On Pretzel Links

Taizo Kanenobu

Kobe University

A link L in S^3 is said to be prime if $L = L_1 \# L_2$ implies that either L_1 or L_2 is a trivial knot. Here $L_1 \# L_2$ is a composite link of L_1 and L_2 . ([N]) We will give a sufficient condition for a link to be prime and prove that pretzel links are prime.

<u>Definition.</u> A group G is indecomposable (relative to free products) if G = A * B implies A = 1 or B = 1.

Let $\Sigma_{\mathbf{k}}(\mathbf{L})$ be the k-fold cyclic cover of \mathbf{S}^3 branched over a link $\mathbf{L}.$

Theorem 1. If $\pi_1(\sum_k(L))$ is indecomposable for some $k(\geqq2)$, then L is prime.

Proof. Let us suppose that L = L₁ # L₂, where neither L₁ nor L₂ is a trivial knot. Then $\pi_1(\Sigma_k(L)) = \pi_1(\Sigma_k(L_1)) *$

 $\mathcal{\pi}_1(\Sigma_k(L_2))$. On the other hand, $\mathcal{\pi}_1(\Sigma_k(L_i)) \neq 1$ for i=1,2. (For a non-trivial knot, see [T]; for a link, see [HK].) This completes the proof.

<u>Corollary.</u> If $\mathcal{T}_1(\sum_k(L))$ is a finite group or a group with a non-trivial center, in particular, an abelian group for some $k(\geq 2)$, then L is prime.

Proof. By Problem 21 for Section 4.1 in [MKS], $\mathcal{T}_1(\Sigma_k(L))$ is indecomposable.

A pretzel link $K(p_1, p_2, \ldots, p_n)$ as shown in Figure 1 is a link with a projection in which the crossings lie on n two-stranded braids, $\lfloor p_1 \rfloor, \lfloor p_2 \rfloor, \ldots, \lfloor p_n \rfloor$ are the numbers of crossings

K(5,-3,1,2,-4)
Figure 1

in the braids, and the signs of p_1, p_2, \dots, p_n depend on the directions of twist in the corresponding braids.

In the projection of $K(p_1, p_2, ..., p_n)$, the placement of any p_i which is equal to $\pm l$ is immaterial insofar as link types are concerned.

A pretzel link $K(p_1, p_2, \ldots, p_n)$ is said to be degenerated if there are p_i and p_j which are equal to 1 and -1 respectively. This pretzel link is clearly equivalent to $K(p_1, \ldots, \hat{p_i}, \ldots, \hat{p_j}, \ldots, p_n)$ ($\hat{p_i}$ means that p_i is omitted).

Lemma. $\Sigma_2(K(p_1, p_2, ..., p_n))$ is the Seifert fiber space $(0,0,0 \mid 0; (p_1,1), (p_2,1), ..., (p_n,1))$ in Seifert's notation [S, p.208], or the manifold with the following surgery presentation:

Proof. See [Mo].

Theorem 2. A non-degenerated pretzel link $K(p_1, p_2, \dots, p_n)$, where $n \ge 2$ and $p_i \ne 0$ for all i, is prime.

Proof. $\pi_1(\sum_2(p_1, p_2, ..., p_n)) = \pi_1((0,0,0 \mid 0; (p_1,1), (p_2,1), ..., (p_n,1)))$ is a group with a non-trivial center or a finite group. ([0, p.92, pp.99-101])

<u>Remark.</u> Most pretzel knots of type (q_1, q_2, \dots, q_m) , where all the q_i and m are odd, have been shown to be prime by R. L. Parris [P].

Example. Let $M = \Sigma_2(10_{67})$. ([R]) Then $\pi_1(M) = \langle x, y ; y^{-1}x^4y^{-1}x^4y^{-1}x$ = $y^3x^3y^2x^3$ = 1 >. From the second relation, we have $x^{-3} = y^2 x^3 y^3 = y^3 x^3 y^2$.

Thus $x^3y = yx^3$, i.e., x^3 is in the center of $\mathcal{R}_1(\mathtt{M})$. Because $H_1(M) = \langle x; x^{63} = 1 \rangle, x^3 \neq 1$ in $\mathcal{R}_1(\mathbf{M})$, which implies that $\mathcal{R}_1(\mathbf{M})$ has a non-trivial center. Therefore 10_{67} is prime.

1067 Figure 2

References

- [HK] F. Hosokawa & S. Kinoshita: On the homology of branched cyclic coverings of links, Osaka Math. J., 12 (1960), 331-355.
- [MKS] W. Magnus, A. Karrass & D. Solitar: Combinatorial group theory, Interscience, New York, 1966.
- [Mo] J. M. Montesinos: Variedades de Seifert que sonrecubridores ciclicos ramificados de dos hojas, Bol. Soc. Mat.

 Mexicana (2) 18 (1973), 1-32.
- [N] Y. Nakanishi: Enumeration の 話題 から、本講究録.
- [0] P. Orlik: Seifert Manifolds, Springer lecture notes in Math.
- [P] R. L. Parris: Pretzel knots, Ph. D. thesis, Princeton, 1978.
- [R] D. Rolfsen: Knots and Links, Publish or Perish Inc.,
 Berkeley, 1976.
- [S] H. Seifert: Topologie dreidimensionaler gefaserter Räume,
 Acta Math. 60 (1933), 147-238.
- [T] W. Thurston: Lectures in Conference on Smith Conjecture,
 Columbia Univ. (1979).