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LORENZ PLOTS AND CHAOS

Shigehiro USHIKI
Department of Mathematics
Kyoto University

1. INTRODUCTION

Let X be a smooth vecfor field on R%. Let s(t) =
(sl(t),sz(t),...,sn(t)) be a solution curve for X. Assume
that the solution s(t) 4is positively confined in some compact
domain D, i.e. s(t) € D for any t 2 0. We pose the follow-
ing problem, which may not be very clearly formulated from
the mathematical viewpoint but is significant for applications
of dynamical systems theory to various disciplines (for example
see [11).

We suppose that the only data concerning the system X is
one of the components, say sl(t), of a solution s(t). The
problem is to guess the system X and find what we can conclude
from the data available. O0Of course, it is impossible to deter-
mine the system completely. However, we often encounter the
situation where the available data of the unknown system is
limited and none the less we must guess somehow the dynamics of
the system to predict the behavior of the system in the future.

Suppose that the data sl(t) appears to be irregularly
oscilating as in fig.l. What system of ordinary differential

equations can produce such a solution? Is the solution s(t)
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fig.1.

periodic, quasi-periodic or irregular? Can it be produce by a
deterministic system? 1In this paper we shall give an approach

to this problem.

2. DIFFERENTIABLE MAPS OF A CIRCLE INTO ITSELF

" Let £ : Sle%-sll be a differentiable mapping of a circle

. b
into itself. Let g = S;—e I be a\differentié@amap of the

circle onto a closed interval I. Let C denote the set of
critical points ;f f and D denote the set of critical points
if g ,i.e. .

0}

0}

We assume £ and g to be generic in the following sense : .

c={xest | af

D

it
Il

»{ xle-Sl ‘ dgx,

all the singular points of f and g are non-degenerate; C

and D .are finite sets; .C nD =4g ; f—l(D),\FC = ¢ . Define

a mapping F :lSl~» I xI by F(x) = (g(x),9(f(x))).

PROPOSITION If £ and g are generic in the sense stated

above, mapping F is an immersion. .

Let us examine several examples.
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EXAMPLE 1 (quasi-periodic rotation)

Let Sl be the circle Sl = R/Z. Define g : Sl—é I=[{-1,

11 by g(x)=cos(2Tx). Let a be an irrational real number.

Define f : Sl—a S1 by f(x)=x+a (mod l). In this case, £

has no critical point, i.e. C=g. The projection g has two
non-degenerate critical points at 0 and 1/2, i.e. D = fO,l/z}.

Mappings f and g are generic in our sense. The image of

immersion F 1is an ellipse. For a point x e Sl, the sequence

{ fn(x)} is called the orbit of x. The image F(fn(x)) is

given by (fn(;), fn+l(x)). In our case, mapping F is an

embedding. So, the dynamics of dynamical system £ : Sl—é Sl

is determined completely from the dynamics observed on the
ellipse F(Sl) in I x I. Let f denote the mapping of F(Sl)

into itself defined by f(g(x),g(y)) = (g(f(x)),g(f(y))); For

n+l

each qn=(g(fn(X));g(f (x))) in F(Sl), we have f(qn)’ =

Q41 An example of F(Sl) (for a an irrational real number

near 0.2 ) is givén'in fig.?.'

12

fig.2.

Note that the até P,P,P is mapped onto the arc ’E‘;\F and

3747 1 471" 2
the arc ff}?}?  onto ?rE:E;.

17273 27374
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EXAMPLE 2 (mapping of degree zero)

Let £ : Sl——>sl ' be the continuous map defined as follows.

et p : Rl—%-Sl be the universal covering map defined by
Sl. Let £ : Rl~» Rl be a periodic

I

p(x) = x (mod 1)& RY/z =

map of period 1 as in fig.3.
y
4

e

eI 6 NN
f/b\/i\ g

fig.3.

Let g(x) = cos(2Tx) for xé:Rl/Z. We have C.= fcl,c2} ’
D = {dl,dz} as in fig.4. Mapping F is defined similarly as

in example 1.

(a)
.E '§(d.)’ %(d\

I

N
0\1
R
y §(d.) I g(d.)
I

fig.4.

EXAMPLE 3 (orientation reversing case)
Let £ : Sl——asl be an orientation reversing diffeomorphism
with two fixed points p;/p, one of which is asymptotically

stable and the other unstable. In this case the embedded image
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F(Sl) is similar to that in example 1, but the dynamics on

F(s’) is different. ' P
1

1)

e
$la

I

EXAMPLE 4 (quasi-periodic with 8-shaped image)

Let g : Sl~+ I be as in example 1. Let £ : Sl~# Sl ‘be

an orientation preserving diffeomorphism constructed as follows.

