G.A.G.A. affine by polynomial growth

by

Hakuki Yamaguchi

§0. Introduction

P.Deligne and G.Maltsiniotis studied G.A.G.A. on a non-singular separated scheme of finite type over \mathbb{C} . Their method is dependent on L^2 estimates for the $\overline{\partial}$ operator by Hörmander. On the other hand, using the Čech theory and Cousin integrals, N.Sasakura studied a polynomial growth cochain complex for a p.g. coherent sheaf. We shall define a polynomial growth cochain complex for a locally free sheaf(i.e.a vector bundle) by his techniques in [2] and give G.A.G.A. similar to the one due to [1]. This is a generalization of the theorem (3.4) in [2].

The contents of the various sections are as follows. In § 1 we summarise some results in [2], which we shall use in the last section. In § 2 we shall define a polynomial growth cochain complex for locally free sheaf over a smooth affine variety over C. In § 3 we shall give G.A.G.A.(Th.(3.0)) for a vector bundle over a smooth affine variety.

The idea of this paper is much in debt to Professor N.Sasakura.

Professor T.Kori has encouriged me in my studies. I wish to thank them.

§1. Preliminaries

Let X be a smooth affine variety over C. Unless we say otherwise, we regard X as the analytic variety (with the underlying analytic structure). Moreover, \mathcal{O}_X = the structure sheaf of the analytic variety. Let $X \subset \hat{L}$ C^N be an embedding of X and g = |z| + 1 a growth function increasing at infinity, where z is the coordinate of C^N .

Definition(1.0)

By a polynomial growth (or simply p.g.) covering of X of size $\mathcal{T} = (\mathcal{T}_1, \mathcal{T}_2)(\mathcal{T}_1 \geq 1, \mathcal{T}_2 \geq 1) \text{ with respect to g, we mean the collection as follows:}$ $\widehat{\mathcal{A}}_{\mathcal{T}}(X;g)(\text{or simply,=} \widehat{\mathcal{A}}_{\mathcal{T}}(X)) = \left\{ \widetilde{U}_{\mathcal{T}}(Q;g) = X \cap U_{\mathcal{T}}(Q;g); \ Q \in X \right\}, \text{ where } U_{\mathcal{T}}(Q;g) \text{ is the disc,whose center is Q and radius is } \frac{1}{|\mathcal{T}_1|} g(Q)^{-|\mathcal{T}_2|}.$

Definition(1.1)

By a p.g. cochain compex of \mathcal{O}_X^k for $\widehat{\mathcal{A}}_{\mathbb{J}}(X)$, we mean the subgroup of the cochain compex $C^*(\widehat{\mathcal{A}}_{\mathbb{J}}(X),\mathcal{O}_X^k)$ as follows: $C^*(\widehat{\mathcal{A}}_{\mathbb{J}}(X),\mathcal{O}_X^k;g)_{p,g} = \{\emptyset \in C^*(\widehat{\mathcal{A}}_{\mathbb{J}}(X),\mathcal{O}_X^k); \exists \varnothing, \ \beta \geq 1, |\emptyset| \leq (|z|+1)^{\beta}, \text{ where } |\emptyset| \text{ runs through all the components of } \emptyset\}$, where \mathcal{O}_X^k is a direct sum of \mathcal{O}_X^k .

Theorem (1.2)

Let X be as above. Then $H^q(\underline{\lim}\ C^*(\hat{A}_0(X),\mathcal{O}_X^k)_{p,g})=0$ for $q\geq 1$ $H^0(\underline{\lim}\ C^*(\hat{A}_0(X),\mathcal{O}_X^k)_{p,g})=\lceil (X_{alg},\mathcal{O}_X^k)_{alg},$,where \mathcal{O}_X is a sructure sheaf as an algebraic variety.

We shall extend it to a locally free sheaf in the last section.

- 2. Polynomial growth cochain complexes for locally free sheaves.
- (i) Let X, \mathcal{O}_{X} and g be the same as those in §1.

