goooboooogn
g 3720 19790 179-307

179
PG atees-% + ZBizH
Bk - _EhE A
9. ::Lw%@tkgﬁ 0 BAED M F 5 £V 3.

¥ 3 ﬂﬁ%%bﬁJ %

FOLREH A eBe 19T 1 Fic B
,twe@bﬁﬁﬁ

\‘;'L\,P\ ﬂé‘ﬁ @A /l;__L_&,’C

T4 0 bt FE St
m%}egbztz$,3,
- %a, %%ﬂf&’%ﬁf
7o Bk 5A3TH A 0 R E AT
31@‘@&@\)4 j\ o U -
Thy oy W

A

> Cochd T.

' R ”,"’i X 5%%1 13
3 -

F;J%j% # 5 size R

’%@fﬁéi%

LRV W i 4

HeRET 3B RN HLE S
Lk S AWML tEE N 2 o0
B v G E )T Hh 3. FE o7
i bH SBHRE 0 siee o B

MG o

% 7 w‘f R ?Sfrfrl‘élj
Lt 00 HEFE

U LR ATEN R

o o Cic q;zfggi;

/ﬁ/ﬁzi%a%zﬁﬂﬁﬁ@'%ém3<mm$zd

/l\ s . - L3S
7\ | ;t/‘éai%;i >

$1.1 = P9.(= Po]»?rmw‘l,

23 .
‘ Cl’cwdl
~E07-%®ﬂm

(2 (8§14

“ Cocllans gxfﬁzgggiu
QLS



180

K2 ¥ ¥ !
F’ﬂ«f{ %21 CJvo»ot?u 3 1 Py JT»Gvs‘-’—Z
(1 (ERA Q{mw #. ] T %oag |
Cufcﬁ:mgil¥ BE rh EoL) J:aumi&‘w’—w%lﬁ
FR 0 HI4=L954) - B LB e s k3 2 Slz el
o 2, i (algebnnce ) vw% AR R -8 0o
CLM\Lf:% Vooueddes AL, C h3 2 W"’"‘“‘% > ‘i 5 PIMBG
t RBg I3 dw:z\, AV iafim;}@\ t > Py =z Joe= 3 - f’r}
Tt @A 35 (FHe Qe @ER L RrdFE2p 2D
$1 23 %a, Thit~T. 14T € 513, K2obhs.
sdte SRRk 0 3H Cadn 22 EA B2 EMTHT,
1313 ) 222t m%“t *&%i‘?l <, @Jhw%é%@ 0] l% £3.
/#i%‘%@(‘?.:f@ 1,@ S FECHy HFBARE S
W 3T Xt $1: TH « f oy Vg% o Skng'(_ 38 . Y
1A TeMR o 88 £:(’+57»f,CP(z 0)eB £425 ¢ 52. 2» >
THED 2w d (= ﬁ%z\bwmc divisce) B e 420 o2 @m 3.
(CoBE VB 32, T o s EH o7 0 Fs Eh
73127 b3, (Ttedudlon @ V7§ 218208) ) F 5 Bk
AT R A MEVT B L FBA IR PZR T 53 .
B ediong ry B el Be etes un oo T,
d.P(=0d+ pa)BE ed (ZDreH 1 < Ei ¥ 3.

on}i

R,
:



181

MY Se11tBy v 1Lt eBlpoRA R 22 L ¢+ 5
7E Tt 3R YLt o
(L) {'@[ gvigg ’E;» A S@ %.d Bk, Cﬂ{ @;sg }
S 2B (0, 2 0F M %)1:;~7?,f?91~@.§§2 A
BAP 23T ey =g w “?.3. "%cz:r%mwt»k)o”ﬂutv
f"k":lva‘?tmBmﬁ(wzl?l/ti*“k%V‘Z\Ld\ (it
Wied, WAW -TTME R HhE 3 FEEE L 7 <ok
P T3 - $21hw S ESEEE RO ) 323 redude
Stu‘, g _
(W) dof 24834 (§20 —> 1.9.73. €~ 2 - 24(51)
DR IBER T, A BB3IHo Kol 25 o BT 24
(521) P73 4P - BEF® 2 b3 (femmaz.5~ Lve 2D B
e b At BIEML oMz~ 21, BB Se1k £ 208 ¢
oo T2W 2L~ DA U o B Ko 42T E R T
%o BT B0, % 0%k %6 T e T2 Qn St ’mwj’
OTLAR =8 « 32D v ¥ L efibd 3. (53 EBR L dt
D) Bl 84 B, BAAR P 3 (nen OAL;;Q&?@Z)*@—?E&
FABA V2D chombogieal vessios £ 5 A3 L B 0G0 T
f\“ﬁ%j{ o ZELT- kY sE L LT o:bthQ;@t;M-e%wB@ 3
,’(E7 Thin — 0.9.2 T eev=3k (Hi1~ndie) > L
ot e Y- HB(dal ~ Tt D