Let h : Rl--'fRl be a differentiable mapping of period 1

A
satisfying : - 2 !
| dh | |
b &l <
2) 0 <h(0)< 5, | fig.5.
1 4,1
3) 3 <h(z < 1.
~ 1 1 ~ _ .
Let £ : R"— R~ by f(x) = x + h(x).
The map £ : gt R defines a map - d 1 T
1 1 . 1 _ .1 . . 1
f : §S—S via 8 = R7/Z. In this case the embedding F : S

— I x I is 8-shaped.

+

fig.6.
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3. POINCARE TRANSFORMATION

Let us consider a system of ordinary differential equations

n
on R ,

dx

' . n

which has an attractor containing a recurrent orbit. For example,

the system of ordinary differential equations studied in Lorenz

[21 -

%% = -0Fx + Y .,
(1) %% = —XZ +rx - Y s
%% = Xy - bz ,

with parameters @ = 10.0, b = 3 and r = 28. System (1)

has recurrent orbits and an attractor as in fig.7.

2

’.‘2"10x+1o.,
Y= 28 - y ~x=
z = "'-g-Z‘t-XJ

-
.....

X

fig.7. (reproduced from [6])

The structure of the attractors of this type, slightly idealized
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geometrically, is studied in Guckenheimer [3]. 1In his investi-
gations, he employed the method of Poincaré transformation.
Take a portion of hypersurface H transversal to the orbits

of the attractor (see fig.8.).

™

;<=-10x+1o.y
y= 28x - y —x=
3 = —§-2+xj

fig.8.

For a éoint x in H, let s{(x) be the first intersection
point of the orbit starting x with the hypersurface H (if
it exists). In cur case, mapping s can be defined cn some
neighbourhood of the attractor except at the points where the
orbit tends asymptotically to the singular point at the origin.,
Mapping s is called generalized Poincéré transformation. If
we have enough information-ébout‘ s, we can derive information
about the dynamics on the attractor.

Another example of POincaré>transformation is studied in
R8ssler [4]. One of the systems of ordinary differéntial

equations studied by R8ssler is given by :



:—y—z,

(2) = X + ay ,

o8 A2 A

bx - cz + xz ,

with parameters a = 0.36, b = 0.4 and c = 4.5, System (2)
has a Mdbius;bandflike attractor (see fig.9.). He calls the

attractor of this'tYpe a walking-stick attractor.

fig.9.
Take a portion of hypersurface H as depidted in fig.10.

~

fig.1o0.
Define the Poincaré transformation s : H—>H as with the system
of Lorenz. We can find a rectangular domain in H which is

mapped by s into itself. The image is of the form of a
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walking-stick (fig.1ll). Some iterated composition of s has

horse-shoe type nonwandering sets.

4, PAPER-SHEET MODELS

Williams [5] studied Lorenz attractors and proposed 'paper-
sheet models'. He approximates the dynamics on Lorenz attrac-
tors by semiflows on branched manifolds. See [5] for details

of the construction.

fig.12. paper sheet model for Lorenz attractor

The branched manifold with a semiflow is called a paper model.
In the following , we shall consider only systems of dimension
three with the obtained branched manifold of dimension two.

If the attractor is sufficiently attracting in the normal
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direction, the attractor will be‘quite thin and will be well
approximated by the paper-shéét hddél.’

In the study of non-hyperbolic attractors, R8ssler [7]
employed paper-sheet models for his system of ordinary differen-
tial eqﬁations with “chaos". In thesé cases, the attractor
seems to be cdntained in a thin sheet locally. In those cases
where paper-sheet model approximates the dynamics on the
attractof suffidiéntly well, the Poincaré transformations will
be approximated by a mapping of an one-dimensional manifold
into itself. For example, the Poincaré transformation for
R8ssler's walking-stick attractor can be approximéted by a
mappinévbf ah interﬁalrinto itself, which‘may pfoduce #chaos“

(see (8] [91).

5. LORENZ PLOTS

Now consider a system of ordinary differential equations

of the form :

I = Xl(x), X = (Xl'XZ""'Xn) & R™.

suppose  P(t) = ( ya(t), Polt)reen, y?(t)) be a bounded
solution for the system: Let Py be the k-th local maximum
value after t=0 and tk‘bbé”thé'Valﬁé 6f t at that point (see
fig.13). Plot the points f(pk,pk+l)wnin R?, Lorenz obtained
a graph similar to the graph of "baker's transformation". We

call this plot a Lorenz plot. - The Lorenz plot will give infor-

mation about the dynamics on the attractor.