Proposition(2.1)

Let $X \subset \tilde{z}' \subset C^{N'}$ be another embedding of X and g = |z'| + 1 a growth function, Where z' is the coordinate of $C^{N'}$. Then

$$\varinjlim \, \operatorname{C}^{\star}(\hat{\mathcal{A}}_{\sigma}(\mathtt{X}),\,\mathcal{O}_{\mathtt{X}}^{\,\,k};\mathtt{g})_{\mathtt{p.g}} = \varinjlim \, \operatorname{C}^{\star}(\hat{\mathcal{A}}_{\sigma}(\mathtt{X}),\,\mathcal{O}_{\mathtt{X}}^{\,\,k};\mathtt{g}')_{\mathtt{p.g}}.$$

In order to prove this proposition we need the following Lemma.

<u>Lemma(2.2)</u>

Let H(z) be a polynomial of $z = (z_1, \ldots, z_N)$, then there exist $(z_1) > 0$, $(z_2) > 0$, $(z_1) > 0$, $(z_2) > 0$ such that $(z_1) = (z_1) + 1 =$

proof of (2.2)

We may write $H(z) = \sum_{|\mathcal{V}| \le n} a_{\mathcal{V}} z_1^{\mathcal{V}} - \cdots - z_N^{\mathcal{V}}$. Then we have

(a) $|H(z)| \le \sum_{|\mathcal{V}| \le n} a_{\mathcal{V}} z_1^{\mathcal{V}} - \cdots - z_N^{\mathcal{V}}| \le \max_{|\mathcal{V}| \le n} |a_{\mathcal{V}}| \cdot (|z| + 1)^n$.

We derive the inequality of the right hand side in (*) from (a).

On the other hand we divide the numerator and the denominator of the following function by $\left|z\right|^n$,

(b)
$$\frac{(|z|+1)^n}{\left|\sum_{|\mathcal{V}|\leq n} a_{\mathcal{V}} z_1^{\mathcal{V}_{1}} - z_N^{\mathcal{V}_{N}}\right| + 1}$$

And $|z| \longrightarrow \infty$, then (b) has a non-zero limit, so that there exist r > 0 and M > 0 such that

(c)
$$(|z|+1)^n \le M'(|H(z)|+1)$$
 for $|z|>r$.

Now we have

(d)
$$(|z| + 1)^n \le (r + 1)^n$$
 for $|z| \le r$.

Then we get the following inequality by (c) and (d):

(e)
$$\frac{1}{M}(|z|+1)^n \le |H(z)|+1$$
, where $M = Max((r+1)^n, M)$.

Q.E.D

proof of (2.1)

By the assumption of the embeding of X there exist polynomials $f_{i}(z)\in \textbf{C}\ \textbf{L}z_{1},\cdots,z_{N}\textbf{I} \quad (i=1\cdots\cdots N\) \text{ such that}$

(a)
$$z'_{i} = f_{i}(z)$$
 (i = 1 · · · · · N').

From (a) and Lemma(2.2) we have

(b)
$$\alpha_1 (|z| + 1)^{\alpha_2} \leq |z'| + 1 \leq \beta_1 (|z| + 1)^{\beta_2}$$
 on X.

We take an element $\varphi \in C^*(\hat{A}_{\sigma}(X), \mathcal{O}_X^k; g)_{p,g}$. By the definition of $C^*(\hat{A}_{\sigma}(X), \mathcal{O}_X^k; g)_{p,g}$ and (b) we get

(c)
$$|\psi| = \sqrt{(|z'| + 1)^2}$$

(c) shows that
$$\mathcal{G}$$
 is contained in $C^*(\hat{\mathcal{A}}_X(X), \mathcal{O}_X^{k}; g')_{p.g}$.

Prop.(2.1) shows that p.g cochain complex is independent of any embedding of X.