a—

3



182

7“, §4 @ meonclemidogiend — 1533 @ 2 F27R U § § 245 O, FTLY
NEPHEF: F (56 301T% 5. (35~ ST § » B4 B
ekl co3). @zﬁé_'ﬁm@%%ryaﬂw"
boor 3 E oy m?ﬁ?i‘g 13 5 A vt YL 3 ES

€20 Lz TRt o,

1it-

2. oA I b HER VBB R OHFE o
%‘I@ bﬁ%; RLTHE<, $70 7 & BF % 0t R (asreat
B B ek )G—M{,Zj free) sheofiti 3% 2. ($% o M@ B
B k3% M Tesbdl, ¢ G N CRNEAR bu—(b%"{‘ree g < x ¥
TG 2 s G5 45> 4 o> 7 \3‘,.53‘713 A& sfadso pike i
Ls ez Delligee — MlRWoost L’A)m;g/w)m)g)s _5% (® (< ¥
20 PY oyeer - (0 TAR 0 13,2 3T a3 with melive U)X @Ej@}'
f KRy R ECTIBTS . thinF G udase A
F3vE2h %0 T, RaGIMEEEOM - FC » S h3 T%L
e L r D a0t 2 BE e T3 W T 3 dudend
SN OByt T 8. s o P TTT
R — ’3{:3:,7 e S § fcked % s ot pf R Py e R
N3 (F% » zw\mkvedﬁm £ 80 BE S Ao b Y
LR o e T [@entin he BEEBGD 2D
B8 B L AL2 4 o 45 E it EtE% 0 «» z)%ﬁ%

S



183

~

CRLT R AR TG k. REA £ 2y w3y A 0@
Rl B A B G 0o b 3 TR L 03, (FE KA
Totedado @~ R H ) BEIES € BTEIR f o
btk 3% i @IS L L) e B cBRE Y 3 2R R
3 BB pectma ek sngrso Femsrd )

3. Fhe L oHE LT " EE ARG Y AR 2 KR
CAYEE 2 Dedtw3Eapi0 Ml )dr
‘M- Cola 0k & 22 7 i€ oy B o eyt e
Rle 3305~n o0 72 B € Bos v LT3y e~ 350 £/ 687
B 'sd); @ NTed FRGBHEE %“{ Tyt oo (2 \;;/}g/c 34
BRI I HRL N2 BHReRLT 53 225 ) Job A
BFosamig g s o alflae-Ra s 4% v B3 0)
“o 0o ME 0 b Soakig pok o sen thig’ 2 RAGT 1
3 NETHDID o

ﬁ\vg‘._rr‘s’owj»ﬂv‘»?",\ DIt B L 2T I NE B3

-



184

Cohomology with polynomial growth and completion theory

Nobuo sasakura

Introduction.

Chapter I, Cohomology with polynomial growth and compietion‘theory
1. Cohomology with polynomial growth

jo

Cohomology with algebraic division and polynomial growth
3, Application to analytic de Rham theoxry

Chapter II. Uniform estimations on homomorphisms of coherent sheaves
4. Uniform estimations with bound and algebraic division
5. Proof of the results in 8 4

Appensix I. Elementary computations--~--1

Chapter I1I. Polynomail growth uniform estimations for the structure

sheaves of complex euclidean spaces

_é: Cousin integrals and spectral sequences

1. A sharpening of degerency theorem and polynomial growth uniform
estimations

Appendix II. Elementary computations--- 2

Introduction

1 As the title indicates, the main purpose of this paper is to
give: a unification of the following two basic throries for coherent

sheaves on analytic varieties: (1) a type of cohbmolpgy theory, in which.
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what we €all polynomial growth(=p,g,) conditions on cochains and coverings

are involved and (2) _completion theory. along spbvarieties of a given
analytic variety, Our theory is given to (algébraic) affine vakieties
and their anélytic analogues(n.1,8 1,2), which are more general than

the affine varieties, The main body of this paper is devoted to certain
explicit uniform estimationsbon_ngi.and what we call algberaic division
(ingi) properties of coherent sheaves on such varieties(n,2), Our main

