goooboooogn
O 3630 19790 247-277

247

RIMS Kokyuroku ©No, 363, FKesearch Institute for Mathematical
Science Kyoto University,

INTERACTIVE THEOREM PROVING ON HIERARCHICALLY AND
MODULARLY STRUCTURED SETS oF VERY Many AxIoms®

Michio Honda*x Reijl Nakajima¥x
Kagawa Unjiversity Kyoto University
Dept ot Information Research Institute for
Science Mathematical Sciences
Takamatsu Kyoto

July 1979

A large number of axioms are often involved in the proof of a
single theorem in many TrTealistic applications of mechanical
theorem proving such as formal verification of programs whose
program domains are determined by user=defined axioms, There,
fully automatic proofs are unrealistic due to the obvious
constraints thougnh a powerful machine support is hiahly desired,
It is sugqgested that some meaningful structuring of theories can
ease the difficulties, Several strategies are proposed to
enhance efticient interactive non=resolution proots an
hierarchically and modularly structured theories with many
axioms, Use of such strateagies 1is 1illustrated in their
application to verification of hierarchical programs with
abstraction mecnanisms,

Key words: interactive theorem provina, program verification,
non=resolution theorem provina, structured programmina,
hierarchical and modular program structures

¥ An extended abstract of this paper was presented at 1JCAY *79,
¥¥ Order is not significant

248

1. Introduction

For many practical applications of mechanical theorem
proving, a 1large number of axjioms are often involved in the
proof of a sinqie theorem, An example of sucﬂq applications |is
the tneorem proving required in formal program verification,
where the prodaram domains are determined ?v a number of
user~defined axioms.

It seems that most technigues so far déveloned for the
mechanjcal theorem obroving are not directly applicable in such a
situation, [Due to the obvious time and memory constraints,
fully automatic proofs are not realistic to cope with such
situations, Thus, man=machine interactive non-resolution proof
methods are inevitable, where the user keeps well aware of what
is being done in each stage of the ongoina proot, understanding
the meaning of the formulas which are generated during the
proofs, With human interventidns, it still can be highly
difficult to conduct proofs on a large theory with many axioms.
Thus some oraganized methods are desired to get around with this
ditficulty, Here we suggest tnat some meaninaful structuring of

the axjiom set will ease the dgifficulty,

The motivation cf our study presented in this paper is
derived from a software development called IOTA system at Kyoto
university, The I(TA system will be an interactive system for
developing, debuaging, verifying and executinag oroqgrams written
in 1anquage I0OTA, where the 1language is designed to support

hierarchical and modular program development, It is not

249

Paage 2

possible to give the detalls of the features of the language and
the system here, To make the story short, verification of
proarams written in language I0TA reguires theorem nprovinag on
hierarchically and modularly structured theories with a larage
number of user=detined axioms, - (In fact, we are as - much
concerned with how such development of theories should be made
by man~machine interaction as how Droofs should be done on them
though this will be the subject of another paper, fften need of
elaboration or modification of user-given axloms is found during
proofs, which means that axiom=writing and theorem=proving must
go together to some extent and this is another reason to make

the system interactive,)

Section 2 presents what we mean by bhierarchically and
modularly structured theories. (This preparation may look too
long for the modest amount of result given 1in the subsequent
sections but should be necessary to have the proof strateqgies
understood,) Then from section 3 through 6, we present some
strategies which are intended to enhance the efficiency of
interactive theorem proving on such theories,

These strategies are beina 1implemented as I0OTA prover,
subsystem of the 10TA system, which will be called in the
environment of proaram development, verification and debuaggina,
(The most updated and readable introduction to IDTA system and
lanauage is [4], It also contains vpointers to other related
literatures,)

The prover contains an automatic proof facility in addition

250

Page 3

to the proof checking facilities, The man=machine interaction
{i.e, proof checker) exploits the strategies in order to reduce
the proof that Jis beyond the limit of the capabilities of the
automatic subsystem to one within the 1limit,

The first verison of IOTA prover currently runs on a DEC
SYSTEM 20, The 1implementation of a more powertul version is
under way, \

Belated works: It seems that no previous work has attempted
to exploit the structuring of theories to faciljtate mechanical
proofts, Clearl(2] seems to be somewhat in a similar direction
though it uses algebraic axioms wnile‘we use first order loaic,
(It is beyond the scope of this paper to compare the two
approaches.) The concepts of user~developed reduction rules
(Section 4) are introduced earlier {in LCFI[3), while an idea
similar to theory~focusing (Section 3) is used in [8]1 but with a
different objective, [11 survevs numerous works on

non~resolution theorem pnroving,

251

Page 4

2. Hierarchical and modular theory develapment

Lanauage IOTA provides a syntax by which one can bpuild un
formal theories for program specifications and write their
proaram implementations, In order to make the discussion
precise, we fix a3 logical system called IOTA logic [5]1 so that
as far as specitications are concerned, I0TA is a lanaguage to
form theories of IOTA logic. We seize dara types in programming
simply as sorts in the many=-sorted locgic, and so [OTA logic is a
derivation of the many=-sorted first order logic, Reflecting the.
idea of data abstraction, each sort in I0TA logic is associated
with a structure which 1is said to be basic on the sort, The
pasic structure of a sort “s” is a finite set of functions PR<s>
called the primitive fdnctions on s and a finite set of axioms
RA<s> called the basic axloms of s, The tormulas In BA<Ks> are
supposed to characterize properties of the functions in PR<s>,
IOTA logic has the usual set of logical axioms and (loaical)
rules of inference as an ordinary many=-sorted first order logic.
In addition, the rules of 1I0TA 1logic include the aenerator
induction rules on some of the sorts, The generator induction
rule on a sort s is made of all primitive functions on s whose
range is s in the well=known manner. (Fxamples will be given in
due course,) Those sorts whose generator inductjons are included
among the rules of I0TA loajc are called ;xues. The rest of the
sorts are called sypes, (In short we consider a fixed model for
each type t, which is the variakle=free terms of sort t
nenerated from the functions in PR<t>, 0On the other hand we do