Let E be an algebraic vector bundle over X and $X = \bigcup_{i \in I} X_{f_i}$ (= $\bigcup_{i \in I} X_i$ simply) an affine open covering, where E is trivial over each X_i and f_i (i \in I) is a polynomial. Taking a subset J of I, X_j denotes $X_{f_1} \cap \bigcap_{i \in I} X_{f_i} \cap \bigcap$

, where π ; $C^N \times C^S \longrightarrow C^N$ is a projection and (w) is the coordinate of C^S . Since X_J and \widetilde{X}_J are isomorphic each other in (*),

 $g_J = 1 + |z| + \frac{1}{|f_1(z)|} + \cdots + \frac{1}{|f_s(z)|}$ is a growth function on $\mathbf{X}_{\mathbf{J}}.$ E is trivial over $\mathbf{X}_{\mathbf{J}}$ and we can regard E as an analytic vector bundle, so

$$(**) \qquad \mathbb{E} \mid X_{J} \cong \mathcal{O}_{X}^{k} \mid X_{J}.$$

From (**) we can define the p.g. cochain complex $C^*(\hat{A}_{\sigma}(X_J;g_J),E)_{p.g}$. This p.g. cochain complex is independent of the way of taking any isomorphism in (**) and uniquely determined by Prop. (2.1).

Proposition(2.3)

Let K be a subset of J, then $\mathbf{X}_{\mathbf{J}} \subset \mathbf{X}_{\mathbf{K}}$ and there is a restriction map:

$$\operatorname{res}_{KJ}; \operatorname{C}^*(\widehat{\mathcal{A}}_{\sigma}(X_J; g_J), \operatorname{E})_{p.g} \longrightarrow \operatorname{C}^*(\widehat{\mathcal{A}}_{\sigma}(X_K; g_K), \operatorname{E})_{p.g}.$$

proof

Because
$$\begin{cases} g_{K}(z) = 1 + |z| + \frac{1}{|f_{1}(z)|} + \cdots + \frac{1}{|f_{S}(z)|} \\ g_{J}(z) = 1 + |z| + \frac{1}{|f_{1}(z)|} + \cdots + \frac{1}{|f_{S}(z)|} + \frac{1}{|f_{t}(z)|} \end{cases} + \frac{1}{|f_{t}(z)|},$$

we have $g_{\chi}(Q) \leq g_{J}(Q)$ for $\forall Q \in X_{J}$. This means that

(a) $U_{\sigma}(Q;g_{J}) \supset U_{\sigma}(Q;g_{K})$, where $U_{\sigma}(Q;g_{J})$ is the disc, whose center is Q and radius is $\frac{1}{\sigma_1}g_J^{-\sigma_2}$. We have the following refining map by (a):

(b)
$$r : \widehat{\mathcal{A}}_{\sigma}(x_K; g_K) \xrightarrow{\sigma_{\sigma}(x_J; g_J)} \widehat{\mathcal{A}}_{\sigma}(x_J; g_J)$$

$$\widetilde{\mathbb{U}}_{\sigma}(\mathbb{Q}; \mathbf{g}_{K}) = \mathbb{U}_{\sigma}(\mathbb{Q}; \mathbf{g}_{K}) \wedge \mathbb{X}_{K} \longmapsto \widetilde{\mathbb{U}}_{\tau}(\mathbb{Q}; \mathbf{g}_{J}) = \mathbb{U}_{\sigma}(\mathbb{Q}; \mathbf{g}_{J}) \wedge \mathbb{X}_{J}.$$

(b) induces the following restriction map:

$$\operatorname{res}_{KJ}; \operatorname{C}^*(\widehat{\mathcal{A}}_{\sigma}(X_J; g_J), \operatorname{E})_{p,g} \longrightarrow \operatorname{C}^*(\widehat{\mathcal{A}}_{\sigma}(X_K; g_K), \operatorname{E})_{p,g}.$$

$$Q.E.D.$$

(ii) Let X,E and $\mathbf{g}_{\mathbf{J}}$ be as above. We make a double complex

in the following manner:

$$\underset{\text{O,p.g}}{\text{Kpq}} \stackrel{\text{def}}{=} \underbrace{ \underset{\text{IJ}=q+1}{\overset{\text{alt.}}{\leftarrow}} c^p(\widehat{\mathcal{A}}_{\sigma}(x_J;g_J),E)_{p.g.} }_{\text{Differentials } \S_1 \text{ and } \S_2 \text{ can be defined as follows:}$$

$$\xi_{2}; \kappa_{\sigma,p,g}^{\sigma,p,g} \longrightarrow \kappa_{\sigma,p,g}^{pq+1}$$

$$\psi \longrightarrow \xi_{2}$$

, where
$$(8_2)_{i_0 \cdots i_{q+1}} = \sum_{k=0}^{q+1^2} (-1)^k \operatorname{res}_{(i_0 \cdots i_{q+1})(i_0 \cdots i_{k} \cdots i_{q+1})} (9_{i_0 \cdots i_k \cdots i_{q+1}})$$

and $res(i_0 - i_{q+1})(i_0 - i_k - i_{q+1})$ is the restriction map in Prop.(2.3). On the other hand we have the following refining map:

(a)
$$r_i$$
; $\hat{A}_{\sigma}(X_i; g_i)$ \longrightarrow $A_{\sigma}(X; g)$ \longrightarrow $X_{\Lambda} \cup_{\sigma}(Q; g_i)$ \longrightarrow $X_{\Lambda} \cup_{\sigma}(Q; g)$,

$$X_i \cap U_{\sigma}(Q;g_i) \longrightarrow X \cap U_{\sigma}(Q;g)$$

where $g_{i} = 1 + |z| + \frac{1}{|f_{i}(z)|}$ and g = 1 + |z|. From (a) we have the following diagram:

$$c^{p}(\widehat{\mathcal{H}}_{\sigma}(X;g),E) \xrightarrow{\Gamma = \bigoplus \Gamma_{i}} \bigoplus_{i} c^{p}(\widehat{\mathcal{H}}_{\sigma}(X_{i};g_{i}),E)$$

$$\underset{i_0i_1}{\overset{\text{alt.}}{\longleftrightarrow}} c^p(\hat{A}_{\mathfrak{r}}(x_{i_0i_1};g_{i_0i_1}),E)$$

, where $C^p(\widehat{A}_{\sigma}(X;g),E)$, $C^p(\widehat{A}_{\sigma}(X_i;g),E)$ and $C^p(\widehat{A}_{\sigma}(X_{i_0i_1};g_{i_0i_1}),E)$ are the usual cochain complexes and

$$g_{i_0i_1} = 1 + |z| + \frac{1}{|f_{i_0}(z)|} + \frac{1}{|f_{i_1}(z)|}$$

Proposition (2.3)

We take the inductive limit of the above diagram: $\lim_{\sigma \to \infty} C^p(\widehat{\mathcal{A}}_{\sigma}(X), E) \xrightarrow{\Gamma = \bigoplus \Upsilon_{\widehat{\iota}}} \bigoplus_{i \to \infty} C^p(\widehat{\mathcal{A}}_{\sigma}(X_i), E)$

$$\delta_{z}$$

$$\Rightarrow \lim_{i \neq i} C^{p}(\hat{\mathcal{F}}_{\sigma}(X_{i_{0}i_{1}}), E)$$

Then $\operatorname{Ker} \delta_2 = \operatorname{Im} r$.

proof

 $\operatorname{Ker} \hat{\delta}_2 > \operatorname{Im} r$ is trivial.

