, we parse ohly
"ref int" in the cast case.

In general, we have designed our parser to be able to exit
from parsing, given the specification of a set of nonterminal
symbols (Si')s such that

Sy g; Si' a
and a set of succeeding terminal symbols (which 1s a set
including "(" in the above case). Here, Si' is called "extra goal
symbol".

The above "cast" case can be specified by

Si' .BEFORE '(!

An example specification can be found at #(D')# in Fig. 5.2.

5.3. Saving and restoring parser state

Another problem of partial grammar parsing arises in the
following case. Supposing again that we are collecting
declarations of an Algol 68 program in the first pass, the input

e o o 3 int 1 =10, J ;
causes a problem that it contains a portion ":= 10" which we do
not want to parse in this pass. Such a case i1s solved by adding a
mechanism for saving parser state, restoring it and continueing
partial grammar parsing thereafter. In the above case, the parser
11

state 1is saved at position ":=" and restored at position "," as

follows.

e o« « 3 int iJT= 1011 J 3

save restore
(Underlined portion is the text parsed by partial grammar.)

Another example is

-12-

7"

S — T —— - W — — - — - P Thus o I w———— =

After saving parser state, the partial grammar parsing
continues as wusual. Thus, nested saving and restoring may arise

as follows.

—————— save restore ‘ v
save restore save restore

An example description is
MVAR ,BEFORE ':=! (save)

.RETURN ',', ';' (restore)

5.4, Replacing'input terminal symbols

There are cases where one finds the necessity of replacing
an 1nput terminal.symbol by another terminal symbol according to

the previously gathered information.

Example

The identification of variables in Algol 60 procedure bodies
cannot be made until the relevant declaration is scanned. For
example, the exact specification of "x" and "g" cannot be
determined in scanning procedure "f" in the following (cf.
[YonT761]):

begin
procedure f 3 ... X + g ...

integer procedure g ; £ = +« « « 3}
integer x 3

end

In general, such a problem can be treated either by (1)

-13-

72

using the same terminal symbols in the syntax for both cases and
distinguishing in the semantics, or by (2) using different
terminal symbols in the syntax by distinguishing in the 1lexical
analyzer. Since method (2) seems more simple using multipass
parsing, we have included in our system a feature to replace
input terminal symbols by other terminal symbols. The replacement
is achieved 1in the 1lexical analyzer. Assuming that we collect
declarations in the first pass, the treatment of "x + g" in each

pass will be for example

x + g
(first pass) id + id
(second pass) id + fid

with the following second pass syntax

<function reference> -> fid

<variable> -> 1id
To realize this, the lexical analyzer of the second pass replaces
input terminal symbol "id" by either "id" or "fid" according to
the symbol table information made at the first pass. The relevant
description of the second pass to the generator will be

+REPLACE 'ID' ?IDFID !(ID,FID) ;
where "IDFID" is a procedure to discriminate the two cases. This
feature can be applied to the treatment of operators in Algol 68
where their priorities can be declared later in a source text.

(see #(F)# in Fig. 5.2).

~14-

5.5, Additional features for multipass parsing

In order to fully exhibit characteristic features of
multipass parsing and to make the number of passes to the

minimum, additional features are included.

5.5.1. Catching range structures

In Dblock structured languages, we would want to catch range
structures of source text in addition to the partial grammar
parsing which, for example, collects declarations. Some examples

of ranges are

do « o« o 0d
Here, begin etc. are called "range opening symbols" and end etec.
are called "range closing symbols".

However, recall that our parser can be given only one
partial grammar for each pass. This results in that "begin" etec.
are hard to be catched in the same pass as the pass for
collecting declarations since "begin" etc. are outside the
partial grammar for wvariable declarations. Thus, we made an
additional mechanism to catch range structures.

We have extended the cqncept of block structures to allow
for further subdivision. For example, to deal with the following
nested structure of Algol 68:

if

then

I

|

|

| else
.
fi-

we define

|
—y
3
.

then
else
fi

.
o3
0]
o]

®
)
n
&)
.
.

-15-

7|

as subdivisions of ranges, which will be called "subranges".

The information collected in a subrange can be attached as
an attribute to the range opening symbol in the text of later
passes. For example, after collecting declarations at the first
pass, we can pass the set of declarations for each subrange to

the next pass as follows.

if
R > (i) (symbol table containing i and j)
(int i, § 3)
then
[mem— e > (1ii) (symbol table containing x)
(real x)
else
R > (iii)(symbol table containing y)
(real y ;
fi

Full determination of nesting structures for such subranges 1is
delayed until the next pass, where "active" declarations can be
determined at each stage of scan as (i) or (i)+(ii) or (i)+(iii)
by connecting declarations in each subrange.

For the above objectives, semantic actions can be called at
the time range opening and closing symbols are scanned (#(A)# in

Fig. 5.2).

5.5.2. Catching label definitions

A label is a typical example for which uses may precede the
definition. Here, we realize again that 1label definitions are
hard to be catched in the same pass as the pass for collecting
declarations since label definitions are outside the partial
grammar for variable declarations. However, we recognize that
label definition forms are usually simple and present almost the

same syntax in most programming languages. We have taken

16—

3

advantage of this fact to process them in a specialized way, in
order to enhance efficiency. Thus, 1labels can be catched by
specifying the two terminal symbols for 1label definitions, for
example,

id ¢
and the set of terminal symbols preceding it, for example

{ begin, then, else, out, do, exit, |, ; }

(#(C)Y# in Fig. 5.2).

