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G.A.G.A. affine by polynomial growth
by
Hakuki Yamaguchi

§o. Introduction

P.Deligne and G.Maltsiniotis studied G.A.G.A. on a non-singular
separated scheme of finite type over €. Their method is dependent on
L2 estimates for the 9 operator by Hérmander. On the other hand,using
the 6ech theory and Cousin integrals,N.Sasakura studied a polynomial
growth cochain complex for a p.g. coherent sheaf. We shall define a
polynomial growth cochain complex for a locally free sheaf(i.e.a vector
bundle)by his techniques in [2] and give G.A.G.A. similar to the one
due to [1]. This is a generalization of the theorem(3.4) in [2],

Thé contents of the various sections are as follows, In §1 we
summarise some results in [27,which we shall use in the last section.
In §2 we shall define a polynomial growth cochain complex for locally
free sheaf over a smooth affine variety over C. In §3 we shall give
G.A.G.A.(Th.(3.0)) for a vector bundle over a smooth affine variety.

The idea of this paper is much: in debt to Professor N,Sasakura,

. Professor T.Kori has encouriged me in my studies. I wish to thank them.

§1. Preliminaries

Let X be a smooth affine variety over C. Unless we say otherwise,
we regard X as the analytic variety (with the underlying analytic
structure). Moreover, C& = the structure sheaf of the analytic variety.

Let X ©t— ¢Y ve an embedding of X and g = |zl+ 1 a growth function

increasing at infinity, where z is the coordinate of CN.
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Dpflnltionﬁ 0)
By a polynomial growth (or simply p.8. ) covering of X of size
q = {CY1,CY2)((TH Z 1,(Té Z 1) with respect to g, we mean the
c&llection as follows:
f{G(X g)(or simply,= /1?(X)) {Uq(Q sg) = XnUs(Q; g); QEXY, where

Ugs(Q;g) is the disc,whose center is Q and radlus 1s-—g(Q) .

Definition(1.1)
k N
By a p.g. cochain compex of‘C& fOf,&q(X),WE mean the subgroup

of the cochain compex C (RG(X) 69 ) as follows:

o (a0, (42580, A5’ etx), U300, g7 1,11 HXliets 1

,where V?\runs through all the components of ffs

,where (9Xk is a direct sum of C&.

Theorem(1.2)
Let X be as above. Then Hq(lim o} Lﬁ@(x) sz )p g) =0 for g Z 1

#0(1im ¢ (), )5 00 =T Ko, UX )

,where Lg is a sructure sheaf as an algebraic variety.
alg.

We shall extend it to a locally free sheaf in the last sectian.

2. Polynomial growth cochain complexes for locally free sheaves.

(1) Let X, U& and g be the same as those in §1.
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Proposition(2.1) -

b4 /
Let X &“— ¢V pe another embedding of X and g = [z/|+ 1 a growth

/
function,Where z’is the coordinate of CN. Then

lin " (Ra(x), @xk:g)p_g = dim ¢ (Aax), ﬁxk‘gl)pg'

In order to prove this proposition we need the following Lemma.

Lemma(2,2)

Let H(z) be a polynomial of z = (z1------AzN),then there exist
o/1>o,o<2>o, (5130, (32>o such that
(*) o4z + 1)"=<lH(z)‘+ 1£()’i([z\+ 1§32

proof of (2.2)

We may write H(z) =;§:.ayi$—-——— zﬁ“. Then we have
< STu S . n
(a) [H(z)| & u;sjfwz}: Zy \g “szlagx“\ap\ (lzl+ 1),

We derive the inequality of the right hand side in (*) from (a).
On the other hand we divide the numerator and the denominator of

the following function by [z‘n,

(v) (fz]+ 1) ,
oo 2o

And [zl-—4>co,then (b) has a non-zero limit,so that there exist
r>0 and M>0 such that
(c) (2] + 1)n'§ M/(‘H(z)i + 1) for |z|>r.
Now we have
(@) (lzg| + < (r + D for [z <.
Then we get the following inequality by (c) and (d):
(e) -%—(Izl+ 1 )" SIH(z)l+ 1,where M = Max ((r + 1)n;M ).
‘ Q.E.D
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proof of (2.1)
By the assumption of the embeding of X there exist polynomials

fi(z) [V Lzyy s zy] (i =1 - N ) such that
(a) 2{ = 1,(2) (1 =1 N

From (a) and Lemma(2.2) we have
(v) o[‘(]zl + 1 )u;_g [2']+ 1 gg‘(lz|+1)€zon X.
We take an element Qe&o*(ﬁq(x),cyxk;g)p e By the definition of
C*Lﬁy(x), C&F;g)p_g and (b) we get
_ . , 4
(c) 1@t = X (2 + 1)]

(c) shows that ¢ 1is contained in C*(j%(x),fgxk;é)p_g.
Q.E.D.