not fix any specific model ftor a sype,) We wait to see how sypes

252

Page 5

can.be useful until Section 5,

Language 10TA supports hierarchical qnd modular progqramn
puilding, 1i.e. the notion of a program in IOTA consists of a
hierachy ot modules, each of which 1is specified seperately,
Thus as far as specication structures are concerned, program
development in language I10TA is to build up theories in IOTA
logic, A theory generated in this manner should be
hierarchically and modularly structured, Here a module defines
a pileces of the theory, We designate the theory presented by a
module ’q; by TH<q>, (Later on, we will gqgive a more precise
definition of TH<g>,)

There are basically three kinds of modules ===~ type, sype and
procedure modules, \

The following is an example of a type module, (Examples
given in this paper are not guite faithful to the legitimate

syntax rule of language I0TA,)

interface type AN

fn ZERQ ¢ => 3 as 0

SUC 3 8 => @

++ LESS ¢ (®,4) => RBOOL as @ge

++ EQUAL: (8,3) => KOOL as- @=@
end interface

specitication type HN
var X,Y,Z, 1,v: @
axiom 1z SUC(x) = SUC(y) => x=vy
2: “SUC(x) £ ¥
3: x€£y => SUC(x)ILSUC(y)

++ 4: x££y QL Y£X
++ 5: (x€v & y<x) => X=y
++ 6: (x<y & V<7) => x£7
++ T: x=¥%
Bt x=y => SUC(x)=8UC(y)
++ 9: (x=v & u=v) => (x£u) = (v&€V)
++ 10: (x=y & uy=v) => (x=u) = (y=v)
end snecification

253

Page 6

This module presents the basic structure of a type nN¥ (or the
natural numbers), We simply say the module presents the sort of
NN, The presentation is devided into two partsy; the intertace
part which declares the primitive functions witn their domains
and range and the specification part in which the basic axioms
are placed, 8 denotes the type presented hy the type module,
which is ®¥N in this case. By "as" a notational abbreviation |is
introduced for a function name, So LESS(x,y) may be written as
x<y. All free variables occurring in the axioms_are universally
gquantified, Since the sort NN is a type, the generator
inductions are logical rules of I0TA logic which are in the form

ot:

P{o/x}t , P => P{SUC(X)/x}

LA AL L L EEREYRARYEXEE L LT LY S .LEXE L E.F.]

P

where P 1s any formula, X is a variable of sort &N and P{t/x}
stands for the substitution of a term t of sort NN for x in P,
By saving that the rules are louical, we mean in practice tnat
whenever the user Jintroduces a type (module), the language
processor automaticailv 1nclddesrthe cgenerator induction rules

of the type in the proof system,

Incidentally, the egality is a function whose range is the
type BOOL, In TI0TA logic, there are no poredicate syrhols,

Instead there is a special type BOOL and all terms of sort RAOOL

254

Page 7

are the atomic formulas, The primitive functions on BUOL are
NOT, OR, FEQUAL etc,, which are equivalenced with Jlogical

~

operators 7, @r, <=> etc, by axioms,

ince we have written a type module, we mqy add more functjons
on the type by introducing them in a procedure module., These
functions are said to be non=primitive because they are not

included in the generator induction rules,

interface procedure NNMAX
fn MAX ¢ (NN,aNN) => NN
MIN 3 (NN,NN) => NN

end interface

specification procedure NNMAX
vVar X,YsaN
axiom 1: xLy => MAX(x,y)=v
2: XLy => MIN(X,y)=X
3: MAX(x,y)=MAX(V,X)
4: MIN(X,y)=MIN(y,Xx)
[equality axioms for MAX, MIN]
end specification -

nuMax is built upon NN and - BOOL, (thice that when we
presented KN, we assumed that there was already a type module
called BOOL,.,) This means that TH<CHNEMAX> 1is an extension of
TH<NH> and THCROOL>, (We shall make this situation precise

later,)

we

aive

255

Page 8

THCNNMAXD>
A A
| |

THKHNE> |
A~ |
| |
THSBROOL>

another type module INTPOLY or the tyne

polynomials of a single variable with integer coefficients,

interface

fn

ZERQ
TERM
™
CM
ADD
COEF
DEG

type INTPOLY

=> ” as 0

(INT,NN) => @

(N?‘Ila) -> @

(INT,8) => B as INT,R
(R,R) =~> @ as R+@
(R@,HN) => INT

T B8 ~> NN '

s B9 28 SF 2B 38 e

end intertace

specification tvpe INTPOLY
var X,v,z:8; m,n:NN; f1:INT

axi

om 13
23
3:
4:
5:
6
7:
83
92

102
112
12:
153
163
173

COEF(0,n)=0

DEG(0)=0
COEF(TM(n,xXx),n+m)=COEF(x,m)

m<n => COEF(TM(n,x),m)=0

XE0 => DEG(TM(n,x))=n+DFG(X)