6. Description of semantics

There has not yet been agreement on the best formal notation
for the semanties. Attribute grammars as introduced by Knuth
[Knu68] make descriptions readable, formal and modifiable,
However, thelr use may result in a dilemma, that is, their power
is rather restricted or insufficient compared with real compilers
which use hand-coded routines. Another attempt can be found in
the CDL compiler~compiler [Kos74] wusing Affix grammars. It is
intrinsically based on top-down paréing. Syntax and semantics are
mixed up in a production rule which, in our opinion, results in a
rather puzzling representation similarly to hyper-rules of the
Wijngaarden grammar as used in [Wij76]. Considering these facts,
we have adopted a modified type - of attribute grammars -as the
description style for semantic actions. In our style, evaluation
by semantic attributes may be intermixed with evaluation by
programs in pfocedure—oriented language with using variables and
tables as in hand-coded routines.

In contrast to the original attribute grammar, the

evaluation of semantics 1in generated compilers is directed by

-17-

76

bottom~-up syntax analysis without actually building the syntax
tree. Therefore, 1in a strict sense, inherited attributes canh%t
be accepted by our system. However, we have confirmed from
. experience that uses of global entities whose values are
determined in previous passes in the multipass parsing can mostly
replace uses of inherited attributes. Moreover, considering that
the slow processing speed of semantic evaluation in the original
~attribute grammar results partly from passing of inherited
attributes through parse trees, we believe this restriction to be
reasonable. In this way, our intermixed description style can
realize compile-time semantic evaluation speed as efficient as
hand-coded compilers, still preserving readability of
description.

An example of intermixed description for syntax and semantics
can be seen in Figure 6.1. Semantlic attributes are enclosed by“<
and > 1in production rules, for example DECS and VALUE afe
synthesized attributes. CODEFILE is implicitly deglared as a
synthesized attribute and it corresponds to object codes. ENV is
a global entity which <can be considered as an inherited
attribute.

‘Our system supports two types of semantic evaluation. The
first type of semantic evaluation proceeds as in usual attribute
grammars. Namely, if a same attribute appears in both sides of/a
production rule, such as in

IF<DECS> -> "IF"<DECS> (1)

THEN-CLAUSE<VALUE> -> THEN<DECS> THEN-PART<VALUE> (2)
then, assignment of right-hand side attribute into left-hand side
one takes place. In case (1) DECS is assigned, and in case (2)

VALUE 1is assigned. The second type of semantic evaluation

-18~

77

proceeds according to the program enclosed between <% and #%>. It
is written 1n a procedure-oriented language, whose meaning would
be obvious. As the procedufe-oriented language we - presently use
an Algol 68-style macro-extended language similar to those used
for lexical analyzer (cf. Fig. U4.2), The wuse of macros can
further make description readable, For example,

ENV +:= DECS or

CODEFILE +:= CODE(MNUM)+ ...
is no other than procedure call(s).

Subordinate routines <c¢alled in this semantic part can also
be written in the Algol 68-style macro—exfended language stated
above,

In practical implementation, operations on semantic
attributes are converted into operations among semantic stéck
elements, for both types of the above semantic evaluation. This
conversion and the separation of 1intermixed description into
syntax and semantic actions are all made by a "master control
program" of the generator (discussed later). Some optimization is
made in the first type of semantic evaluation. Namely, if same
attributes appear in both sides of a production rule at the same
position in the semantic stack as 1in (1), the assignment
operations (of right-hand side attributes into left-hand side
ones) are automatically omitted by the system since they are
unnecessary.

As an example of Fig, 6.1; we illusﬁrate the treatment of
active declarations. Suppose that declarations are collected at
the first pass, and that the fecllowing text is given to the

second pass.

-19-

78

(ENV=empty is here assumed)

if
<DECS>=mmm e o > (declarations in (1))
(1) (ENV=(1))
then
<DECS>—mmmm— e > (declarations in (i1))
(11) (ENV=(1)+(ii))
else
<DECS>mmmmm e e > (declarations in (iii))
(1i1) (ENV=(1)+(iii))
fi

(ENV=empty)

The semantic attribute DECS which is attached to some terminal
symbols in the first pass has declarations in the corresponding
subrange as its value. ENV is a global entity corresponding. to
the environment (collection of active declarations at each
stage). In scanning "if", the reduction by the production rule
(1) takes place, and DECS (for declarations in (1)) is added to
ENV., Thus, if no surrounding declarations had existed, ENV may be
expressed as ENV = (i). In scanning "then", another reduction By
the rule (3) takes place, and DECS (for (ii)) is added to ENV

resulting in ENV = (4i)+(ii). At the moment immediatély before
scannning "else", DECS (for (ii)) is subtracted from ENV using
_the ©reduction by the rule (5), and in scanning "else", DECS (for
(ii1)) is added to ENV using the reduction by the rule (7). Now,
ENV = (i)+(iii). Thus, the range structure of "if statement" in

Algol 68 can be easily realized using subranges.

-20-

79

7. Generator structure for efficient partial regeneration

As stated in section 2.2, we have designed a generator
structure so that the task of generating a compiler is divisible
into efficient partial (re)generation steps corresponding to each
of the description units.