First we show that $\operatorname{Ker} \delta_2 \subset \operatorname{Im} r$ in case p=0. We take an element $\mathscr{G} = (\mathscr{G}_1) \in \bigoplus_i \operatorname{C}^0(\widehat{\mathcal{H}}_\sigma(X_1), \operatorname{E})$. If we can take $\mathscr{G} \geq \sigma$ ($\mathscr{G}_1' \geq \sigma_1$, $\mathscr{G}_2' \geq \sigma_2$) which is independent of $Q \in X$ such that exists $i = i_Q \in I$ for $Q \in X$ and (a) $\widetilde{U}_{\sigma'}(Q;g) \subset \widetilde{U}_{\sigma}(Q;g_1)$, we may take $\widetilde{Y} = \{ \widecheck{Y}_Q \}_Q \in \operatorname{C}^0(\widehat{\mathcal{H}}_\sigma(X), \operatorname{E})$ such that $\widehat{Y}_Q = \mathscr{G}_1 \setminus \widetilde{U}_{\sigma'}(Q;g)$. On the other hand for another correspondence $j = j_Q$ as above we can define \widecheck{Y}_Q' as $\widehat{\mathcal{H}}_Q \setminus \widetilde{U}_{\sigma'}(Q;g_1)$, then there exists $i \in I$ such that $\widehat{\mathcal{H}}_1 = \widehat{\mathcal{H}}_1$ on $\widehat{U}_{\sigma}(X_{1j};g_{1j})$ which is a cocycle condition (i.e. $\delta_2 = 0$). This means that $\widehat{\mathcal{H}}_2 = \widehat{\mathcal{H}}_2$. Therefore the $\widehat{\mathcal{H}}_2 \setminus Q \in \operatorname{C}^0(\widehat{\mathcal{H}}_\sigma(X), \operatorname{E})$ is independent of the above correspondence, $X \ni Q \longrightarrow i_Q \in I$. Then we shall define the following manner: $X \ni Q \longrightarrow i_Q \in I$,

where this i_Q is i such that $g_i(Q) = \min_{j \in I} \{g_j(Q)\}$. Since I is finite, we can choose it. The existence of $\sigma \geq \sigma$ which is independent of $Q \in X$ is derived from the following figure:

, where $N_{i}^{\sigma} = \bigcup_{\substack{Q \in \{f_i = 0\}\\ 1 \in I}} U_{i}(Q;g)$ and g = 1 + |z|. When we choose sufficiently large σ , $X = \bigcup_{i \in I} X_{i}^{r}$. We can prove $\text{Ker } S_{2} \subset \text{Im } r$ for the p-th cochain complex $C^{p}(\mathcal{A}_{\sigma}(X),E)$ in the same manner.

Q.E.D.

Now we can define a p.g. cochain complex $C^*(X,E)_{p,g}$ for X.

Definition(2.4)

Remark(2.5)

As r is injective, Im r is uniquely defined. (i.e. $C^p(X,E)_{p,g}$ is independent of an affine open covering $X = \bigcup_{i \in I} X_i$.)

Proposition (2.6)

 $C^*(X,E)_{p.g}$ is a complex in the usual manner.

This is trivial by the definition.

§3. The comparison and vanishing theorem

Let X and E be as above and $C^*(X,E)_{p,g}$ the one in the def.(2.4).

Theorem (3.0)

$$H^{q}(C^{*}(X,E)_{p,g}) = 0$$
 for $q \ge 1$,
 $H^{0}(C^{*}(X,E)_{p,g}) \cong \int (X_{alg.},E_{alg.})$.

When we regard E as an algebraic vector bundle, we write $E_{alg.}$.

In order to prove the Th. (3.0) we think the following diagram;

, where $\mathcal{N}=\{X_i\}_{i\in I}$ is an affine open covering and $K_{p,g}^{pq}=\varinjlim_{\sigma,p,g} K_{\sigma,p,g}^{pq}.$

By the simple observation we have the following:

(a)
$$K_{p \cdot g}^{Oq} = \lim_{\sigma \to i} \bigoplus_{j_0 \cdots j_q}^{\text{alt.}} C^{O}(\widehat{A}_{\sigma}(X_{j_0 \cdots j_q}), E)_{p \cdot g} \longrightarrow \bigoplus_{j_0 \cdots j_q}^{\text{alt.}} C^{O}(X_{j_0 \cdots j_q}, E)_{p \cdot g}$$

(b)
$$\lim_{\substack{i \text{ o } i_q}}^{\text{alt.}} (X_{i_0 \text{ o } i_q}, E)_{p \cdot g} = \lim_{\substack{i \text{ o } i_q}}^{\text{alt.}} (X_{i_0 \text{ o } i_q}, E_{\text{alg.}})$$

$$= C^q(\mathcal{N}, E_{alg.})$$
.