X#0 => COEF(Xx,DEG(x))#0

DEG(X)I<Kn => COEF(xX,n)=0
(Yn.COEF(X,n) = COEF(y,n)) => xX=y
COEF(i.x,n) = i*%COEF(x,n)
COEF(x+v,n) = COEF(x,n) + COEF(y,n)
DEG(x+y) & NNMAXBMAX(DEG(x),DEG(y))
COERF(TRERM(i,n),n)=1

m#n => COFEF(TERM(i,n),m)=0

i#9 => DEG(TERM(i,n))=n

TERM(D,n)=0

end specitication.

EQUAL on INTPOLY and the equality axioms are . implicit,

of

Ne

have not defined # or < on #N, A#R and A<B should be regarded

as abbhreviations of "A=R and BZLA, respectively, .liangquaqe

nas,

in

I0TA

fact, this kind of macro=like facility., ZERD is the

256

Page 9

polynomial zero, TERM(i,n) is 1.,x™, TM(n,0) 1s x™*Q, DEG(Q)
gives the dedree of polynomial Q, CM(i,Q) is Q@ multiplied by an
integer i and COFF(GQ,n) is the n=th coefficient of Q, We assume
that we have already a typve INT or the integers on which
functions like ¥,4,0,1 and = are primitive, A same notational
éhhreviation is used for functions on different sorts. For
instance, EQUAL’s on INTPOLY, NN, INT are all denoted by =, but
the lanquage processor will be able to distinguish them by type
‘check. In language INTA, the proper symbol for a function {s
the pair M#f, where f is the function name and ¥ is the name of
the module a in which the function 1is introduced, Se, = on
INTPOLY is voroperly INTPOLY#EQUAL, BUt <module named># 1is

omitted In many cases as long as no confusion can occur,

The next example is the procedure module DVS which 1is built

on INTPOLY, where DVS(X,v) reads x is divisible by v,

interface procedure DVS
fn MULT ¢ (INTPOLY,INTPOLY) => INTPOLY as INTPOLY*INTPOLY
DVS 1 (INTPOLY,INTPOLY) <> BODL
end interface

specification procedure DVS
‘ Var X,Y,Z2!INTPOLY; niNN; 1tINT
axiom 1: O%¥x=n
23 x¥yzmyiy
3: (xX*¥y)¥zz=x¥(y¥z)
4: (x+y)¥z=x¥z+y*y
53 (1.xX)*¥y=i,(x*y)
61 TM(n,x)*y=TM(n,x*y)
7: TER¥(i,n)*x=1i,TM(n,Xx)
B: DVS(x,z) <=> Jy,.x=y*z
end speclitication

237

Page 10

For different modules p and 2, p is said to debend direcily
an g 1ff either (1) g is a tvpe or sype module apnearing in tne
interiace part ot p, or (2) at least one axiom in the
specification part of p contains a function which is introduced
by d. For instance, INTPOLY agenends directly on NEMAX, TaT, wd
etc, o is said to depend o g iff either (1) o Jdepends directly
on g or (2) there exists a8 mpdule r such that p denends directly
on rv and r depends on g, p 1s said to he seli-cantaiced itf p
does not depvend on any module, The mnodule Boot* s
self-contained, 4e say that » is hierarchical iff eitnher (1) o
is self=contained or (2) the modules on which o depends are all
hierarchical, It is easy to see that, if p is hierarchical,
there is no module g such that » depends on g at the sare time 9
depends on p, Tnis means that there can be no circular chain of
depending relations among hierarcnical modules, The syntax of
10TA .allows only hierarchical modules and any vinlation will be

detected by the pProcessor.

Here we are ready to make precise what is meant by a theory
'in I0TA logic, Althouah there can be different ways to define
the notjon of theories in IOTA loajc, the tollowinag will be the
most convenient for this paper. A theory T is a triple <5, ¥,
A> where S is a set of sorts, F is a set of functions, and A s

a set of formulas called the non=loaical axioms of T such that

* In this paper, we are speaking intormally, and so we
conveniently confuse a type (svpe) module name with the nawe of
the type (sype) presented by the type (sype) module,

258

Page 11

each tunction occurring in at least one of the elements of A {is
included in F and that for each function fi(sl, S2, ,.., SNn) =>
s0 in F, si is in S for all i=0,...,n. e cah define the notion
of proofs and theorems of T in the usual manner, For two
theories T1 = <51, F1, A1> and T2 = <S2, F2, A2>, T2 is said to
be an extension of T1 iff S1 C 582, F1 € F2 and Al C A2, By the

joint of T1 and T2, we mean the theorv <S8t U &2, F1 U F2, At U

Now we define the theory TH<p> of a module p, which 1is the
semantics of the syntactic o, Let p depend on modules gi,a?2,
seep N for which TH<gi> are assumed to be defined already. Let
the Jjoint of TH<gi>, for i = 1, ..., N be <5°, F°, A®>, Then
THCP> = <$, ¥, A> where S = 5|y 80, ¥F = ¥F°IJ F, A = AU A such
that ¥ is the functions introduced by (the inierface part of) p,
A is the formulas presented by (the specification part of) p and
50 is empty if p is a procedural module whereas S0 = { s } if
is a tvpe or sype module which vresents the sort s, (Note that
this definition of TH<Dp> is well defined because p 15 A

hierarchical,)