Fig. 7.1 shows the modular structure of the system, The
inpﬁt to the generator consists of description wunits
corresponding to compiler phases. We use the term "grammar" to
indicate the wunification of syntax and semantics. The "pragmat"
part of the description (.PRPR) controls‘ all generation
steps such as the specification of genérate/not—generate and
parameter optibns for each description unit. O0S=dependent parts
of the description are wholly confirmed in this ﬁpragmat" part.

The master control program operates only the necessary
genefatibn steps according to the above generate/not—genefate
specifiéation. In order to provide necessary information for
pértial generation, all interfaces between generation steps, once
generated, are automatically preserved or wupdated 1in files.
Namely, for a generation step specified as "not-generate", the
master control program simply takes the correspohding interface
files, instead of-gpérating the generation step. For a generation
step specified as '"generate", fhe master control program
activates the generation step, wupdating the corresponding
interface files. Those interface files are automatically named
with wusing wuser specified prefix. Furfher, ‘more partial
regenefation in theb unit of subordiﬁate procedures or semantic
actions is Vusually allowed owihg to the update feature of
relocatable binary filés, found in most operating systems.

Facilities for generation-time and compile-time automatic

-21=

80

call libraries are also provided.

8. Generated compilers

ﬁ.i. Structure of generated compilers

Fig. 8.1 shows the structure of a compiler generated by this
system. It consists of modules corresponding to each description
unit. The lexical analyzer generated from the corresponding part
of the description works coupling with the analyzer of pass 1., As
to the analyzer of pass 2 or 3 etc., a standard lexical analyzer
is supplied by the system. The natural overlay structure betﬁeen
passes etc. is assumed as a default unless otherwise specified.

The generated compiler translates a source text into codes
in a machine-independent intermediate language through multipass
parsing. Codes in this intermediate language are then submitted
to the optimizer, and lastly to a code generator where they are

converted into relocatable binary machine codes.

8.2. Code generator

A machine-independent intermediate language (IL) aiming at
production of optimized codes has been designed by Uehara et al.
[Ueh78]. Although IL is out of the subject of this report, -we
shall briefly present its main features.

The language level 1s kept 1low ‘enough with excluding
peculiarities of particular machines, such as register length and
organization, addressing method, and instruction set, An IL
statement 1is a quadruple with one operator field and three
operand fields. An address 1s expressed by (base register no.,

offset) pair which is suited to Algol-like stack-oriented

-22-

81

languages. Any number of base registers may be wused. The code
generator has been made with special care for generality and

portability. Further detaills are available in a report [MNak791].

8.3. Optimizer

An optimizer is now under development. Its input text and
output text are both 1in the ' intermediate language IL. IL is
designed so that additional information necessary for

optimiiation can be included in the IL text.

9. Evaluation of the generator system

A two-pass compiler for Algol 68 subset is under development
using our compiler-generator [Nag79]. It collects mode-,
operator-, variable- declarations and label definitions at the
first pass, and the rest is parsed at the second pass.

Although not all characteristic features of our
compiler-generator are fully utilized until now, we evaluate our
design philosophy with some results gained so far, including the

above one.

9.1. Power of compiler description languagé

The use of appropriate description languages, especlally the
attribute grammar-style language for semantics has shortened the
description and has realized a good document of compiling

process.,

o

.2. Easiness in compiler construction process regeneration

The realization of the generator allowing efficient partial

-23-

82

regeneration along with unification of compiler and user program
in the description made the task of developing, testing,
debugging and revising a compiler very simple, It will be
invaluable in the course of compiler construction and

maintenance.

9.3. Machine independence considerations

As suggested in section 2.3, machine-dependent parts should
be logically well discriminated from other parts., Although we
have no experience of transportation until now, we can evaluate
this criterion in the design of our generator, generated compiler
and object code, as foliows.

(i) generator

OS-dependent parts, e.g., generation of commands 1in a Jjob
control language, have been confined to the master control
program. Each sub-generator corresponding to each generation step
has been written in Fortran, mostly in an Algol 68-style
macro-extended Fortran (as stated before), aiming at future
rewriting in Algol 68. Thus, the generator has achieved
considerable machine independence.

(ii1) generated compiler

Since the present generator outputs each phase of a compller
in macro-extended Fortran, the compiler 1s highly machine
independent., Here again O0S-dependent parts such as overlay
commands to the 1linkage editor have been confined to the
"pragmat" part of the description or to the master control
program of the generator.

(iii) object code

A compiler generated by our generator translates source

=24

83

texts into codes in a machine-independent intermediate language
IL. IL codes are then translated into machine codes by the code
generator. As was discussed in section 8.2, machine-dependent
parts such -as machine instruction set are confined to this code
generator, so that object codes for another computer can be
easily produced by merely modifying machine-dependent modules of

this processor.

9.4 Multipass parsing

The adoption of multipass parsing not only has solved
substantial problems of single-pass parsing discussed in chapter
1, but also has simplified compiler description which may present
a rather congested semantics in single-pass compllers. For
example, a two-pass processing of the famous "labels with block
structure" is reduced in about half lines of program compared %o
the single-pass processing where the <troublesome handling of
links of labels is required.

