Openness Condition for Filtered Complexes and

A Comparison Theorem

By Masatoshi NOUMI (Sophia University)

In this note, we will prove an abstract comparison theorem concerning the completion of a filtered complex of abelian groups under a certain hypothesis of "openness" for the differentiation, and its extension to the case of an inductive system of filtered complexes. The latter is a generalization of a key lemma of N. Sasakura [3].

We use the notation and terminology of A. Grothendieck [1].

1. Statement of the results.

Let K' be a filtered complex of abelian groups :

$$K \cdot \supset ... \supset F^{p}K \cdot \supset F^{p+1}K \cdot \supset ... \quad (p \in \mathbb{Z}).$$

By definition, the completion K.^ of K. is the projective limit $\varprojlim_p K^{\cdot}/F^pK^{\cdot}$. As a type of completion of the cohomology $H^i(K)$ ($i \in \mathbb{Z}$), we take the projective limit $\varprojlim_p H^i(K/F^pK)$. Then, by the universal property of \varprojlim_p , there exists a canonical funtorial homomorphism

$$\psi^{i}: H^{i}(K^{\hat{}}) \longrightarrow \lim_{p} H^{i}(K/F^{p}K)$$

for each degree i &Z.

We say that K' satisfies the openness condition (B_i), if there exists a mapping $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ such that

$$F^{f(p)}K^{i} \cap B^{i}(K) \subset d^{i-1}(F^{p}K^{i-1})$$

for all $p \in \mathbb{Z}$. The condition (B_i) is nothing but the openness of the differentiation $d^{i-1}: K^{i-1} \longrightarrow B^i(K)$, $B^i(K)$ being regarded as endowed with the filtration induced by that of K^i . As a weaker condition, we say that K^i satisfies the weak openness condition (WB_i) , if there exists a mapping $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ such that

$$F^{f(p)}K^{i} \wedge B^{i}(K) \subset \bigcap_{q} (F^{q}K^{i} \wedge B^{i}(K) + d^{i-1}(F^{p}K^{i-1}))$$

for all pe \mathbb{Z} . In topological terms, the condition (WB_i) is equivalent to saying that $d^{i-1}: K^{i-1} \longrightarrow B^i(K)$ maps every neighborhood of the zero to a subset whose closure is a neighborhood of the zero. We will prove the following

Theorem I. Let K' be a filtred complex of abelian groups. Assume that K' satisfies the weak openness condition (WB $_i$) for a degree ie \mathbb{Z} . Then the canonical homomorphism

$$\psi^{i} : \operatorname{H}^{i}(K^{\bullet}) \longrightarrow \underbrace{\lim}_{p} \operatorname{H}^{i}(K/F^{p}K)$$

is an isomorphism.

We remark that the (weak) openness condition plays as a substitute for the Artin-Rees theorem in the case of modules of finite type over a commutative Noetherian ring.

We will extend this comparison theorem to the case of an inductive system of filtered complexes.

Let $(K_{\alpha}, u_{\beta\alpha})$ be an inductive system of filtered complexes of abelian groups indexed by a directed set ($u_{\beta\alpha}: K_{\alpha} \longrightarrow K_{\beta}$ for

 $\alpha \leq \beta$). We say that $(K_{\alpha})_{\alpha}$ satisfies the openness condition $(B_{\underline{i}}^{*})$, if, for every index α , there exist a $\beta \geq \alpha$ and a mapping $f : \mathbb{Z}$ $\longrightarrow \mathbb{Z}$ such that

$$u_{\beta\alpha}(F^{f(p)}K_{\alpha}^{i}\cap B^{i}(K_{\alpha}))\subset d^{i-1}(F^{p}K_{\beta}^{i-1})$$

for all $p \in \mathbb{Z}$. We say that $(K_{\alpha})_{\alpha}$ satisfies the weak openness condition $(WB_{\dot{1}}^*)$, if, for every index α , there exist a $\beta \geq \alpha$ and a mapping $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ such that

$$\mathsf{u}_{\beta^{\alpha}}(\mathsf{F}^{\mathsf{f}(p)}\mathsf{K}_{\alpha}^{\mathsf{i}}\cap\mathsf{B}^{\mathsf{i}}(\mathsf{K}_{\alpha}))\subset \bigcap_{\mathsf{q}}(\mathsf{u}_{\beta^{\alpha}}(\mathsf{F}^{\mathsf{q}}\mathsf{K}_{\alpha}^{\mathsf{i}}\cap\mathsf{B}^{\mathsf{i}}(\mathsf{K}_{\alpha}))+\mathsf{d}^{\mathsf{i}-\mathsf{l}}(\mathsf{F}^{\mathsf{p}}\mathsf{K}_{\beta}^{\mathsf{i}-\mathsf{l}})),$$