There are several modules called svstem modules such as N¥,
BOOL, INT, which are built-in in the language, To proqgram with
INTA is to write modules upon others starting with the systen
modules, Namely it is to extend theories in IOTA loalic starting

" with the theory ﬁeiermined by the system modules,

259

Page 12

TH<DVS>

™~

TH<IKTPOLY>

\

THSHNNMAX>

/

THLINT> THSNND>

~_ 7

TH<BOOL>

The last example in this section is the type module for integer

arravs,

interface type INTARRAY

fn CREATE ¢ (NN,INT) => @
HIGH : @ => NN
FETCH 3 (3,NN) => INT
STORE, 3 (A, NN,INT) => @

]

end interface

specification type INTARRAY
var X,y:e: m,niNN; 1:INT
axiom 13 HIGH(CREATE(n,i))=n
2: ngHIGH(X) => FETCH(STORE(Xx,n,1),n)=1
3: mLHIGH(X) & NLHIGH(X) & mgn
=> FETCH(STORE(x,n,i),m)=FETCH(x,m)

s we

end specification

The subscript of x:INTARRAY runs over NN from 0 to HIGH(x).,
FETCH(%x,n) may be written as xIinl, CREATE(n,1) creates x such

that HIGH(x) = n and xIm]l = i for all 0<mgn,

260

Page 13

3., Module-wise development of reduction and simplification
rules

Normally, the reduction rules used in our proofs are from
among the logical reduction rules {,e, the converse of the
logical inference rules of the I0OTA logic, The logical
reduction rules are, however, designed to pe valid generally on
arbitrary theory and, therefore, tend to be rather inetticient,
Thus, 1t is desirable to generate reduction rules on a specific
theory from the (non=logical) axioms of the theorv and use them
when appropriate, (Notice that the . soundness of such
non=loaical rules must be guaranteed, for which some kind‘ of
machine support is desired, This point seems to have received
little attention so far.) But when the theory is large, 1t is
not necessarily easy for the user to dgenerate efficient
non=logical reduction rules, An immediate abplication of theory
modularization 1is in the module~wise development of reduction
rules, -1t would be convenient to develop reduction rules on
each speéific subtheory defined by a module because the axioms
given by a single module are supposed to relate closely to each
other, The rules thus developed will not, of cause, be

generally applicable but powerfull on the subtheorv.

Given 3 module M which presents the following axioms where

31, 02, 23, R are some predicate symbhols,

axiom 13 Q1(x) => R(x)

261

Page 14

2: Q2(x) => R(X)
3: A3(x) => R(x)

Assume that, the predicate symbol R does not appear in any
modules on which M depends., (i,e, There exists no axiom of
TH<M> that contains R other than the axioms abhove,) Then from

axioms 1, 2, 3, the following reduction rule is worked out:

rule RY (P): /7 P is a syntAactic vériable /
goal : => R(x) '
"subgoal: P => 91(x) gr 02(x) ar G3(x)

An application of this rule reduces
(3.1) S(x) => R(x) [5(x) is a formula, 1}
to

(3,1,1) 8(x) => Q1(x) or G2(x) or G3(x) ,

The following reduction rule would be worked out from the

axioms of INTARRAY,

rule R2 (P)
qoal : P(FETCH(STORE(x,n,i),m))
subgoall: m=n & ngHIGH(x) => P(1i)
2: m#n & mgHIGH(®) & nNEHIGH(X) => P(FETCH(x,m))

An application of rule R2 as well as some 1loaical reduction
rules reduces the formula (3.2) ¢to the formulas (3,2,1) and

(3.2,2)

(3,2) ((i<k => A[i)gAlk]) & (mgi<igk => AlilgAlj)) &
(NEi<iSHIGH(A) => ALI1£Al3§]1) & kEHIGH(A) &
k<n & Alk+11gA(k])

262

Page 15

=> (i<k+1 => STORE(STORE(A,k,Alk+1)),k+1,A[K))[11<A[K])

{ This formula is a verification conditian for a program for
bubble sorting., "A" is a variable of sort INTARRAY, i,14,k,m,n
are variables of sort HN,] N

(3,2,1) (k+1=1 & igHIGH(AR) & (i<k => A[11ZA[k]) &
(mgi<igk => ALiIgAl1)) & (nLi<jKHIGH(A) => A[iILALi])
& KSHIGA(A) & k<n & Alk+11gA[k]))
=> (i<k+1 => A[k]gLA[KY)

(3.2.2) (k+1#i & K+1KHIGH(A) & iSHIGH(A) &
(i<k => Ali1gALKk])) &
(m£i<jgk => AQT11gAT1]) & (nSi<IKHIGH(A)Y => A[11LALT])
£ KLHTGH(A) & k<n & Alk+11gATlK]))
=> (- i<k+1 => STORE(A,K,Alk+13){i1LA K])

Both formula (3,2,1) and (3,2,2) can be eAasily reduced to

frue.