7 With respect to time or space of generated compilers, one
may 1magine the multipass parsing to be more time-consuming
compared with single-pass parsing, although space would be
reduced using overlay. However, Table 9,1 shows that for a
two-pass parser of XPL [Mac70] (not including semantic
evaluation) 1increasing time 1s less than 5%, and space is much

reduced in about 20% using overlay, compared to one-pass parser.

10. Concluding remarks

Starting from difficulties in processing inverted secuences

of definitions and uses of entitles in programming languages, we

-25-

84

introduced the concept of multipass parsing. Then, we described a
compiler generator which generates compllers allowing multipass
scan.

Its design philosophy was presented, and from experience
galned so far we believe that the philosophy was successfully
realized as follows:

(1) Compact description of compiler was designed, which is a
complete and readable documentation of user program's
environment, In particular, an attribute grammar-style
description was devised which increases compile-time efficiency
compared to original attribute grammars.

(2) The generator was organized so that it can efficilently and
incrementally regenerate compilers in case a part of compiler
description is modified.

(3) Clear separation of machine-dependent part which can realize
high portabllity was achieved 1in the generator, generated
compilers, and object codes,

Moreover, the adoption of multipass parsing has simplified
compiler description compared to single-pass parsing, and has
reduced space requirement of generated compilers without so much
increasing the time requirement.

However, there ére problems for future studles, First, the
compiler-writer must describe partial grammar for each pass in
the present system. One would note that, given the whole grammar

G and the goal symbol S; of an i-th pass, G Prec; and Succy are

i» i

automatically computable. Thus, we are studying a method for
automatically generating the description of each pass from these
informations. However, note that even 1if it is realized, the

description of semantics may still have to reflect partial

-26—

85

grammar of each pass. Secondly, the relation between partial
grammar and additional features (for catching range structures
and label definitions) 1s still vague in the present system.
Thelr unification together with more clear’description style for
each description wunit 1is 1investigated., Thirdly, It would be
convenient if the compiler-writer can select grammar class for
each pass., We are now developing an LALR(1) parser with
disambiguating rules to be added in the repertoire of parsers.
Lastly, consolidation of utility features such as error handiing
would be necessary to make the syétem a truly utilizable software
tool. |

In order to make such improvements in future versions; we

are required to gain further experiences using our generator.

Acknowledgements

The authors wish to thank Sanya Uehara, Hideaki Tazaki and
Yukio Nagasawa for their contributions to the design of the

system.

References

[w1576] Wijngaarden,A.V., et al., Revised report on the
algorithmic language ALGOL 68, Springer— Verlag, l976.

[Ino77] Inoue,K.,, et al. s A generation-method of
multiphase-compilers, 18th Proc. IPSJ 302, (1977).

[Gan77] Ganzinger,H., et al., Automatic generation of optimizing
multipass compilers, Information Processing 77, pp. 535 = 540
(1977).

-27-

86

[Les75] Lesk,M.E., LEX- a lexical analyzer generator, CSTR 39,
Bell Laboratories, 1975. |
[Sas79] Sassa,M., A pattern matching macro processor, to appear
in Software- Practice and Experience, Vol.9 (1979).

[Sas78] Sassa, M., et al. , A framework for a multipass-compiler
generator, 19th Proc. IPSJ 3C-6 (1978).

[Shi78] Shinogi,T., et al. , On generation of partial grammar
parsers, 19th Proc., IPSJ 3C-5 (1978).

[Shi79] Shinogi,T., Research on automatic generation of multipass
parsers (in Japanese), Master thesis, Tokyo Institute of
Technology, Dept. of Information Sciences, 1979.

[Yon76] Yoneda,N., and DNoshita,K., Lectures on Algol 60 (in
Japanese), bit 8, 13 (Dec. 1976).

[Knu68] Knuth,D.E., Semantics of context-free 1languages,
Mathematical systems theory, 2, 2, pp. 127 - 145 (1968),.

[Kos74] Koster,C.H.A,, Using the CDL compiler-compiler, in
Compiler construction- an advanced course, Lecture Notes in
Computer Science 21, Springer- Verlag, 1976.

[Ueh78] Uehara,S., et al., Design of an intermediate language for
generation of optimized code, 19th Proc. IPSJ, 3C-8 (1978).
[Nak79] Nakamura,S., Code generator with machine-independence and
portability considerations (in Japanese), Bachelor thesis, Tokyo
Institute of Technology, Dept. of Information Sciences, 1979.
[Nag79] Nagasawa,Y., et al., A two-pass compiler for ALGOL68
using a multipass-compiler generator, to apperar in 20th Proc.
IPSJ (1979).

[Mac70] McKeeman, W.M., et al., A compiler generator, Prentice-

Hall, 1970.

