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Schwarzian derivative and quasiconformal mappings

0111 Lehto

et £ be a homeémorphism of the extended plane onto itself. 1In the
theory of Teichmiiller spaces it is of'imPOrtance to measure the deviation of
£ from a MSbius transformation z -+ (az + b)/(cz + d) in two ways, apparently
different but in fact essentially equivalent. In this connection new interesting
problems have arisen of which many belong to classical complex analysis rather

than to the theory of Teichmiiller spaces.

7. Quasiconformal mappings

Assume that f is quasiéonformal,“i.e. a homeomorphic L2—solutioh of a
Beltrami equation f; = ufz with |hﬂ|m < 1. The function u, the complex
dilatation of f, admits a simple geometric characteriiation: For almost all
points, the derivative mapping of f at 2z maps concentric circles centered
at z onto concentric ellipses with the ratio of axes equal to (1 + lu(z)])/
(1 = Ju(z)|). Every measurable u with ”u”°° <1 1is theAcomplex dilatation
of a quasiconformal f, and p determines f up to a M6bius transformation.
The case Ihx”m = 0 occurs if and only if f is MSbius, and a small Hu“°°
means thaﬁ f 1is close ﬁo a Mdbius transfonmation. (For the properties of

quasiconformal meppings we refer to [8].)

2. Schwarzian derivative

Let A be a domain in the extended plane, conformally equivalent to
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a disc, and p its Poincaré-density, i.e. p(z)|dz| = (1 - lez)_1ldw], w = h(z),
where h 1is & conformal map of A onto the unit disc. For a function f,
meromorphic and locally injective in A, we introduce its Schwarzian derivative

Sf. At finite points of A at which f takes a finite value, the definition

is Sf = (£"/f') - (f"/f')2/2, and it is readily seen that this function can

be continued analytically to « (if it lies in A) and to the poles of f.

Thus Sf is a holomorphic function in A, and direct computation shows that

it vanishes identically if and only if f is Mdbius. Conversely, every function
¢ holomorphic in A is the Schwarzian derivative of some f, and (¢ determines
f up to a Mdbius transformation.

The norm of S, is defined by

f

s, = sup |5.(z)]/p(2)?
glla = S0P 1Splz)1/olz

Direct computation gives the following invariance formula: If f and g are

meromorphic. functions in A and h: B+ A is a conformal mapping, then

(1) “Sf - Sg”A = “Sfoh - Sgoh”B',

In particular,
(2) llsh_., I, = lis,llgs

and we also conclude that the norm of Sf is invariant under Mdbius transfor-

mations h. Like Ihx“m, the norm “Sf|l also measures the deviation of f

from a Mdbius transformation: Hsfll =0 if and only if f is MSbius.

3. Deviation from a disc

We call a domain a disc if it is the imsge of an ordinary disc under
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a Mdbius transformation, i.e. if it is bounded by a circle or a straight line.

Set

01 (A) = “SfHA’

where f 1is a conformal mapping of A onto a disc. Then 9, is well defined,
and 01(A) measures the deviation of A from a disc. An old theorem of Kraus
(1933) says that a function f meromorphic and univalent in the unit dise D
satisfies the sharp inequality |leHD £ 6. 1In conjunction with (2) this yields
the estimate 01(A) <6, If A is the’exterior of an ellipse whose ratio of
axes is r, 0 2 r £ 1, then 01(A) =6(1 -r)/(1 + r). This example shows that
for varying domains A, the range of 9, is the closed interval from O to 6.
The value O occurs if and only if A itself is a disec.

We call A a quasidisc if - A is the image of a disc under a quasiconformal
mapping of the plane. If the mapping has maximal dilatation =<K, 1 £ K < =,

i.e. if its complex dilatation satisfies the inequality (1 + ||u]|_)/(1 = [Jull.)

£ K, then A 1is said to be a K-quasidise. If A 1is a K-quasidisc, then

K2 - 1
(3) 01(A) 26 -
K™+ 1

This follows from a sharpened version of Kraus's theorem: If f is

quasiconformal in the plane with complex dilatation u and conformal in

a disec D, then the sharp inequality

(1) sl < 6llull.

holds (Kiihnau [5], Lehto [6]). This estimate shows that if f is close to
a Mobius transformation in the sense that Ihj”w is small, then the restriction

£|D has a small Schwarzian. To get (3) we have to combine (4) with the exist-
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. ence theorem for Beltrami equations which says that every function - measur-
able in the plane and with Hu”°° < 1 1is the complex dilatation of a quasi-

conformal mapping. To my knowledge it is not known whether the estimate (3)

is sharp.