for all $p \in \mathbb{Z}$. In this case, our result is

Theorem II. Let $(K_{\alpha}, u_{\beta\alpha})$ be an inductive system of filtred complexes of abelian groups indexed by a directed set. Assume that $(K_{\alpha})_{\alpha}$ satisfies the weak openness condition $(WB_{\underline{i}}^{*})$ for a degree $\underline{i} \in \mathbb{Z}$. Then the canonical homomorphism

$$\psi^{i} = \underset{\alpha}{\lim} \psi^{i}_{\alpha} : H^{i}(\underset{\alpha}{\lim} K_{\alpha}) \longrightarrow \underset{\alpha}{\lim} \underset{\beta}{\lim} H^{i}(K_{\alpha}/F^{p}K_{\alpha})$$

is an isomorphism.

This Theorem II is a generalization of Rect. 2.1 in 63 D

Though we will prove our theorems under the weak openness conditions (WB) and (WB *), the openness conditions (B) and (B *) might be more useful in applications. That is why we detailed the latter. We remark that our way of proof is valid in a more general setting of categories.

2. Proof of Theorem I.

We use the right derived functor of \varprojlim : (projective systems of abelian groups indexed by \mathbb{Z}) \longrightarrow (abelian groups), which we denote by $\mathbb{R}^{\frac{1}{p}}$ For this derived functor, we refer to R. Hartshorne [2], Chapter I, §4. Note that $\mathbb{R}^{\frac{1}{p}}$ = 0 for $i \geq 2$ Let K' be a filtered complex of abelian groups. Applying

Proposition (4.4) (loc. cit.) to the projective system $(K'/F^pK')_n$, we get an exact sequence

$$(2.1) \qquad 0 \longrightarrow \mathbb{R}^{1} \varprojlim_{p} \ \mathbb{H}^{i-1}(\mathbb{K}/\mathbb{F}^{p}\mathbb{K}) \longrightarrow \mathbb{H}^{i}(\mathbb{K}^{n}) \xrightarrow{\psi^{i}} \varprojlim_{p} \ \mathbb{H}^{i}(\mathbb{K}/\mathbb{F}^{p}\mathbb{K}) \longrightarrow 0$$

for each degree $i \in \mathbb{Z}$. (A rapid way to derive this exact sequence is to compare the two spectral sequences which converge to the hypercohomology $\mathbb{R}^{\frac{1}{2}}\lim_{p} K^{*}/F^{p}K^{*}$.) This leads us to the study of the kernel of $\psi^{\frac{1}{2}}$.

We propose to replace $R^1\lim_p H^{i-1}(K/F^pK)$ by an abelian group which represents how far the differentiation $d^{i-1}:K^{i-1}\longrightarrow B^i(K)$ is from openness. First, note that the short exact sequence of complexes

$$0 \longrightarrow F_{b}K_{\cdot} \longrightarrow K_{\cdot} / F_{b}K_{\cdot} \longrightarrow 0$$

induces the cohomology exact sequence

$$(2.2) \quad \dots \longrightarrow H^{i}(F^{p}K) \longrightarrow H^{i}(K) \longrightarrow H^{i}(K/F^{p}K) \longrightarrow H^{i+1}(F^{p}K) \longrightarrow \dots$$

for each p. We set

(2.3)
$$L^{i}(K)_{p} = Ker (H^{i}(F^{p}K) \longrightarrow H^{i}(K))$$
 and

$$F^{p}H^{i}(K) = Im (H^{i}(F^{p}K) \longrightarrow H^{i}(K)).$$

Then, from the long exact sequence (2.2), we get an exact sequence

$$(2.4) 0 \longrightarrow H^{i-1}(K)/F^{p}H^{i-1}(K) \longrightarrow H^{i-1}(K/F^{p}K) \longrightarrow L^{i}(K)_{p} \longrightarrow 0$$

for each $i \in \mathbb{Z}$. We regard (2.4) as an exact sequence of projective systems indexed by p. Since the projective system in the second term of (2.4) consists of epimorphisms, its $R^{\frac{1}{2}}$ wanish for $j \ge 1$. Hence, passing to the limit, the exact sequence (2.4) assures an isomorphism

(2.5)
$$R^{1}\underset{D}{\underline{\lim}} H^{i-1}(K/F^{p}K) \xrightarrow{\sim} R^{1}\underset{D}{\underline{\lim}} L^{i}(K)_{p}.$$

With this identification, we get an exact sequence

$$(2.6) \quad 0 \longrightarrow R^{1} \underset{p}{\underline{\lim}} L^{1}(K)_{p} \longrightarrow H^{1}(K^{2}) \longrightarrow \underset{p}{\underline{\lim}} H^{1}(K/F^{p}K) \longrightarrow 0,$$

in place of (2.1). Note that this exact sequence (2.6) is functorial in K'.