—28-

87

source text = 1lst text
L a4 oA N 7/77/7/3
1st pass
parser and
semantics
2nd text information
) gained in
| A A] the 1st
, pass
parser and
semantics "‘“‘----§\\\\\;--~sﬁ
(n—l)-th paSS/
parser and
4 semantics
n-th text information
' gained up to
the (n-1)-th
pass
parser and
semantics
Fig., 3.1 Schematic view of multipass parsing

-29-

88

description

<lexical
analyzer>

<syntax
and semantics
of pass 1>

<syntax
and semantics
of pass 2>

U

generator

master control

program
CIC 1 0O
[
— oo
sub- interface
generators files

U

generated compiler

fmain progran|
| —_———
I
1st %ass 2nd pass
i]
lexical standard
analyzer lexical
source analyzer object
text codes
————————— syntax syntax —————————
————————— analyzer analyzer —————————
semantics semantics
N /N
2nd text 3rd text
Fig. 3.2 Schematic view of generator

-30-

89

+LEXTCAL

» CLLASS SP = " "
LET = "ABCDFFOH] JKLMNUOPRRSTLYWXYZ? 1 IDSEW
DIG = "0123456789" CUIGSEW
PERIOD = ", TFERSEL
GUOTE = nrnaen CSTRING
COM = ng» TCOMMNT
SYM = ()i 03" FSYMBUL o
CoL = "> PCOLSEw.
BRAR = " " TBARSEW
MON = "+=a%§?" tCPSEW
NOM = P> /%" TUPSEW,
EQU = =" ‘ TEGSEW
OTHER = "3_1» 3 TNEGS

. TABLE TERM1 LN O THEYCK LY

YBEGINY ¢y "END ' o "EXIT e 'PARY WY [F Yo P THERN '

VELIF Y W ELSEY W' FI Yo "CASEY 2V INY o '0OUT Y

"OUSE " o PESACY s "AT " s IS W' ISNT YW 'NIL Y 'OF "« 'GL Y
TGOTOY W 'SKIPY W FORY W YFROM "BY " 4 " TO s "WHILE T
DO 3 'OD " s "COMMENT "+ *COY o "PRAGMAT Y g 1T,
PLONG' « "SHORT Y s "REF "« 'LOCY s "HEAP ' o ' STRUCT *
TFLEX' W 'PROCY W TUNIONT 4 'OP 4 'PRIOY s *MUDE Y
CINT W 'REAL Y o 'BOOL " v '"CHAR ' W '"FORMAT * ' yOIU
YCOMPL Y o 'BITSY W 'BYTESY W 'STRINGY « 'SEMAY
YETLEY W YCHANNEL Y o *TRUE Y W "FALSEY W YEMPTYY

LET < LET IDIG | =5F> TIDENT t]D

—
m
el
4
N
non

»SYMBOL JDSEW

nn

PERSEQ = =PERIOD(LETKLETIDIGY JIN TERM2 .OUT 7BOLOWD tBL
1/ INUMBER 1TRCON)

STRING = =% ¢ =% | =%% > =% 7STORE 1 (CHARCON « STRCON)

COMMNT = =3 (=a% > -3%, ' '

SYMBOL = SYM ,IN TERML1.,

COLSEQ = 00 (v=0(st 1/9 DIV /=' ("3 1| /7ERROKI 1/ 1)

BARSE® = *1r(rirt 1/1 D)o

OPSEQ@ = S(NOM(te=rj = /) fr=r (0 (=2 /) =i i/)lri=i/)
TOPRATIOPR

EQSEQ@ = "= (NOM(':=' JOPRAT 1OPRI'=}' F0PRATIOPKI/TUPRAT 10RK)

=2 (P (=" 20PRATIOPRI/I0PRATIOPR) I '=1 " POPRATIOPK
| /T0PRATIOPRY I 1="TOPRATIOPRI/)

DIGSE® = DIG INUMBER 1 (JCONWRCONVBCON)

NEG = OTHER 3

FIGs» 4,1 AN EXAMPLE DESCRIPTION OF LEXICAL ANALYZER
USING REGULAR EXPRESSIONS (CF. ALGOL 68)

- -31-

90

+PROC IDENT = ,vOID
+BEGIN
+INIT HASHX = 0 3
«IF HASHX > LENH
+THEN PUT1('ERROR HASH OVERFLOW?)
+ELSE PNTR != ENTRYS(SsHT+HASHX)
F1 4
+END

FIG, 4,2 AN EXAMPLE DESCRIPTION OF SUBORDINATE ROUTINE
FOR LEXICAL ANALYZER AND FOR SEMANTICS
(IN ALGOL68~STYLE MACRO-EXTENDED FORTRAN)

-32-

/ \
/ \
/ \
/ \
/ \
/ \
// \
/ \
/ Si \
/ \
// Si \
/ \
/
/
/
apb S /AQ W/ A
i-th text
i-th pass
parser
S5 ' 59

(i+l)-th text

SLR(1) parsing is assumed.
Si ¢ goal symbol of partial grammar Gy of pass i
a € Precy , b ¢ FIRST1gi(S1)

d e Succy

Fig. 5.1 Partial grammar parsing of pass i

-33=

92

« GRAMMAR 1
+« SUBRANGE
IYBEGINY S 'ENDY W VIF Vv THENY ¢ YELTF YD THENY
YTHEN? JYELSEY ¢ " THEN d'ELIF Yo *THENY S YFL Y
YELSEY 'F] "4 'CASE" ' IN"«'QUSE" I "IN'
PINYDYQUT Y & P INPSPESACY «'OUT Y YESAC!
PWHILEY D 'DOY o 'DO 10D P (i) rat (P20l o
NN R R R A R A D
?SEML I SEMR;
« MARK LI 4 B
LABEL 11Dy 1
¢AFTER 'BEGIN' «"THEN' +'ELSE"+'OUT
'DOY 4 Y1 W V' 6 EXITY
?SEMLDE Y1LABS
»SYNTAX

DEC L,BEFORE '3i' « ')

MOP ,BEFORE '('+'GO'4'GOTO" ¢'SKIP' 4 [D*+!LOC! s 'HEAP"

'NILY

*=' , 'OPR' 4 'BL' .

