Variation of period matrices for quasiconformal deformations

Yukio Kusunoki Department of Mathematics, Kyoto University

Introduction

As is well-known, L.Ahlfors [1] and L.Bers [3] proved independently that the Teichmüller space T_g of compact Riemann surfaces of genus g>1 has a complex structure with respect to which all elements \mathcal{T}_{ij} of the Riemann matrices (δ_{ij} , \mathcal{T}_{ij}) are holomorphic functions. I want to discuss this for the case of noncompact Riemann surfaces.

In our former joint paper [6] with Taniguchi, we studied some continuity properties on holomorphic differentials with finite norm and in particular the continuity of τ_{ij} on the Teichmüller space of open Riemann surfaces belonging to class 0". Here we shall show the analyticity of τ_{ij} with respect to the Bers coordinate in the Teichmüller space of Riemann surfaces of class 0". The details will appear elsewhere.

1. Let R be an open Riemann surface and $E = \{R_n\}_{n=1}^{\infty}$ be a canonical exhaustion of R. We denote by \mathcal{L}_n the family of dividing cycles on R - K (K is a compact set in R, for instance, $K = \overline{R}_1$) freely homotopic to $\mathfrak{d} R_n$ and set

$$L_{\rm E} = \bigcup_{n=1}^{\infty} \mathcal{L}_{n}$$
.

By 0" we denote the class of Riemann surfaces each of which admits a canonical exhaustion E such that the extremal length $\lambda(\mathcal{L}_E)$ vanishes. The class 0" is quasiconformally invariant and 0" \subseteq 0_G in general, but 0" = 0_G whenever the genus is finite ([5]). The following bilinear relation plays a fundamental role in this article.

<u>Proposition</u> ([6]) Let E = $\{R_n\}$ be a canonical exhaustion of $R \in O$ " for which $\lambda(\mathcal{L}_E) = 0$. Let $\{A_j, B_j\}_{j=1}^g$ be the canonical homology basis on $R \pmod{\partial R}$ with respect to E, where $g(\leq \infty)$ is the genus of R. Then for any closed C^1 -differentials ω and σ with finite norm, there is a subsequence $\{R_n\}$ such that

$$(\omega, *\sigma)_{R} = -\lim_{\nu \to \infty} \sum_{A_{j}, B_{j} \subset R_{n_{\nu}}} \left[\int_{A_{j}} \omega \int_{B_{j}} \overline{\sigma} - \int_{B_{j}} \omega \int_{A_{j}} \overline{\sigma} \right].$$

In particular, if ω has vanishing A-periods, then

$$(\omega . *\omega) = 0.$$

2. For arbitrary Riemann surface R_o , let $f: R_o \to R$ be a quasiconformal mapping of class C^2 . Then, given $\sigma(R) \in \Gamma_c^1(R)$ the pull back $\sigma(R) \circ f$ belongs to $\Gamma_c^1(R_o)$ and has the same periods along corresponding cycles under f. (See Ahlfors-Sario [2] for the notations of spaces of differentials).

Now we shall provide the following lemmas.

Lemma 1 Let $R_0 \in O$ " and $f: R_0 \to R$ be a C^2 -quasiconformal mapping. Given $\theta_R = a(\zeta) d\zeta \in \Gamma_a(R)$, then there exists a unique differential $\theta_{R_0} \in \Gamma_a(R_0)$ with the same A-periods as θ_R and we have

$$\|(a \circ f) f_z dz\| \le \frac{1}{1-k} \|\theta_{R_0}\|$$

where $k = \sup |f_{\overline{z}}/f_z| < 1$.

Lemma 2 Let $R_0 \in O$ " and $f^j \colon R_0 \to R_j$ (j=1,2) be C^2 -quasi-conformal mappings. Given $\theta_{R_0} \in \Gamma_a(R_0)$ let $\theta_{R_j} = a_j(\zeta) d\zeta \in \Gamma_a(R_j)$ be differentials with the same A-periods as θ_{R_0} . Then we have

$$\frac{1}{2} \|\theta_{R_1^{\circ}f^1} - \theta_{R_2^{\circ}f^2}\| \le \|(a_1 \circ f^1)f_z^1 - (a_2 \circ f^2)f_z^2\|$$

$$\le \frac{\widetilde{k}}{(1-k_1)(1-k_2)} \|\theta_{\widetilde{R}_0}\|.$$

where $k_j = \sup |\mu_j|$, $\mu_j = f_{\overline{z}}^j / f_z^j$ and $k = \sup |\mu_1(z) - \mu_2(z)|$.

For instance, the proof of Lemma 2 is carried out as follows. Since $\omega = \theta_{R_1} \circ f^1 - \theta_{R_2} \circ f^2$ has vanishing A-periods, we have $(\omega, *\omega) = 0$ by Proposition. Hence the middle term of the inequalities above is equal to $\|(a_1 \circ f^1)f_{\overline{z}}^1 - (a_2 \circ f^2)f_{\overline{z}}^2\|$ and one can easily prove the above inequalities.