4, Outer radius of univalency

The constant 9, is connected with univalency. We introduce the new

domain constant
02(A) = sup {HSfHAIf univalent in A},

the outer radius of univalency of A. For an f univalent in A we write
f = (foh)oh_1, where h 1is a conformal mapping of a disc D onto A. Applying
formula (1) in the case where g is the identity mapping and considering (2)

we get

Iselly = NSy = Sylly £ Nsggylly + 118 Il £ 6 + oy (a).

Hence 02(A) 26+ 01(A). A suitably chosen example shows that for every

domein A equality holds here, i.e.

(5) o, =0, +6

(€71).

Using (5) we obtain a generalization of (4): Let £ be a mapping which is
quasiconformal in the plane with complex dilatation u and conformal in a

" domain A. Then

lsell, 2 (o (a) + 6)]lull,-
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5. Inner radius of univalency

"Let us define
03(A) = sup {a[HSfHA S a=f univalent in A},

fhe inner radius of univalency of A. Standard normal family considerations
show that sup can be replaced by max, i.e. [le“A'= 03(A) implies that f is
univalent in A.

In 1949 Nehari [9] proved that for a disc > 2, and immediately after

°3
that Hille [4] gave an example to show that here equality is true, i.e. for
a disc, 03 = 2,

In 1963 Ahlfors [1] established the following theorem: To every quasidisc
A there corresponds a positive constant n such that whenever HSfHA <,
then f is univalent in A and can be extended to a quasiconformal mapping
of the plane, wiﬁh full, = O(”Sf“A). In other words, if f 1is close to
& MSbius transformation in the sense that HSf“ is small, then f admits
a quasiconformal extension to the plane with a small u.

It follows from Ahlfors's theorem that for quasidiscs GB(A) > 0. In 1977
Gehring [2] proved that 03(A) >0 only if A is a quasidisc. Put together,

the results of Ahlfors and Gehring reveal an intrinsic role of quasiconformal

mappings in the theory of univalent functions.

6. Universal Teichmiiller space

In order to study the constant o, more closely, wé_introduce the Banach

3

space Q(A) which consists of all functions ¢ holomorphic in the quasidisc

A and with finite norm:
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th”A = sup ltD(Z)Ip(z)2 < o,
z€A

Defiﬁe the subsets

U(a) = {@ = Sf[f univalent in A},

T(A)

{Sf € U(A)|f can be extended to a quasiconformal mapping

of the plane}.

The set T(A) is called the universal Teichmﬁller'space of A. Fbr
varying domains A, the sets U(A) are isomorphic: If h: A+ A' is a
conformal mapping and Sy € U(A), then by formula (1), Sf > Sth_1 is
a bijective isometry of U(A) onto U(A'). The same reasoning shows that _
the universal Teichmiiller spaces of quasidiscs are isomorphic.

The universal Teichmiiller space T(A) is open in Q(A). This follows
easily from the theorem of Ahlfors cited above. Similarly, the fact that

63(A) > 0 only for quasidiscs implies that T(A) contains the interior of

U(A). Hence, the results of Ahlfors and Gehring yield the relation
(6) T(A) = interior of U(A)

(For discs, this result is stated and proved in Gehring [2]).

The relation (6) allows interesting conclusions. An immediate corollary
is that if HSfHA < 03(A),‘then f can be extended to a quasiconformal mapping
of the plane. We also obtain the following characterization for o3t If h is
a conformal mapping of a disc D onto A, then 03(A) is the shortest distance
from the point Sh € T(D) to the boundary of T(D) ([7]). This makes it
possible to derive some estimates for 03.

As an example, let us consider the angular domain A = {zIO < arg z < am},
0 <a=1. In this case, h(z) = 2% defines a conformal mapping of the upper

half-plane D onto A, and we have
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- 2
5,(2z) = ——5—, llsh])D = 2(1-a%) < 2.
2z
1f f£(z) = log z, then Sg is not in T(D), because g(D) is not a Jordan
domain. From Sg(z) = 1/222 we thus deduce that

= - = 5,2
o,(4) = Hsh ngD 20,

A similar reasoning shows that for quasidiscs A with OT(A) < 2,

min 03(A) =2 - 01(A).

We also have

03(A) 2 min (2,6-01(A)).

(For the details see [T7]).

It is easy to prove that the set U(A) is closed. For a long time it
was a famous unsolved problem of Bers whether U(A) agrees with the closure
of T(A). (I think that Bers announced this problem for the first time in
public in a conference held in Erevan in 1965.) This was disproved by Gehring
[3] in 1978. We are thus led to new problems in studying the boundary of T(A).

It is also an open problem whether U(A) is connected.
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