Recall that a projective system (M_p, π_{pq}) $(\pi_{pq}: M_q)$ M_p , for $p \le q$ indexed by $\mathbb Z$ is said to satisfy the Mittag-Leffler condition (ML) if there exists a mapping $f: \mathbb Z \longrightarrow \mathbb Z$ $(f(p) \ge p)$ such that $\operatorname{Im} \pi_{pq} = \operatorname{Im} \pi_{pf(p)}$, for all p and $q \ge f(p)$. If $(M_p)_p$ satisfies (ML), then $R^1 \varprojlim_p M_p = 0$. (loc. cit.) As a more restrictive condition, we say that $(M_p)_p$ is essentially zero, if there exists a mapping $f: \mathbb Z \longrightarrow \mathbb Z$ such that the homomorphism $\pi_{pf(p)}: M_{f(p)} \longrightarrow M_p$ is zero for all $p \in \mathbb Z$ (or, equivalently, if $(M_p)_p$ is isomorphic to zero as a pro-object). It is easy to verify that, if $(M_p)_p$ is essentially zero, then $\lim_{p \to \infty} M_p = 0$ and $\lim_{p \to \infty} M_p = 0$. (The implication

(2.7) $(M_p)_p$ is essentially zero. $\Longrightarrow (M_p)_p$ satisfies (ML).

is clear.) Note that the notion "essentially zero" is stable

under functorial operations.

Returning to the filtred complex K', we focus on the projective system $(L^{i}(K)_{p})_{p}$. By the definition (2.3), we have

(2.8)
$$L^{i}(K)_{p} = \frac{F^{p}K^{i} \cap B^{i}(K)}{a^{i-1}(F^{p}K^{i-1})}.$$

Rewrite the two conditions "essentially zero" and (ML) for this $(L^{\dot{1}}(K)_p)_p$, using the formulae (2.8). Then, we have the following dictionary :

(2.9) K' satisfies
$$(B_i)$$
. \iff $(L^i(K)_p)_p$ is essentially zero.

(2.10) K' satisfies
$$(WB_i) \leftarrow (L^i(K)_p)_p$$
 satisfies (ML) .

$$((2.9) \text{ implies } (2.10). \text{ cf. } (2.7).)$$

Now, the Theorem I is clear. If K' satisfies (WB_i), then $(L^{i}(K)_{p})_{p}$ satisfies (ML) and $R^{l}(K)_{p} = 0$. By the exact sequence (2.6), we have an isomorphism

$$\psi^{i} : H^{i}(K^{\hat{}}) \xrightarrow{\sim} \underline{\lim}_{D} H^{i}(K/F^{D}K).$$

3. Proof of Theorem II.

Let $(K_{\alpha}, u_{\beta\alpha})$ be an inductive system of filtered complexes of abelian groups indexed by a directed set. Then, by the exact sequence (2.6), we get an exact sequence of inductive systems indexed by α

$$(3.1) \quad 0 \longrightarrow \mathbb{R}^{1} \underset{p}{\lim} \quad L^{1}(K_{\alpha}) \longrightarrow H^{1}(K_{\alpha}^{\wedge}) \xrightarrow{\psi_{\alpha}^{1}} \underset{p}{\lim} \quad H^{1}(K_{\alpha}/\mathbb{F}^{p}K_{\alpha}) \longrightarrow 0$$

for each degree $i \in \mathbb{Z}$.

We modify the definitions of "essentially zero" and (ML) for this case. Let $(M_{p,\alpha}:\pi_{pq}^{\alpha}, u_{\beta\alpha}^{p})$ be an inductive system, indexed by a directed set, of projective systems indexed by Z. Here, p and α indicate

$$\begin{array}{ccc}
 & u^{p} & & & \\
 & u^{\alpha} & & & \\
 & \pi_{pq} & & & & \\
 & \mu^{q} & & & \\
 & \mu^{q}$$

the indices as a projective system and as an inductive system, respectively. We say that the system $(M_p,\alpha)_p,\alpha$ is essentially zero, if, for every index α , there exist a $\beta \geq \alpha$ and a mapping $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ ($f(p) \geq p$) such that the homomorphism $\mathcal{T}_{pf(p)}^{\beta}$ our $f(p) = u_{\beta\alpha}^p \circ \mathcal{T}_{pf(p)}^{\alpha}$ is zero for all $p \in \mathbb{Z}$. As for (ML), we say that $(M_p,\alpha)_p,\alpha$ satisfies (ML), if, for every index α , there exist a $\beta \geq \alpha$ and a mapping $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ ($f(p) \geq p$) such that Im $(\mathcal{T}_{pq}^{\beta} \circ u_{\beta\alpha}^{\alpha}) = \operatorname{Im} (\mathcal{T}_{pf(p)}^{\beta} \circ u_{\beta\alpha}^{\beta})$ for all p and $q \geq f(p)$. We need the following