263

Page 16

4, Theory Forcusing

One of the main difficulties with a proof on a large theory
derives from the wide selection of axjoms to invoke at each step
of the proof, It is time consuming both for the man and tne
machine to search €for the axiom to be wuysed for the next
reduction, Given a formula to be proved on a large theory, rthe
validity ueherallv depends on many axioms presented from
difterent modules. (We will discuss tnhis point in detail at the
end of this section,) If the theory is cleanly and naturallvy
modularized, however, one could well expect some desirable
property in the nroof, whnich we call proof localitys. wvamely, a
consecutive portion of proof stens, if aoppropriately selectgd,
tends to depend on axioms from'bnlv a few or preferahbly a sinagle
module, This property opens un the possibility of opermittinag
the man~machine interaction to focus the attention on a
particular modiule for a portion of the period during the proof,
we collectively call such strateqies theory=focusinai, The
successful use ot theory=focusing can enhance the efficiency of
the proof because it laraely narrows the selection of axioms at
Each step and facilitates thne effective anplications of
reduction ang simplification rules on a specific module,

The manv-sortéd-ness of the I14TA Jloajic oprovides a useful
technique for theory~focusina as follows, Generall? a tormula,
which is generated as a qoal in the course ‘Of the oproof, Ccan

contain terms of different sorts, For instance

(4,1) X£0 & y#0 & DVS(X,w) & DVSB(y,w)
=> DVB(CORF(y,DEG(Y)) fX=COEF (X, DEG(x)), TH(DEGIX)=DEG(y), v, w)

264
Page 17
(4,2) x#0 & v#0 & DVS(y,w) &

DVS(CGEF(y.DEG(v)).x-CQRF(x,DEG(x)).fﬁ(DEG(x)-DEG(y).v),w)
=> DVS(X,w) & DVS(y,w)

contain terms x, v, w, COEF(y,DEG(y)).x, TH(DEG(X)=DEG(y),v),
COEF(X,DEG(X)) ,TH(DEG(X)=DEG(Y),V) of sort INTPOLY, terms
DEG(Xx), DEG(Y), DEG(x)=DEG(Y) of sort. NN and terms
COEF(Y,DEG(Y)), COFRF(x,DEG(X)) of sort INT, (This happens to be
one of the verification conditions of a program which cohputes
the g,C.d, of two polynomials,) A straiahtforward way for
theory=focusina is to replace all non-variable terms of a
designated sort by variables of that sort , where the same terms
are replaced by a single variable, In this way, the structure
of the sort 1is concealed, facilitating the=focusing on the
structures of the other sorts, Here, repiacinq the terms of

sort NN and the terms of sort INT, we obtain

(4,1,1) x#0 & y#0 & DVS(x,w) & DVS(vy,w)
=> DVS(rl.,x=r2,TM(n,y),w)

(4.2.,1) X#0 & y#0 & DVS(y,w) & DVS(ri.x=r2,TM(n,vy),w)
=> DVS(x,w) & DVS(y,w)

which are free of the structures of INT and NN, Applving axioms

of NVS and INTPOLY, we reduce (4.1,1) to true and (4,2.1) to
(4.2.1.1) y#0 & ri.xsv¥w => u,x=u*w

To prove (4,2.1,1), the concealed structure of INT must be

recovered and rl1 1s changed back to CUEF(y,DEG(v)). Then the

proof proceeds this timeiusinq axiqms of the type module of INT,

(The axioms of AN are not involved,) This is an example of

265

Paage

theory=focusing which goes upwardly 1in tne theory hierarchy
(i,e. focusing on modules which are higher in the theory
nierarchy, hiding the lower modules), There are cases in which
the focusing goes downwardly,

We mentioned that the validity of & formula to be ovroven
depends generally on many axioms presented hy different modules,
Here we show briefly how this happens,

It is often the case that the preoof of a formula requires
some axioms of modﬁles which are not referred to explicitly in
the formula,

For example, the following formula contains explicitly on}v a
function + and terms of type INTPOLY and no other module is
referred to explicitly, (x, v and z are variables of type
INTPOLY,)

X+ (V+2)=Z2+(y+x)
In order to prove this tormula, one would need the commutativity
and assoéiativitv of + on the integers, which should be agiven as
among the pasic axioms on type INT, in addition to axiom 8 and
10 of INTPOLY,

(1f we included the followina two axioms as amona the basic
axioms on INTPOLY, the above formula could be proved using only
the axioms of INTPOLY:

X+YSY+X
X4 (y+2)=(X4y) +7Z
though these are deducible from axioms 8 and 10 together with

the axioms on INT,)

1%

266

Page 19

5., Theory Extractions -

The basic structure of the type of NN includes the theory of
the total ordering as a substructure, which can be contained in
the basic structures of many other types, We extract and
isolate the lines preceeded by “++° in the presentation of the

type module of NN to form the svpe module of ORDER,

interface sype ORDER
fn LESS : (@,8) => BNOL as BLR
EGUAL: (8,@) => BUOOL as @=e
end interface
specification sype NRDEER
var x,v,zZ,u,v:iA
axiom 1: x£v @r v<x
2: (x£y & yg£z) => x£2
3: (xgy & y<x) => x=v
43 X=X -
S92 (x=y & uyu=v) => (xgul=(vygv)
6: (x=y & us=v) => (x=ul=(y=v)
end specification