We derive the first equality in (b) from the Sasakura's th.(1.2) and the second equality in (b) from the Serre's vanishing theorem of affine varieties. Therefore i₁ is injective from (a) and (b). Also i₂ is injective by Prop.(2.3). On the other hand

$$H^{p}(K_{p,g}^{*q}) = \bigoplus_{i_{0} = 0}^{\text{alt.}} \lim_{i_{q} = 0} H^{p}(C^{*}(\widehat{\mathcal{A}}_{\sigma}(X_{i_{0} - i_{q}}), E)_{p,g} = 0 \quad \text{for} \quad p \geq 1.$$

by the Sasakura's vanishing theorem(1.2). This means that (1) in the following proposition is true.

Proposition (3.1)

The complexes,

$$(1) \ \mathsf{K}_{\mathsf{p},\mathsf{g}}^{\mathsf{0q}} \longrightarrow \mathsf{K}_{\mathsf{p},\mathsf{g}}^{\mathsf{1q}} \longrightarrow \cdots \longrightarrow \mathsf{K}_{\mathsf{p},\mathsf{g}}^{\mathsf{pq}} \longrightarrow \cdots \qquad \text{for } \mathsf{q} \supseteq \mathsf{0}$$

(2)
$$K_{p,g}^{p0} \longrightarrow K_{p,g}^{p1} \longrightarrow K_{p,g}^{pq} \longrightarrow \cdots$$
 for $p \ge 0$, are exact.

We must prove (2).

Lemma(3.2)

Let $\mathcal{N} = \{x_i\}_{i \in I}$ be as above. Then $H^1(K_{p,g}^{p^*}) = 0$ for $p \ge 0$.

proof of Lemma (3.2)

We shall prove it by the induction on the number of sheets of the covering ${\mathcal N}$.

(i) When #I = 2, $\mathcal{N} = \{X_1, X_2\}$.

We define a neighborhood N_{σ} of $\{f_1=0\}$ in the following manner: $N_{\sigma}=\bigcup_{Q\in V_1-V_{12}}U_{\sigma}(Q;d(Q,V_{12}))$, where $V_1=\{f_1=0\}$ and $V_{12}=\{f_1=0\}\cap\{f_2=0\}$ and $d(Q,V_{12})$ is a distance from Q to V_{12} and $U_{\sigma}(Q;d(Q,V_{12}))$ is the disc whose center is Q and radius $\frac{1}{\sqrt{1}}d(Q,V_{12})^{+\sqrt{12}}$. Then we have the following figure:

We take an element $\varphi_{12} \in C^p(\hat{A}_{\sigma}(X_{12}), E)_{p,g}$, then we give φ_1 and φ_2 in the following:

$$\varphi_{1} \begin{cases}
= - \varphi_{12} & \text{on } N_{\sigma} \\
= 0 & \text{on } X - N_{\sigma}
\end{cases}$$

$$\varphi_{2} \begin{cases}
= 0 & \text{on } N_{\sigma} \\
= \varphi_{12} & \text{on } X - N_{\sigma}
\end{cases}$$

Then we have $\mathcal{G}_{12} = \mathcal{G}_2 - \mathcal{G}_1$. When we take sufficiently large $\sigma'(\geq \sigma)$, $\mathcal{G}_1 \in C^p(\hat{\mathcal{H}}_{\sigma'}(X_i), E)_{p,g}(i=1,2)$ by the Lojasiewicz inequality and the triangle inequality. Therefore $H^1(K_{p,g}^{p*}) = 0$ for $\forall p \geq 0$.