3. Let $\{A_j, B_j\}_{j=1}^g$ be a canonical homology basis on R (mod ∂R). Then it is known that there are square integrable normal differentials $\theta_j(R) \in \Gamma_a(R)$ such that $\int_{A_j} \theta_i(R) = \delta_{ij}$ (i,j=1,2,...,g). We write

$$\int_{B_{\mathbf{j}}} \theta_{\mathbf{i}}(\mathbf{R}) = \tau_{\mathbf{i}\mathbf{j}}(\mathbf{R}).$$

Now let $R_o \in O$ " and $\{A_j, B_j\}_{j=1}^g$ be a fixed canonical homology basis (mod ∂R) with respect to a canonical exhaustion E for which $\lambda(\mathcal{L}_E) = 0$. Suppose $f \colon R_o \to R$ is the C^2 -quasiconformal mapping. Then we can prove by using Proposition the following first variational formula for \mathcal{T}_{ij} ;

$$\tau_{ij}(R) - \tau_{ij}(R_0) = \iint_{R_0} (a_{i,R} \circ f) \mu f_z a_{j,R_0} dz d\overline{z}$$
,

where $\theta_i(R) = a_{i,R}(z)dz$, $\mu = f_{\overline{z}}/f_z$. Also we know the continuity of τ_{ij} ;

$$|\tau_{ij}(R) - \tau_{ij}(R_0)| \le \frac{2k}{1-k} ||\theta_i(R_0)|| ||\theta_j(R_0)||$$

where $k = \sup |\mu| < 1$ (cf.[6]).

4. Now we shall consider the Teichmüller space $T(R^*)$ centered with a Riemann surface R^* . Let $\overline{R}=(R,f)$ be a point of $T(R^*)$ and Γ be the Fuchsian group acting in the upper half plane U such that U/Γ is conformally equivalent to R. We denote by $M(\Gamma)$ the space of Beltrami coefficients for Γ . For each μ in

 $M(\Gamma)$ there is a unique quasiconformal mapping f^{μ} of \widehat{C} onto itself which leaves three points 0,1 and ∞ invariant, satisfies the Beltrami equation $w_{\overline{Z}} = \mu w_{Z}$ on U and is conformal in the lower half plane. The Teichmüller space $T(\Gamma)$ is the equivalent classes in $M(\Gamma)$, where μ and ν are equivalent if and only if $f^{\mu} = f^{\nu}$ on the real axis. A neighborhood of the origin in $T(\Gamma)$ corresponds to a neighborhood of the point $\overline{R} \in T(R^*)$ and we may identify them.

We say that $\mu \in M(\Gamma)$ is canonical if $\overline{\mu(z)}|z - \overline{z}|^{-2}$ is holomorphic. Then it is known (cf.[6]) that there is an open neighborhood V of the origin in $T(\Gamma)$ consisting of canonical Beltrami coefficients. Such a V is called the Bers coordinates at the point \overline{R} in $T(R^*)$ (cf.Earle [4]).

5. We shall consider the differentiablity of $\mathcal{T}_{ij}(R)$ at any point \overline{R}_{o} of the Teichmüller space $T(R^*)$ of $R^* \in O$ ". Let Γ_{o} be the Fuchsian group on U such that $U/\Gamma_{o} = R_{o}$, and V_{o} be the Bers coordinates at \overline{R}_{o} . For canonical $\mu \in V_{o}$ we denote again by f^{μ} the quasiconformal mapping of R_{o} induced by f^{μ} stated above and by R_{μ} the image of R_{o} by means of f^{μ} . The f^{μ} is of class C^{∞} , because so μ is. Then by using Lemmas 1 and 2 we can prove the following second variational formula. That is, for any fixed canonical ν and sufficiently small complex number t we have

$$\tau_{ij}(R_{\mu+t\nu}) - \tau_{ij}(R_{\mu}) = t \iint_{R_0} v(a_i^{\mu} \circ f^{\mu})(a_j^{\mu} \circ f^{\mu})(f_z^{\mu})^2 dz d\bar{z} + O(t^2).$$

Thus τ_{ij} is Gâteaux differentiable at every $\mu \in V_0$. Moreover τ_{ij} is continuous as stated before. Hence τ_{ij} is Fréchet differentiable. Thus we have the following

Theorem On the Teichmüller space $T(R^*)$ of Riemann surfaces of class O" all elements τ_{ij} of the Riemann matrix (δ_{ij} , τ_{ij}) of normal abelian differentials with finite norm are holomorphic with respect to the Bers coordinates.

References

- [1] Ahlfors, L.V. The complex structure of the space of closed Riemann surfaces. Analytic functions, Princeton Univ. Press (1960) 45-66.
- [2] Ahlfors, L.V. and Sario, L. Riemann surfaces. Princeton Univ. Press (1960).
- [3] Bers, L. Holomorphic differentials as functions of moduli Bull. Amer. Math. Soc. 67(1961) 206-210.
- [4] Earle, C. The Teichmüller distance is differentiable.

 Duke Math. J. 44(1977) 389-397.
- [5] Kusunoki, Y. On Riemann's period relations on open Riemann surfaces. Mem.Coll.Sci.Univ.of Kyoto, Ser.A, Math.30 (1956) 1-22.
- [6] Kusunoki, Y. and Taniguchi, M. A continuity property of holomorphic differentials under quasiconformal deformations. (to appear).
- [7] Hille, E. and R. Phillips. Functional analysis and semigroups. Amer. Math. Soc. Colloq. Publ. 31(1957) revised ed.