Thus a sype module Jooks quite like a type module, Sypes are
another Kkind of sorts in JOTA loaic whose basic structures are
presented by svpe modules in language INTA, Namely there are
primitive functions PR<s> and the basic axioms BA<s> on each
sype s, The difterence is that there does not exist the notion
of generator inductions on sypes, HKow we dgenerally characterize
the relation which holds hetween (RDFR and NN, Let us remember
that as a svntactic rule of language IOTA if a sype or type
module g presents a sype or type s, the name of each function in
PR<s> is in the form of T#f where T is the name of a, we will

confuse all three of g, s and T,

267

Page 20

Definition Given a sype module S and a sype or type module T,
the relation 5 € T holds iff

(1) For each function S#f:(S81,52,,..,5m) => s0 in PR<SD,
there exists a function T#f:(rt1,r2,,..,rn) => r0 in PR<T> such
ihat m=n, ri=T if si=S and ri=si it Si#S for i=0,1,....m,

(2) For each formula P in BA<CS>, P[S8/T] is oprovable in
TH<T>, where the formula PIS/T] is obtained from P replacing
each occurrence of “S” in P by T’ and replacing appropriately
each variable of sort S5 in P by a variable of sort T,
(Different variaples are replaced by different variables. For
instance, let P be x£v or v£<x ipn BACORDER> which is really
VX.VV.(URDER&LESS(X.V) ok ORDER#LESS(y,%)), then PIORDER/NN]} is

Wo.Yv.(NNRLESS(u,v) or NNELESS(vV,u)).)

Notice that the transformation from P to P[S/T] is determined
up to alpnha=conversions (or variable renaminas), Since all
formulas in BA<S> are closed, this does not cause any
inconvenience in our arguments, HNote that as the provability
property in (2) of the definition is undecidable, the relation #
is undecidable, put the auther of S and T should know how to

establish § < T,

Corollary In the definition above, if a tormula P is provable

268

Fage 21

in TH<S>, so is PIS/T] in TH<T>. .

Notice that this corollary depends essentially on that there
is no generator induction on the sype S,

On the other hand, the structure of the procedure module
NNMAX essentially depends solely on the substructure of the
total ordefinq on NN, So we should rather write the following

type=parameterized procedure module:

interface procedure MAX(P:0RDER)
fn MAX ¢ (P,P) => P
MIN ¢ (P,P) => P
end intertace
specification procedures MAX(P:ORDER)

var x,y:P
axiom 1: xgy => MAX(x,y)=vy -

»
.

end specification

The only difference from NNMAX is that ‘P’ occurs in each
place of ‘“NN®, P:IRDER is understood to be a "type parameter”,
which runs over all type T such that QORDER £ T, Substituting an
"actual" type parameter ‘T’ for each occurrence of ‘P’ in the
presentation of MAX(P:DRDER),.we have a procedure module MAX(T),
For instance MAX(NN) is isomorphic to NNMAX., (Notice that =
and £ in MAX(P:ORDER) are P#EQUAL and PH#LESS, resnectivelv.

while they are NNH#EQUAL and NKN#LESS in MAX(NN),)

Thus if we have already written both NN and MAX(P:0ORDER),

then the function HMAX(NN)#MAX : (NN,NN) => NN ~can be used

269

Page 22

aytomatically which is equivalent to NNMAX#MAX, 1In this way one
can reduce the work of module~writing, More importantly, agiving
MAX(P:ORDER), the logical relation betuween TH<HNND> and THINNKAXD>
is clarified because MAX(P:ORDFR) presents only what |is
essential in the extention from TH<KNN> to THCKNNMAX>,

As further examples, if we aive RING, the sype of rino, then
INTPOLY can be generalized into a more general type POLY(TIRING)
which is the type of polynomials over arhitrary coeficient rina,
'or with ANY, the sype which has only the eudaijtv and the
equality axioms, INTARRAY is aeneralized to ARRAY(T:IANY) which
is the type of array of any obiject with equality, 1The new ocata
tvpé concepts ‘ ot syves aeneralizes 50 called
type-parametrization structures in nprogramming, The use of
sypes is hiahly useful in structurina proaramrs and theories and
in simplifyina verification procedures, More details on svres
as well as the formalization of the type=parametrizasation
teatures within the first order loagic c¢an be found in [41,
Since the structures of theories can be simplified and clarified
by introducing svoes, the use of them can be said to he nelpful
tor theorem provina on them,

But the sype concept has a rore direct application to theorem
proving in the following way., There are many different theories
put often)quite A few of them have a common ‘subthporv and the
extraction of such common subtheory forms a sype, If a powerful
reduction and simplification procedure is developed on such 4
sype, it can bhe applied to any theory that contains the

subtheory., For example, all of theories of the integers, the

270

Page 23
rationals and the polynomials contain the common structure of
rinag, Thus any reduction and si@nlification strateaies
cdeveloped for the theory of rina can be applied to those
theories,

For this purpose, the sype concept introduced in this section
is rather restrictive, (These res;rictions are desirable on
sypes as A programming concept in order to enhance the most
imoportant goal of program structuring,) Thus we give the more
general and flexible relation as follows, (Let FN<M> be the set
of functions introduced by a module M and AX<M> be the set of

the axioms introduced by ¥,)

Petinition Given a sype 5§ and a procedure, type or syoe
module T, we say § ﬁ4T for a mapping HIFNKS> => FNCT> iff

(1) H is one to one mappring,

(2) There exists a sort t such that if £:(51,52,444,5n) => S0

and H(£):(t1,t2,.,,,tm) => t6, m=n and ti=zsi if sifS and ti=t it

(3) For each formula P in AX<S>, Tr(P,H) is provable in THLT>
where Tr(P,Hd) 15 a formula obtalned from P replacing each S#t by
TsH(f) together with appropriate variable conversion from S to

T.