(ii) When #I=3, $\mathcal{N} = \{X_1, X_2, X_3\}$ and we take $\mathcal{Y}_1 \in C^p(\widehat{A}_{\sigma}(X_1), E)_{p,g}$ and $\mathcal{Y}_2 \in C^p(\widehat{A}_{\sigma}(X_2), E)_{p,g}$ such that $\mathcal{G}_{12} = \mathcal{G}_2 - \mathcal{G}_1$. By the cocycle condition, $\mathcal{G}_{23} - \mathcal{G}_{13} + \mathcal{G}_{12} = 0$, we have $(f_{23} + f_{2}) - (f_{13} + f_{1}) = 0$. We define newly as follows: $\widetilde{\varphi}_{23} = \widehat{\varphi}_{23} - \widehat{\varphi}_2$, $\widetilde{\varphi}_{13} = \widehat{\varphi}_{13} - \widehat{\varphi}_1$, $\widetilde{\varphi}_{12} = 0$. Since $(\mathcal{F}_{13}, \mathcal{F}_{23})$ is a cycle for (X_{13}, X_{23}) , we can define \mathcal{F}_3 as follows: $\widetilde{y}_{3} = \widehat{y}_{13}$ on X_{13} $\begin{cases} = \phi_{23} \text{ on } X_{23} \\ = 0 \text{ on } X_3 - (X_{13} \cup X_{23}). \end{cases}$ This cochain $\widetilde{\mathcal{Y}}_3$ is not contained in $C^p(\widehat{\mathcal{A}}_{\sigma}(X_3), E)_{p,g}$. Now we define $\mathcal{G}_3 \in C^p(\hat{A}_\sigma(X_3), E)_{p,g}$ in the following manner: $\varphi_3 = \widetilde{\varphi}_3 \quad \text{on } X_3 - N$ $\begin{cases}
= 0 \quad \text{on } N
\end{cases}$ $\varphi_1 = \widetilde{\varphi}_3 \quad \text{on } N - X_1^c$ $\begin{cases}
= 0 \quad \text{on otherwise}
\end{cases}$ $\mathcal{G}_{2} = \widetilde{\mathcal{G}_{3}}$ on N-X $_{3}^{c}$ = 0 otherwise

, where \textbf{X}_i^c is a complement of \textbf{X}_i . Then $\phi_3 \in \texttt{C}^p(\hat{A}_c(\textbf{X}_3), \texttt{E})_{p,g}$ and $\texttt{H}^1(\textbf{K}_{p,g}^{p*}) = 0$ for $p \geq 0$.

(iii) When #I=n, we can show that $H^1(K_{p,g}^{p*}) = 0$ for $p \ge 0$ in the same manner as (ii).

Q.E.D.

Let $\mathcal{H}^n=\left\{X_1,\ldots,X_n\right\}$ be a covering of X and $K_{p,g}^{p*}(\mathcal{N}^n)$ as $K_{p,g}^{p*}$ for \mathcal{N}^n .

Lemma(3.3)

We assume that $H^1(K_{p,g}^{p*}(\mathcal{N}^n))=0$ for i=q-1, $q(q-1\geq 1)$. Then $H^q(K_{p,g}^{p*}(\mathcal{N}^{n+1}))=0$.

proof

We take an element $\mathcal{V}_{n+1} \in \mathbf{Z}^q(\mathbf{K}_{p,g}^{p*}(\mathcal{N}^{n+1}))$. We restrict \mathcal{V}_{n+1} \mathcal{N}^n and $\mathcal{V}_n \in \mathbf{Z}^q(\mathbf{K}_{p,g}^{p*}(\mathcal{N}^n))$ denotes it. By the assumption of the induction there is $\Psi_n \in \mathbf{K}_{p,g}^{pq-1}(\mathcal{N}^n)$ such that $\delta_2 \Psi_n = \mathcal{V}_n$. Now we define $\Psi_{n+1} \in \mathbf{K}_{p,g}^{pq-1}(\mathcal{N}^{n+1})$ as follows:

$$\begin{cases} \underbrace{\Psi_{n+1}(X_{i_1} \land \cdots \land X_{i_q})}_{q} = \underbrace{\Psi_n(X_{i_1} \land \cdots \land X_{i_q})}_{q} (1 = i_1 < \cdots < i_{q=n}) \\ \underbrace{\Psi_{n+1}(X_{i_1} \land \cdots \land X_{i_q})}_{q} = 0 \qquad \qquad (i_q = n+1). \end{cases}$$
We define an element $\mathcal{Y}_{n+1} \in Z^q(K_{p,g}^{p*}(\mathcal{N}^{n+1}))$ by

$$(*) \ \gamma'_{n+1} = \gamma_{n+1} - \delta_2 \ \overline{\Psi}_{n+1} = 0 \quad \text{on } X_{i_1} \cap \cdots \cap X_{i_{q+1}} (i_{q+1} \leq n) \\ = \gamma_{n+1} (X_{i_1} \cap \cdots \cap X_{i_q} X_{n+1}) (i_q \leq n).$$
 The number of the sheets of the covering $\beta^n = \{X_{i_1} X_{n+1}, i = 1, \dots n\}$

The number of the sheets of the covering $\mathcal{B}^n = \{x_i \cap x_{n+1}, i=1 \ n\}$ is n. From (*) we can regard \mathcal{G}'_{n+1} as an element \mathcal{G}'_n of $Z^{q-1}(K^{p*}_{p,g}(\mathcal{B}^n))$ by using the covering \mathcal{B}^n . By the assumption of the induction there exists $\widetilde{\mathcal{G}}_n \in K^{pq-2}_{p,g}(\mathcal{B}^n)$ such that $\widetilde{\mathcal{G}}_2 \widetilde{\mathcal{G}}_n = \mathcal{G}'_n$. We pull back $\widetilde{\mathcal{G}}_n$ and we have $\widetilde{\mathcal{G}}_{n+1} \in K^{pq-1}_{p,g}(\mathcal{H}^{n+1})$.

Q.E.D.

proof of (2) in the Proposition(3.1)

By $H^2(K_{p,g}^{p*}(\mathcal{N}^2)) = 0$, Lemma(3.2) and Lemma(3.3) we have $H^2(K_{p,g}^{p*}(\mathcal{N}^3)) = 0$. By $H^2(K_{p,g}^{p*}(\mathcal{N}^3)) = 0$, Lemma(3.2) and Lemma(3.3) we have $H^2(K_{p,g}^{p*}(\mathcal{N}^4)) = 0$. By using Lemma(3.2),(3.3) repeatedly we have (2).

Q.E.D.

proof of Th. (3.0)

By using Prop. (3.1) and the commutative diagram (*) we have

- (a) $H^p(C^*(X,E)_{p,g}) \cong H^p(C^*(\mathcal{M},E_{alg.}))$ for $p \geq 0$.
- By the Serre's vanishing theorem we get
- (b) $H^p(C^*(N,E_{alg.})) = 0$ for $p \ge 1$.

Therefore this completes the proof by (a) and (b).

Q.E.D.

References

[1] Deligne.P. and Maltsiniotis.G.; G.A.G.A. Affine, Séminaire de géométrie analytique, société mathématique de france, astérisque 17 (1974),141-160.

[2] Sasakura. N.; Polynomial growth and division properties of coherent sheaves, (to appear). Chamlegy with P. J. and Completion thereof

(to appear in the Lecture Note " Some properties on analytic varieties and stratified spaces " held at May '78 from R.I.M.S.

[4] ; de Rham cohomologies and stratifications, (to appear).

[5] Serre.J.P.; Faisceaux algébrique cohérentes, Ann.Math. 61(1955) 197-278.

Hakuki Yamaguchi
Department of Mathematics
Faculty of Science and
Engineering Waseda University
4-170 Nishi-Ohkubo, Shinjuku
Tokyo, Japan