Prop.(2.1) shows that p.g cochain complex is independent of any

embedding of X,

Let E be an algebraic vector bundle over X and X = X

1&\1 fi

(= i\glxi simply) an affine open covering,where & is trivial over
each X, and f, (1€1) is a polynomial, Taking a subset J of I,

X

g denotes Xf1(\~~(\ Xp = Xpo . £ There is a wellknown diagram:

s 1 s

N - {r ot = 0y —— 5 {1 - £(2)w,=0 - 1 - £ (z)w_=0fccNxcS
, - 1 o 1
(Z')n > (Z)x("fT("z'), ’f?_z—'))
(*) U J
s ¥ 11

, where 7T ; c¥x ¢S ¢V is a projection and (w) is the coordinate of

~ :
¢S, Since X; and X; are isomorphic each other in (*),
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' 1 1 L .
=1 g e -
3 + lz| + |f1(z)| + + ‘fs(z)\ is a growth function on
XJ. E is trivial over XJ and we can regard E as an analytic vector
bundle, so
~ k
(**) E| Xy = C& l Xye
. . * N
From (**) we can define the p.g. cochain complex C QAW(XJ;gJ),E)p g
This p.g. cochain complex is independent of the way of taking any

isomorphism in . (*¥*) and uniquely determined by Prop.(2.1).

Proposition(2.3)

Let X be a subset of J, then XJ (lXK and there is a restriction

map :

* , /N * /~

resyyi C (Us(X5385),B), o~ C (Ae(Xyigg) By -
proof
Because

B . 1
(ag(2) = 1 T EGR T (2
jg(Z)f—"’+IZ\_+’*J—"‘_+a-;.\-,.“-..A, +‘4l;_._.-. + + 1
BT \f1(Z)\ lfs(‘z)x ftZZS ,
we nave gK(Q) < gJ(Q) for ¥qQ ¢ X;. This means that

(a) UU(Q;gJ).) QKQ;gK), where UG(Q;gJ) is the disc, whose center
is Q and radius is %:gjqa. We have the following refining map by (a):
! A .
(v) r ;IQ;(XK;gK) > AcXyigs)
U \V
Us(Qsgr) = Us(Qigg)n X > Ug(Qsg)) = UlQigs) A Xye
(b) induces the following restriction map:
¥* AN ¥ > .
resy i C (AXgigz)sB), o —> © (Aa(Xgigy ), B)y o
Q‘E-D.

J
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(11) Let X,E and gy be as above, We make a double complex

in the following manner:

r. = 0,00
K — Co({AAX s E
’p g — |J‘= q+1 (/LD’( J’gJ)’ )p.g
Differentials §, and §, can be defined asfollows:

Pq & ybt+1q
; K Kg
S1 TyDP-8 i’ ,p g
W

¥ S“(’
where (Sf@. . = 57”( -1) res(?’ By ) and (¥

Jo" " Ipes %
denotes an alternating sum.

Pa S qu+1
g2’ Ks, P-g 4 GsP-&

% ')
¢ § $
+
-1 )kres(i

where (§ =
' 2LS’)io““'iqﬂ &

)(i {; o ) is the restriction map in
q+1 k q+1
Prop (2. 3) On the other hand we have the following refining map:

(a) ri;ﬂg(xi;gi) ;/ﬁo-(x.g)
U W
X, nUs(Qigy) = > XA Us{Q38),

2\
N

t?

I
(@)

q+1

and res(1

where gy = 1 *lzl+ifi(gj\and g=1%)z)y . From (a) we have the

following diagram:
PAse), 5 = RE S @ P Retx g B

S,

S
0110 ( u'(xi i ’gioi ) E)

,where Cp(ﬁo—(X;g),E), CP(Aﬁﬁ'(Xi;gl)’E) and Cp(ji(r(x'ioi1;gioi1),E)

are the usual cochain complexes and

1
Bg, =1 V9 E ) Gt N
1

01

©

Mig- qﬂ)(?u—tg th)
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Proposition(2.3)

We take the inductive limit of the above diagram:

~ - &Y
lin cP(A.(X),E) r=e% , 3lin CP(/%(X ), E)

1

Then Ker 82 = Imr .,

proof
Ker 82 DO Imr is trivial.