The user can prepare a sype S which seems to he a subtheory
of many theories and develon proof procedures on S, Whenever
appropriate, he aives a mappina H for a module T and establishes

the relation s % T. (The amount of work required in

271

Page 24

establishing 8§ §1T should bhe for the most cases small or none,

Often Tr(P,H) 1tself is found among AX<T> for many P in AX<S>,)

Corollary 1t Sﬁg , then for any formula @, if 0 is nprovable
in TH<S>, so is Tr(Q,H) in TH<T>, (Again this corollary

essentially depends on that there is no generator induction on

There can be more than one relations between the same pair of
S and T, nce a3 relation S i{T is established and stored,
whenever a theory concentration is made oﬁ T and the mane=machine
interaction fin4s the portion nf the proof depends solelv on tne

w1 and is

substructure 8§ ot T, the goal formula is mapped by
tried to be reduced on 5. This excludes the Test of tne
structure of T which is not involved for the moment and, by the

reduction and simplification procedures develnped on 5, would

speed up the proof.

There can be many candidates for sypes which need not ne 50
elaborated as ring. For instance, it snhould he usetul to nave 3
simple svpe consisting of two functions $# and g such that tney

satisfy commutativity and associarivity,

272
Page 25

6. Subformula reductions

In practice, fairly large formulas are involved 1in. ©proofs,
especially for Dprogram verifications./ They must usually be
decomposed into several smaller subformulas which are easily
processed, The usual techniqgue has bpeen to reduce such a
formula to some normal form, e,d9, In the form of an lmnlication
whose antecedent: and consequent are a conjunction and a
disjunction of atomic formulas(CD~normal form), Tespectively.
However mGChaniéal application of such normal form reduction can
otten destroy the semantic enevitability in the structure of the
formula, The resulting formulas may be very hard to read and to
apply the strategies presented in the previous sections,

For instance consider the following formula,

(6,1) ¢ Vw,(DVS(xXO0,w)ISDVS(yD,w) <=> DVS(X,W)&DVS(y,w))
& x#0O & VO)
=> (DEG(COEF(y,DEG(YV)) «x=COFEF(X,DEG(X)), TH(DEG(X)=DEG(Y),V))
} £ DEG(Y)
=> Vw,(DVS(x0,w)EDVS(Y0,w)
<=> DVS(y,w) &
DVS(CUOEF(y,DEG(Y)) X
~COEF(X,DEG(X))THRIDEG(X)=DEG(Y),v), w)))
& (“DEG(COEFIY,DEG(Y)).X :
=COEF(X,DEG(X)) ,TH{DEG(X)=DEG(Y),v))ILDEG(Y)
=> ¥V w,(DVS(Xx0,w)&DVS(y0,w)
<=> DVS(CUEF(y,DEG(y)),.X
»COEF(X,DFEG(X)) TM(DEG(X)=DEG(YV),y), W)
& DVS(y,w%))

(This happens to be one of the verification conditions for &
program to compute the g,¢,d4, o0f two polynomials,)

The (CD=)normal forms of the formula will be: -

(he1.1) (DVS(xO,w0) & DVS(y0H,w0) &
DEG(COEF(y,DEG(Y)), x=COFEF (X ,DEG(x)),TM(DEG(X)=DEG(V),Vy))

LDEG(y))
=> DVS(y,w0) ar DVS(x0,wN) ar DVS(y0,w0) ar x=0 Qr y=0

(6,1,2) (DVE(Xx0,w0) & DVS(y0,wDd) &
DEG(CIEF(y,DEG(Y)) ,x=COEF(x,DEG(X)) .THM(DEG(X)~NEG(V),Vy
LDEG(Y))
=> DVS(CDEF(VIDEG(Y))OX
~COEF(x,DEG(x)) ,TM(DEG(X)=DEG(Y),v),w0) ar
DVS(x0,w0) or DVS(y0,w0) ar x=0 ar y=0

(be1.3) (DVS(x0,w0D) & DVS(y0D,w0d) &
DEG(COEF(y,DEG(Y)) . x=COEF(x,DEG(x)) .TM(DEG(X)=DEG(Y),V
SDEG(y))
=> DVS(y,%0) or DVS(x0,w0) gr DVS(y0,w0) or x=0 gr y=0

" o9 e

(6,1,9) (DVS(x,wD) &DVS(y,w0) &DVS(x0,w0) &EDVS(y0,w0) &
DEG(CUOEF(y,DEG(V)) x=COEF(X,DEG(x)) ., TM(DEG(X)=~DEG(V),Y
SDEG(Y))
z> DVS(y,wd) o x=0 gr v=0

(6,1.,10) (DVS(x,w0) &DVS(y,w0) &DVS(x0,wd) &DVS(y0,w0) &
DEG(CREF(y,DEG(Y)) (x~COEF(x,DEG(X)), TM(DEG(x)=DEG(V),V
SDEG(Y)Y)
=> DVS(COEF(y,DEG(Y)),.x
-COEF(x,DEG(x)) ,TM(DEG(x%x)~DEG(Yy),v),w0) o
Xx=0 Qr v=0

e se e

Obviously these formulas (especially (6,1,10)) do not appear
to teach us much, . Thus we want to work out some methods which
transform a 1afqe formula eauivalently into several smaller ones
without destroyiné the natural structure of the original
formula,