Lemma. a) If the system $(M_{p,\alpha})_{p,\alpha}$ is essentially zero, then $\lim_{\alpha} \frac{\lim_{\alpha} m_{p,\alpha}}{\lim_{\alpha} m_{p,\alpha}} = 0$ and $\lim_{\alpha} \frac{\lim_{\alpha} m_{p,\alpha}}{\lim_{\alpha} m_{p,\alpha}} = 0$.

b) If the system $(M_{p,\alpha})_{p,\alpha}$ satisfies (ML), then $\lim_{\alpha} \frac{m_{p,\alpha}}{\lim_{\alpha} m_{p,\alpha}} = 0$.

Proof) We assume that $(M_{p,\alpha})_{p,\alpha}$ satisfies (ML) (resp. is essentially zero). It suffices to show that, for every index α , there exists a $\beta \ge \alpha$ such that the homomorphism

$$R^{i}\underset{D}{\underline{\lim}} u^{p}_{\beta\alpha} : R^{i}\underset{D}{\underline{\lim}} M_{p,\alpha} \longrightarrow R^{i}\underset{D}{\underline{\lim}} M_{p,\beta}$$

is zero for i = 1 (resp. i = 0, 1). For any index α , we take the $\beta \ge \alpha$ in the definition above, and set

$$N_p = Im (u_{\beta \alpha}^p : M_{p,\alpha} \longrightarrow M_{p,\beta}).$$

Then the morphism of projective systems

$$(u_{\beta\alpha}^p)_p : (M_{p,\alpha})_p \longrightarrow (M_{p,\beta})_p$$

is factored through the projective system $(N_p)_p$. Passing to the limit, the homomorphism $R^i \varprojlim_p u_{\beta^{\alpha}}^p$ is also factored through $R^i \varprojlim_p N_p$. Since $(N_p)_p$ satisfies (ML) (resp. is essentially zero) in the sense of n^0 2, we have $R^i \varprojlim_p N_p = 0$ for i = 1 (resp. i = 0, 1). Hence, $R^i \varprojlim_p u_{\beta^{\alpha}}^p = 0$ for i = 1 (resp. i = 0, 1).

Rewrite the conditions "essentially zero" and (ML) for the system $(L^{i}(K_{\alpha})_{p})_{p,\alpha}$ as we did in n^o 2. Then we have a dictionary similar to (2.9) and (2.10):

(3.2) $(K_{\alpha})_{\alpha}$ satisfies (B_{i}^{*}) . \iff $(L^{i}(K_{\alpha})_{p})_{p,\alpha}$ is essentially zero.

(3.3)
$$(K_{\alpha})_{\alpha}$$
 satisfies $(WB_{\underline{i}}^{*}) : \iff (L^{\underline{i}}(K_{\alpha})_{p})_{p,\alpha}$ satisfies (ML) .

If $(K_{\alpha})_{\alpha}$ satisfies $(WB_{\underline{i}}^{\underline{*}})$, then the system $(L^{\underline{i}}(K_{\alpha})_p)_{p,\alpha}$ satisfies (ML), and we have $\lim_{\alpha} R^1 \lim_{\alpha} L^{\underline{i}}(K_{\alpha})_p = 0$ by Lemma above. Taking the inductive limit of the sequence (3.1), we get an isomorphism

$$\psi^{i} = \underset{\alpha}{\lim} \psi^{i}_{\alpha} : H^{i}(\underset{\alpha}{\lim} K_{\alpha}^{\prime}) = \underset{\alpha}{\lim} H^{i}(K_{\alpha}^{\prime}) \xrightarrow{\sim} \underset{\alpha}{\lim} H^{i}(K_{\alpha}/F^{p}K_{\alpha}).$$

This gives our result.

References

- [1] A. Grothendieck : E.G.A., 0_{III} , §§11-13.
- [2] R. Hartshorne: On the de Rham cohomology of algebraic

varieties, Publ. Math. IHES, 45 (1976).

[3] N. Sasakura: Cohomology with P. S. and Completion thereif (in this vol