"ICON® s "RCON' y " TRUE* + 'FALSE" + * STRCON? s * CHARCON"'
*BCON' 4 'EMPTY ",

YREF '+ 'PROC' ¢ "UNION® 4 *BYTES"'

"STRUCT '« "BOOL "+ *CHAR* + "STRING* + ' FORMAT * 4 'SEMA'
YFILE®

"CHANNEL '« "INT* 4 ' ONG' + "SHORT ' + *REAL ' + 'COMPL '
'BITS' :

YBEGIN' ¢ ' [F '+ 1CASE! +' (" 'PAR" + TFOR' v 'FROM? 4 'BY "' o

'"TO' s 'wHILE+'DO?

yRETURN tatatjt,

MID BEFORE *(' +'GO"«"GOTO'+'SKIP'+* D"y 'LOCY + 'HEAP!

'NILY
1=V 'OPRYIBL Y

*JCON®' y'RCON® 4 " TRUE " s *FALSE ' ¢ 'STRCON' 4 'CHARCON?'
"BCON' o YEMPTY

'REFY+'PROCY s "UNION' «'BYTES!'

'STRUCT '+ 'BOOL " y *CHAR' s 'STRING* « "FORMAT ' 4 ' SEMA Y,
'FILE® .

YCHANNEL Y s " INT' « 'LONG' s *SHORT '« *REAL '« *COMPL '
'BITS!' .

"BEGINY P [F Y4 'CASE' ' (" +'"PAR'"«'FOR'+'FROMY y'BY"*
'TO' y'WHILE 4 DO :

+RETURN votytj,

ROP ,BEFORE

'

+RETURN 4451,

R1D +BEFORE ':?
+RETURN fa4t '3,

RVAR (BEFORE ¢3!
JRETURN "ottty

MVAR ,BEFORE ':
+RETURN ',

PRI +.BEFORE ! .’
«RETURN 1yt 3,

-
-
-
-
» =

-

.,

#(A)#

#(BI#

#(QO)#

(D)

MOD +BEFORE t4t4';!
+RETURN 14yt

MOPQ ,BEFORE 'OPY+'PRIOY v tMODE Y ot (Vo "FLEX ' 4 'STRUCT* 4 ' LOCY +YHEAP ' »
MIDO ,BEFORE 'OP' +*PRIOY ¢ItMODEY+ " (' ¢ 'FLEX? ¢ "STRUCT '+ LOCY +*HEAP ',
ROPQ ,BEFORE 'OP'*PRIOY «'MODE* ' (* v 'FLEX' +*STRUCT '+ 'LOC' +'HEAP '
RIDO ,BEFORE 'OPt'+'PRIOY «*MODE o' (' o 'FLEX '+ '"STRUCT "+ 'LOCY s *HEAP 1
RVARO ,BEFORE '0OP 1t ytPRIOY,"MODE " 4 * ("4 '"FLEX'+'STRUCT ' 'LOC" ,'HEAP!
MVARO +BEFORE 'OP* s 'PRIOY s *MODE ' ¢ " ("¢ "FLEX'+*STRUCT '+ 'LOC"' + 'HEAP!
PRIO ,BEFORE 'OP!'+'PRIO'+'MODE "+ ' ("2 "FLEX 'y 'STRUCT"+'"LLOC' s "HEAP ' s
MODO .BEFORE 'OP' 4 'PRIOY ¢« "MODE "+ ' (P o "FLEX "« 'STRUCT "+ 'LOCY + "HEAP ',

STRCT ,BEFORE (!
+RETURN *1D".

VAF +BEFORE " (t+'BEGIN' ot [F 1 *CASE'v'FORY s 'PARY 4 8 41) 1
"FROMY 4 1BY 1 o0 TOY o PWHILE "+ 'DO" 0

VOID-D (BEFORE ' ('+'BEGIN'+#IF*y'CASE' s 'FOR' s 'PAR 41104 1) 1
"FROM! « 'BY' 2 ' TO' « "WHILE"+'DO'

SAM.GF ,BEFORE '(' |
WRETURN "BL'4*ID?" ¢ 'FLEX"+'STRING' 4 'REF "+ 'PROC"
YUNJON' ¢ 'BOOL ' + "CHAR' y 'STRING" + 'FORMAT "
PSEMA 4 tFILE * « YCHANNEL '+ "LONG' + ' SHORT 1 s
PINT '3 'REAL' 4 'COMPL ' 4 'BITS' s 'BYTES' s

FLX +BEFORE ' (!
+RETURN "BL'+'ID" 4 'FLEX'+'STRING" s+ 'REF '+ 'PROC?'
"UNION' « 'BOOL ' 4 'CHAR' + 'STRING' + ' FORMAT ',
*SEMAY W 'FILEY s *CHANNEL '« 'LONG"' + ' SHORT '
VINTY 9 'REAL Y« "COMPL Y 4 *BITS' 4 *BYTES! s

FLST .BEFOQORE ' ("
+RETURN D"