Until now in most of theorem proving techniqueé. it has been
usual to apply reductions exclusively to the outermost level of
the formula to be proved, but careful applications of reductions

to some appropriate subformulas seem to be useful for our

Page 26

1)

))

})

1)

274

Page »

purpose as we see in the following examples:?
(6.1) 1Is reduced to the following formulas by reducinag any
subformula In the form of (A => B) & (A => C) to B when

B <=> C,

(Vw,(DVS(x0,w) & DVS(y0,w) <=> DVS(x,w) & DVS(y,w)) &
X#0 & yv#0)
=> Yw, (DVS(X0,w) & DVE(Y0,w)
. <=> DVS(y,w) &
DVS(COEF(v,DEG(V)),.X
~COEF(Xx,DEG(X)),TH(REG(X)=DEG(Y),y), %))
Namely,to prove a formula in the form of P((A=>B) & (fA=>C)).,
it is sutficient to establish P(B) and B<=>C, This subformula
reduction method 1is wuseful in program verification because

subformulas in the form of (A=>B) & (™ A=>C) often appear due to

jt=statement,

Often a formula to he proved contains as subformula several
occurrences of a same formula, and such a subformula should not
be defprmed in order to preserve the natural structure of fhe
superformula., The validity question of the or;qinal formula can
he simplified by assigning true or false to such a subformula,
which is more precisely described as: Given a formula P in
which several occurrences of a formula F appear, in order to
prove P, it is sufficient to establish F=>P{Lrue/F} ang ~ ¥ =>
P{talse/F} (if P is in the form of P1=>P2 then

F & P1{true/F)} => P2{true/f}) and

275

~F & Pi{false/F} => P2{false/F}), where P{t/F} stands for the
tormula obtained ‘from replacing F by t, Then by usina the
simplification rules of the opropositional calculus such as
A=>true ===> true, the validity of the original formula can be
largely simplified with the original structure of P well

preserved,

(6.2) € (i<k => A[ilgA[k]) & (mgi<igk => A[ilgLALT)) &
(NLi<iSHIGH(A) => A[{)ILALI]1) & k<n & A[kILA(Kk+1] &
mgi<jsk+1)

=> A[i)lgAl]i)

[This formula happens to be a verjfication condition of
bubble sort program,]

The formula above is decomposed into the following formulas hy

the above technique on i<j,.

(6.,2,1) (i<§ & (i<k => A[ilgAlK)) &
(mg1 & Ltrue & j€k => A[{l1gLAl{)) &
(ngl & true & JSHIGH(A) => A[i1LAL§]) & k<n &
Alk)gAlk+1] & mgi & true & Igk+1)
=> Ali1)£ALj]

(6,2.2) (~i<i & (i<k => A[ilgAfKk]) &
(m£i & false & <k => AlilgAli1) &
(ngi & false & JSHIGH(A) => ALj1LATF)) & k<n &
Afk)<AIKk+1) & mgi & £alse & jsk+l)
=> AlilgAL)

By applving the propositional reduction rules we aet (H.2.1)°7

from (6,2,1) and true from (6,2.2),

(6,2.1)7 (13 & (i<k => A{i)gAlk]) &
(mgi & igk => A[(i1gAl§)) &
(ngi & KHIGH(A)Y => A[i)gAli)) &
k<m & A(kILA[k+1) & m<i & jgk+1)
=> Aaf{ilgAli]

Page 28

276

Page 29

where (6,2,1)° is proved by using the same technique on the
formulas mgi, i<k and i<k, In this way the natural structure of

the oriaginal formula can be preserved throughout the proot,

There can be many difterent methods for subformula reductions
and so It is desirable for the user to be able to develop such
methods interactively whenever necessary, 1Ih the same way as
module-wise develooment of reduction rules, the soundness must

be established,

R71

Paye 30
keferences

i, Bledsoe,w. 4,1 Non=resolution theorem nrovina, rrtifictral
Intellicgence 9, 1=35, 14977

2. Gordon, "., #ilner, R,, Morris, L,, Hewev, M,, wadsworth, (.3 A
meta lanauadge fnr interactive rproofs in LOF, 5Sth ACs Conference on
Princinles of Proarammina Lanqguaies. 137#

i, nNakaiima, kK., Honda, #,, Nakahara, H,: trescribing and verityinag
programs ‘with abstract data types. bFormal description of Proararmminng
Concepts. (ed, “euhold) rorthe=Holland Publishina, Co, 1977

4, Nakaijimsa, R,., Makahara H,, Honda, M.t Hierarchical nronram
verification ==a3a manv sorted loaical approach==-, RIMB=265, Research
Institute for Mathematical Science, Kyoto University. 1978

5, Nakajima, R,.: Sypes =-=partial tyeese=~ for proaram structuring and

first order system I0OTA loaic, Reserch Repnrt Nn, 27, TInstitute of
Informatics, University of 0Oslo, 1977

b, MNelson, C.,_ﬂpnen, DeCe2: Simplification by cooperating decision
procedyres, Al#=311, Stanford Artificial TIntelligence Laboratry, 1978