First we show that Ker S CImr in case p=0. We take an element

= (ja )é@co(%w(x ),E). If we can take(s-?g—(o‘ >0 0J270v2)
\eve
which is 1ndependenu ol CEX such that,exists i = lQé I forV Q€ X and

(a) To’(Qs8) € GG(Q-g.). we may takeE=%IQlQ€—c (RA%),E) such

that '{ = LS’\ ) U,7(Q;g). On the other hand for another correspondence

j = JQ as above we can define I as I}Q‘ UQ—(Q,g ), then there exists

i € I such that (?i = ij on U(y()(ij ; ij) which is a cocycle condi-

tion (i.e. 823‘7= 0). This means that IE/Q = S‘Q’ Therefore the

{‘fQ\)QQCO(ﬁ{(X),E) is independent of the above correspondence,

X2Q r—> i = iQ € I. Then we shall define the tollowing manner:
X3Q —— i,¢€l,

where this iQ is i such that gi(Q) = r:rjlj;}l g5 (Q)§ . Since I is finite,

we can choose it. The existence of 0 /2 2§ which is independent of

QX is derived from the following figure:
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L)f U(Q;g) and g = 1 +|z|. When we choose sufficiently
Qe{f, =0} N

V) XEN; . We can prove Ker gztlIm r for the p-th

iel A

cochain complex CP(A:(X),E) in the same manner.

, where Ng

largeO, X

.E.D.
Now we can define a p.g. cochain complex C*(X,E)p g for X,
Definition(2.4)
D . b,o
CT(X,E), 4 —a.l_i,zgh(lm T)plg ?
o
where (Im r)g:g C:f§> Cp(Af(Xi;gi)’E)p%g' Since
(Im )@ P(Re(Xy38;),E) and CP(As(X, 58;),B)y , has defined,

I3
we can attach (Im r)p'G'tQAp.g. condition,

Remark(2.5)

As r is injective, Im r is uniquely defined. (i.e. Cp(X,E)p 2

is independent of an affine open tovering X = \g X;.)
iel

Proposition(2.6)

C*(X,E)p gis a complex in the usual manner,

This is trivial by the definition,

¥
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§3. The comparison and. vanishing theorem

*
Let X and E be as above and C (X,E)p g the one in the def.(2.4).

Theorem(3.0)
q ¥*
H((0,2), )
HO(C (X’E)p.g)A x’(xalg.’Ealg.)’

When we regard E as an algebraic vector bundle, we write E

]

0 for q2> 1,

174

alg,”®

In order to prove the Th.(3.0) we think the following diagram;

(=)
0 0
0 M
O > C (/V.( ’Ealg.)"éc (‘/L)Ealg ) '—‘—_‘ﬁ
il :Ll
Y . ¥ v
o 0 ta 00 01
?
—)} C (X,E)p.g Kp.g——-—~———>Kp.g———~———>
8\ 8,
N _ h¢ N
, 1 T2 10 11
0 —>C (X’E)p.g >Kp.g >Kp»g >
; i ,
P S ¥ PO < ¢P1 ~
O"““QC (X’E)p.g' 7 g /Kp.g 7
5, $
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» where U ={Xi§1€I is an affine open covering and

pq
Xp S4in X cr,pg'

By the simple observation we have the following:
1t alt, (
(a) Kp g = dm ® o c®(Ax 'iq)’E)P-géJi?imXio“'i »E)
q

alt., alt,
(b) @ F’(x g 0B = ® T‘(Xio )

i ,E
O '“alg,
q q 0 Q q° alg

B’Cq(lq{Ealg.> .
We derive the first equality in (b) from the Sasakura’s th.(1.2)

and the second equality in (b) from the Serre’s vanishing theorem

of affine varieties.Therefore i, is injective from (a) and (b).

Also i, is injective by Prop.(2.3). On the other hand
% alt, x A
HP(x %) = 1im HP(C X . ),E = 0 for 1
(K, ) 1(3 313 (C" (Al io"'lq)' )p.g P2
q

by the Sasakura’s vanishing theorem(1.2). This means that (1) in

the following proposition is true,

Proposition(3.1)

The complexes,

(1)Koq——>K1q —_ .. - — Py .. for qZO
b.g P8
pO Pl ... - . gPe . for p >0,
(2) Koog~ Xp.g > P~

are exact

We must prove (2).