GFLST ,BEFORE (!
+RETURN 'ID".,

MOD.H +BEFORE ' (!
+RETURN *BL' " IDY 4 'FLEX"+*STRING'y*REF*+'PROC?,
"UNION' 4 'BOOL ' + 'CHAR' s 'STRING' + ' FORMAT " ,
'SEMAY o 'FILE" + "CHANNEL "+ *LONG" + ' SHORT * »
YINTY 'REALY'COMPL' ¢ 'BITS"+'BYTES

MOD.T BEFORE *(

JAFTER VBEGIN® o ' TF 'y ' THEN' s tELSE" 4 'ELIF "4 "CASE ",
VOUSE o PWHILE 4 1DO 1 1yt 1t oy [t atityn)rgtyt
| #(D)#
DEC -> 5 v HCED#
s => MOPIMIDIROPIRIDIRVARIMVARIPR] IMOD \
MOPO > MOP t4! 5
MIDO =) MID 't .
ROPO > ROP 's! .
RIDO ‘ => RID ' .
RVARO - RVAR Yt .
MVARO => MVAR '4! .
PRIO => PRI 't .
L]

MODO -> MOD !

93

94

MOP<CENTRY>) -> 'OP!' FORLPROCLPLANKMPY> OPRAKSYM) '=¢'
<% ,CASE FECM2(MP)
JIN ATL!=NILS
ATR:=FECM2 (MP+1);
ATT :aMP+2
ATL :=FECM2 (MP+1);
ATR:=FECM2(MP+2)
ATT:=MP+3
WOUT PUTF (6 (¥'MOP 410X
tPARAMETER NOT BETWEEN 1 AND 9'¥,)),
CALL DUMP1;
STOP
»ESACS
ENTRY = ADOP(SYMAATLATRsATTUNDEF 1) %> |

'OP' FORLPROCLPLANCMP)> *BL'CSYM> '=?
{# ,CASE FECM2(MP)
»IN ATL =NIL
ATR:=FECM2 (MP+1)
ATT:=MP+2
ATL:=FECM2(MP+1)}
ATR:=FECM2 (MP+2) i
ATT:=MP+3
2yOUT PUTF(6+.(¥10X,
'PARAM NOT BETWEEN 1 AND 9 "‘) MOP'%4));
CALL DUMPL1;
STOP

VESAC;
ENTRY :=ADOP (=SYMsATLVATReATTUNDEF 1) #> |

'0PY sBLY (OPRA | 'BL") '=' |#

MOPO OPRACSYM> '=!
<# ENTRY:=CPYOP(SYMe«l) %>’ . |
MOPO 1RLY(SYM) =t
<* ENTRY :=CPYOP(SYMs1) %> '
"
’
+ GRAMMAR 2
+REPLACE 'OP' ?ADDLEX)
1 (OPO+OP1+0OP240P340P4+OP5+0P6+OPT+OPB8s0OP9) § #CF)#
ySYNTAX PROGRAM
PROGRAM -> R " #(GI#
FIGe 5.2 AN EXAMPLE DESCRIPTION OF PARTIAL GRAMMARS

FOR PASS 1 AND 2

-36-

95

(1) declaration Si

(2) cast 84!

In order to exit from the parser, specify
a nonterminal symbol Si! and
a set of succeeding terminal symbols
which contains "(" in this case.

Fig. 5.3 Extra goal symbol

-37-

96

+«GRAMMAR 2

#C1LO# IFCDECS) -> "|FP(DECS> # ATTRIBUTE GRAMMAR STYLE #
{(* ENV +i= DECS #>
#(2)# ENQUIRY=CLAUSECVALUE> => DEC- SERIES<VALUE1)
<#* P = COERCE(MODE(VALUE1) +BOOLEAN) 3}
+IF P =0 L,THEN ERROR .FI 3
VALUE = TEMP(RESULTMODE(P)) i
CODEFILE +:i= CPROC3(PsVALUEWWALUEL) 3
CODEFILE +i= CODE(VALUEC=0I=>LNUM) i
LPUSHCLNUM) #> # PROCEDURE=ORIENTED
LANGUAGE STYLE #

#(3)# THENCDECS) ->. P"THEN"<KDECS)
(x ENV +i= DECS #> '
#C4)# THEN=PARTKVALUE> => SERIAL=CLAUSEKVALUE) ’
¥(5)# THEN=CLAUSECVALUE> => THENKDECS> THEN=PARTCVALUE>
<# ENV =i= DECS #> ’
#(6)# ELIFCDECS) => P"ELIF"CDECS>