10
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fig.14. Lorenz plofifor Lorenz attractor and the graph
of Baker's transformation

Let S = {x € rR"? l kl(x)=0 } 3

n . .
st = { Xx €8 :Z: xt (x) 2 Xl(x)‘> 0 } and
. iz Xy 7 o
n . d i
s” = { x € s/ xtx) x5 <oy
i=2

For generic systems X, the sets S, s', ¢ are regular sub-

manifoldéQ"Suppre:that some portion G of st is transver-
sal to the orbits of X and that the Poincaré transformation

mépJ-35'can be defined on” ¥ . Let’ pri‘f‘Rn—e~Rl*'be“fhe

projection to the first coordinate. We have the following -

diagram : a- HL , o~'
ler e
Rl Rl
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If the system - X has an attractor which can be approxi-
mated by a paper model and that the hypersurface is trans-
versal to the attractor, we have the situation similar to that
studied in section 2.

EXAMPLE 5 (Lorenz plot for R8ssler's walking stick attractor)

Let v be a unit vector in R3 at the origin. Let pr,

: R3‘—>R; denote the projection defined by inner product

prv(x) = <v,x> . If we choose v well, we have the Lorenz map
via the projection prv( %Wt)) for a solution ykt) of Rbssler's
walking-stick attractor (see section 3), i.e. Lorenz plot can

be approximated by a graph of a continuous map of an interval

to itself. We have Lorehz plots with various choice of v.

fig.15.
In the case of screw attractors or more complicated attractors
in [4], Lorenz plots cannot be approximated by a graph of
continuous mapping of an interval any more.

We can try another plot by taking the period tk—tk_l in
the place of p(n). In fact any function on the hypersurface
may be taken as a candidate for Lorenz plot. Y.Oono indicated
the author that Lorenz plots of Lorenz attractors cannot always

be approximated by a graph of univalent mapping if the projec-

12



151
tion map is modified from the projection =z : R3v—?R, taken
in [2], or the parameter in Lorenz equation is modified. They

produce duplicated "baker's transformation” (see fig.16).

fig.16. (reproduced from [10])

The dynamics on the attractor with such feature of Lorenz plots

can be understood by examining the images of each branch.'

6. APPLICATION TO DATA ANALYSIS

Let Sl be an immersed circle in the x-y-plane as depic-

ted in fig.l1l7 and g be the projection to the x-axis.

N

7 1 &

fig.17
Let £ : Sl-—>sl be a 'rotation' on Sl, i.e. an orientation
preserving diffeomorphism without fixed points. The immersed

circle constructed as in section 2 may be an immersion of

13
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degree two as in fig.18.

fig.18.

The author [l] studied the average sunspot numbers using the
method mentioned above. Suppose that the annual average éunspot
number is a function of time, which is one of the coordinates
representing the state of the activity of the sun. We suppose
that the activity of the sun is regulated by a system of ordinary
differential equations. Take Lorenz plots of the average sunspot
number function. The data available is not sufficient to deter-
mine the structure and the dynamics of the éttractor. But we
find surprisingly conspicuous features in the plots. Some of
them present the "rotating M8bius band" type dynamics (as fig.18).

Some plots remind us of the plots for R8ssler's walking-stick

attractors. o| rig.1a 2 Fig.le

3 &
7

fig.19. k] a

+

= &

some plots <

from [1].
o <
S 1 g 1
< 40.0 M(n) 200.0 40.0 M(2n+l) 200.0

14



153

REFERENCES

{1] S.Ushiki : The modulation of sunspot numbers, (to appear).

[2] E.N.Lorenz : Deterministic nonperiodic flows, Journal of
the Atmospheric Sciences, vol.20, ppl30-141,1963.

[3] J.Guckenheimer : A Strange, Strange Attractor, The Hopf
bifurcation and its applications, ed. J.E.Marsden
and M.McCracken; Applied Mathematical Sciences 19,
Springer, 1976.

[4] O.E.R8ssler : Continuous Chaos -~ four prototype equations,
Annals of New York Academy of Sciences, pp376-391,
1979.

{5] R.F.Williams : The structure of Lorenz attractors,
Turbulence Seminar, Berkeley 1976/77, Lecture
Notes in Mathematics 615, pp94-112, Springer, 1977.

[6] O.Lanford : Computer picture of the Lorenz attractor,
Turbulence Seminar, Berkeley 1976/77, Lecture
Notes in Mathematics 615, ppll3-116,Springer,1977.

[7] O.E.R8ssler : Different Types of Chaos in Two Simple
Differential Equations, Z.Naturforsch 31la, p§1664-
1670, 1976.

[8] T.Y.Li and J.A.Yorke : Period three implies chaos, Amer.
Math. Monthly, 82, pp985-992, 1975.

[9] R.M.May : Simple mathematical models with very complicated
dynamics, Nature vol.261, 1976.

[10] Y.Oono,T.Kohda and H.Yamazaki ; Disorder Parameter for Chaos (preprint).

15