Lemma(3,2)

Let Y] = {Xi} €T be as above., Then H’(Kgfg) = 0 for p>_0.
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proof of Lemma(3, 2)

We shall prove it.by the induction on the number of sheets: of
the covering W .
(1) When #I = 2, v1={x1,x2}._
We define a neighborhood N5 of {f1=0§ in‘the following manner:

Ne = U Ue(Q;a(Q,V,,)), where v, = {£,=0} ana v, ={ £ =0}n{f,=0}
AWV =Vy2 -

and d(Q,V12) is a distance from Q to V,, and UU_(Q;d(Q,Vm)) is the

)yt

disc whose center is Q and radius %zd(Q,V“2 . Then we have
\

the following figure: Ne

f1=0
We take an element (€12€Cp(ﬁ¢(x12),E)p.g, then we give
6?1 and ?’2 in the following:
‘?1{= ~lip om Ne

= 0 on X-Ng
(fz-: 0 on Ngo-
'*%: P45 on X-Ng, _
Then we have 5012 = 502- ¢, . When we take sufficiently 1arge05(30'),
(-Fié Cp(ﬁu'(xi)'E)p.g(i:"’m by the Lojasiewicz inequality and the
triangle inequality., Therefore H1(K§Tg) - 0 for ¥p Z 0.

//
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(1) When #I=3, Y =1 x1,x2,x3} and we take
alt. DA
y’" (?129(&3i 5023)6@ C (ﬁW(Xij)’E)p.g.
Applying the assumption of the induction to §X1,X2§, there exist
P(a Peh

P,cc (As(X,),E) , and ‘ﬁzec (Rs(X2),E)p.g such that

9%2 =9§ - ?1 .By the cocycle condition,gg3— q13+ ?12 = 0, we
have (f23+ f’z)—(j?3+ ?1) = 0. We define newly as follows:

~ ~( _ ~ B ~ o~ ~
Y25 =fos= $2 0 P15 =Fi5= Py 0 Fp= 0.
. % . €o=_ © :
Since (?23,}33) is a)gycle for (X13,X23), we can define ?3 as follows:
§sf= Fiz om X5
= Po3 on X5z
This cochiin 93 is not contained in CPLAW(X3),E)p.g. Now we define
p 1 3 .
?3630 (AU(XB)'E)p.g in the following manner:
P =‘f3 on Xz-N
=0 on N
n c
91 =?3 on N-X,
= 0 on otherwise
- o c
%%J:%B on N-X
1: O otherwise -
c . P .
, where X; is a complement of X,. Then (P3 &C (ﬂ‘(XB)’E)p.g and
H1(Kp* ) =0 for p7 O. )

b.g
() When #I=n, we can show that H1(Kg*g) = 0 for p 2 O in the

same manner as (i1).
Q.E.D,
Let 12“ ={x1,..‘,., Xn} be a covering of X and Kg*g(ﬂkn) as

Kg*g for VLn .
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Lemma(3.3)
We assume that ‘Hi(Kg*g(Wn)) =0 for i =g-1, q (g-1 > 1).

Then Hq(xg*g(ﬂ“”)) -0 .

proof
Q.. D* n+1y '
We take an element (Fna-‘l €7 (Kp.g(n ). We restrict Cfn”
M" and (fnézq(l(g*g(ﬁ[n)) denotes it. By the assumption of the
: - +Pq-1 n _
induction there is YnC Kp.g (YU") such that gg"ﬁjn = Son. Now

we define Ynﬂ ékgq; (’Uln”) as follows:

| T Gy om0 Xy ) = Bl aeen®y D01 < Sign)
33n+1(x1{\.m.r\ Xiq) 0 (iq=n+1).
We define an element ?;+1€EZQ(Kng(?In+1)) by
(*) :€;+1 = ?%+1 - SQSEA+1i= 0 on Xi1’“'"1\ XiQ+1(iq+1gn)
= ?n+1(xi1ﬂ' N Xif\xn+1)(i€in)'

The number of the sheets of the covering an ={Xian+1;i=1-«‘n}
7/

is n. From (*) we can regard (? as an element (f% of

n+1
Zq_1(Kg*g(&5n)) by using the covering ®”. By the assumption of the
. . © Pa-2, AN o _ o
induction there exists ()aner.g (™) such that 6'2 Son = ?n . We

~

' pq-1 n+1
pull back ?n and we have 9;+1€;Kp.g (|7 0).
LE.D,

proof of (2) in the Proposition(3.1)
By Hz(Kg*g(TZZ)) = 0, Lemma(3.2) and Lemma(3.3) we have

Hz(Kg*g(WQs)) = 0. By H2(Kg*g(iﬁ3)) = 0, Lemma(3.2) and Lemma(3.3)
0. By using Lemma(3.2),(3.3) repeatedly

1]

we have HZ(KP* (v24))
P.8g
we have (2).
.E.D.
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proof of Th.(3.0)

By using Prop.(3.1) and the commutative diagram (%) we have
Pc” ~ uPc (4
(a) HP(CT(X,B),, g) = B (C (NsEByy,,)) for pZ O
By the Serre’s vanishing theorem we get
3*
(b)  HP(C'({R,B,y, ) = O for pZ 1.

Therefore this completes the proof Dby (a) and (b).

Q.E.D.
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