<# ENV +:= DECS
CODEFILE +:= CODE(MNUM)*CODE(-)LNUM)+CODE(LSTACK(LTOP))
LPOP 3 LPUSHC(LNUM) § MPUSH(MNUM) *>
#(THIH# ELSECDECS) =-> TELSE"<DECS>
(* ISAME *) *
¥(8)H)# ELSE=PARTCVALUE> => SERIAL=CLAUSESVALUED
#(9AY# ELSE=CLAUSECVALUE)> => ELSECDECS> ELSE~PARTCVALUED>
{# ENV =!= DECS 3}
CODEFILE +:= CODE(MNUM) i
MPUSH(MNUM) x> l
#(9B) # ELIFKDECSY) BOOLEAN=CHOOSER=CLAUSECVALUE?
(* QSAME *)]
#(10A)# ALTERNATE=BOOLEAN=CLAUSECVALUE> => THEN=CLAUSECVALUED>
(# CODEFILE +:= CODE(LSTACK(LTOP))
LPOP #> |
 #(10B) # THEN=CLAUSECVALUEL1> ELSE=-CLAUSECVALUE2>
(% P = COMMONTO(MODE (VALUELl) +MODE(VALUE2)) i
IF P =0 LTHEN ERROR FI1 i
VALUE = TEMP(RESULTMODE(P)) i
CODEFILE2 +:= CPROC2(P+VALUEWALUEL1+WALUEZ2,
MSTACK(MTOP).MSTACK(MTOP 1)) i
CODEFILE +:= CODECLSTACK(LTOP):) i
LPOP #> '
#(11)# BOOLEAN=~CHOOSER~CLAUSECVALUE> =>
ENQUIRY=CLAUSE ALTERNATE=BOOLEAN=CLAUSE <VALUED
#(12)# BOOLEAN=CHOICE~CLAUSECVALUE)> ->
IFCDECS> BOOLEAN=CHOOSER=CLAUSESVALUE> "F1"
(* ENV =:= DECS #> .

FIG 6,1 AN EXAMPLE DESCRIPTION OF
SYNTAX AND SEMANTICS
USING ATTRIBUTE GRAMMAR=-LIKE DESCRIPTION +
PROCEDURE=ORIENTED LANGUAGE
(BOOLEAN=CHOICE=CLAUSE IN ALGOL 68)

-38-

97

MASTER CONTROL
27 [PROGRAN
.PR

"pragmat part"
.PR
+LEXICAL
Mlexical
analyzer"
. LEXROUTINES
"lexical
routines"
+GRAMMAR 1
"syntax and

LEXICAL ANALYZER |——m—> RB of lexical
GENERATOR \ﬁfj % analyzer

MACRO PROCESSOR+ RB of lexical
FORTRAN PROCESSOR routines

SLR(1) PARSER CFMERATOR}——> RB of syntax
MACRO PROCESSORF)fj

semantics #] analyzer of pass 1

of pass 1" FORTRAN PROCESSOR |—/———>rRB of semantics
+ROUTINES 1 ' of pass 1

"subordinate MACRO PROCESSOR+ ﬂijB of subordinate

routines FORTRAN PROCESSOR p; routines

of pass 1" of pass 1

.GRAMMAR 2
"syntax and

SLR(1) PARSER GENERATORF——jEjRB of syntax

TTET'TT

semantics MACRO PROCESSOR+ EjEj analyzer of pass 2
of pass 2" IFORTRAN PROCESSOR —f RB of semantics
.ROUTINES 2 Eﬂof pass 2
"subordinate MACRO PROCESSOR+ 4—~RB of subordinate
routines FORTRAN PROCESSOR E routines
of pass 2" ' of pass 2
+MAIN
"main MACRO PROCESSOR+ | <3 RB of main
program" FORTRAN PROCESSOR- program
' RB of RB of code
: //r/ @ optimizer 8 generator
X , generation-
COMPILER EB] ﬁ ;(ijB of time ALIR
GENERATOR compiler
. PRELUDE V4
"run-time , }_,,,ﬂGEdERATTD COMPILER >EEBRB's of —» compile-
prelude™ prelude time ALIB
.PROGRAM i
"user program"|}———>{GENERATED COMPILERIéi————5631%30f user progran
.DATA | ——
"data to user user program EB B
program" }”f%{i
(a)description (b) generation steps - (e¢) interface files

¥]1 = syntax/semantics separator + attribute conversion translator
RB=relocatable binary, EB=execution binary,

ALIB=automatic call library
Inclusion of the description in files is possible using

",FILE = <file name and vol> 3"

or ".INCLUDE <i> = <file name and vol> ;",
Master control program executes only necessary generation steps.
Generated compiler is shown in Fig. 8.1.

Fig. 7.1 Modular structure of generator
-39 -

98

[common var|

|main]
-
common
var 1=3
i
common [optimizer | [code
var 2-3 generator
1
common
var 3
]
lexical standard standard
analyzer lexical lexical
' analyzer analyzer
lexical
routines
|
syntax syntax syntax
analyzer analyzer analyzer
of pass 1 of pass 2 of pass 3
]]
semantic semantic semantilic
routines - routines routines
of pass 1 of pass 2 of pass 3
] | 1
subordinate| |subordinate| |[subordinate
routines routines routines
of pass 1 of pass 2 of pass 3
source partially partially machine- relocatable
text parsed parsed independent binary
intermediate intermediate intermediate machine -
text : text language codes
(2nd text) (3rd text) . text
Fig. 8.1 Structure of a generated compiler

(three-pass case)

~40-

99

one~pass XPL two-pass XPL rate
with overlay (two-pass/one-pass)
parsing 1st pass
table 2392 668 0.804
size . 2nd pass
(byte) 1924
parsing
time of :
example 3,187 3.325 1.043
program 1
(sec)
parsing
time of
example 5.214 5.341 1.024
program 2
(sec)

Example program 1 : about 60 lines
Example program 2 : about 80 lines

Parsing time does not include semantic evaluation time.

Table 9.1 A comparison of one-pass and two-pass
parsers for XPL

.