application of such uniform estimations is to gives

(1) an analogue of Th A,B of H Cartan in our unified cohomology theory

for the two theories mentioned just above, which we simply callfgghggglggy
with P.S: in completion theory(cf.T.2.5, T,2.6 and Th,1.5,Th.1.6).
We will apply such a'result to generalize, to varieties with singularities
the well kﬁown theorems of A.Grothendieck on algebraic and analytic de
Rham theory(cf,L57]) . This paper is originally developpeéﬁ%o provide an
g@g&yjig»ﬁ%ﬁﬁ_of the generalization as above, in such a manner that the
cgjgigwgpgWalggpggicﬂpropertie§, which'may beLgiff important properties‘of
the varieties as above, reflect closely Lnsgggfing the generalization,
our explicit formulations in (1) and in our uniform estimations are
so chosen, to certain degrees, that they are convenient for the applicatior
to the.de Rham theory. A

2, Cdncerning the two quantitative properties mentioned in n.l, the
dégree of the cohomology degree is zero(Th,1, 5), and such a property

concerns most basic properties of algebraic and analytic varieties. Tuw
¥) ef.[

1
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When gz 1, our treatments of the D, £, cohomology(=cohomology with D &)
theoty may be a sharpening of purely algebraic treatments of cohereﬁt
sheaves( §1). By the second one, algebraic division(=a.d.)property, we
mean such a property that concerns the degrees of zeros of cochains etc.
along (imbedded) subvarieties of an analytic variefy. As we learh'from the
classical Hilbert zero point theorem, such a property concerns basic
properties of the imbedded varieties, and is important for investigations
of analytic varieties. LTOW our studies of the a.d.properties will be
focussed on what we call open map properties(Def-2.1) of geometric filtered
complexes, such as Cech and de Rham complexes of global nature(§2,§ 3)

as well as certain local complexes formed from homomorphiems of coherent
sheaves(§t¢), where the filtered structures are defined by the powers of
the ideals of the subvarieties . The open map property concerns that propert
of the degree one map in question(§‘2.l), and implies standard comparison
theorems in completion theories(cf.[13 J). In particular, it insures:

(2)  exactness of cpmplexes-—?’that of the completlon of the complexes,

The open map property for the Cech complexes w1ll insure the analogue

of Th,A,B mentioned in (1), n,1, while that for the other complexes will

concern interesting a.d. properties of analytic varieties( §3, §4 and § 5),

Our main task in the uniform estimations is +to combine those on that

open map properties with those on the D, g properties of the above complexes,
,NoW'letting the type of our cohomology theories be as above, we

summarize briefly the content of this paper,
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% vChap I contains the basic notionS: astl the main results of
this paper, First, in §1.1, we summarize basic notions which are used
in our p, g, cohomology theory , In 8 1.2 we give our main results in
the p, g, uniform estimations(Th.1l,1 ~ Th,1.4), and we derive from them
an analogue of Th A,B in our p, g, cohomology theory(Th.L. 5, Th.1l.6), The
cohomology theory in &1 concerns the p,g properties of the complexes
but not with the a.d.properties, and Th,1.5, Th.1l.6 may be regarded
as a prototype of the result mentioned in 1); n.1, Our proof of Th 1.1
~Th,1,6 will be given by using a p, g, version of standard tools for |
treatments of coherent sheaves, syzygies, imbedding of analytic varieties
as well as extensions of cochains, and a p, g,uniform estimation on
Cousin integrals(cf, Lemma 1,2 ~ Lemma 1,4 and Th.Ll.,7 in§ 1.3).

Cohomology theories with p, g conditions were studied by P.Deligne-
G, Maliotionist [ {13 and by M.Corbalna-P.A , Griffiths [z 1 for locélly
free sheavés over smooth algebraic bafieties, by using the J§ -estimationsse
The situafion in our p, g.cohomology theory, where we work with what we
‘call lp,g,coherept sheaves(Def.l.S))over the analytic varieties as in n,l,
is more general than theirs. OQur method depending on Cousin integrals
differ from theiré%ﬁ(ext, in § 2, we generalize the p,g uniform estimations

by combining them with uniform estimations on the a.d.properties of the
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complexes in question. The main results in this generalization, which

we call d.p.(=a.d. +up,g.)vuniformwestimation¢ as well as in the unifory

estimation of this paper are given in Th.2.1~ Th.2.4. Such results

insure the open map properties of the complexes, and our analogue of

Th.A,B in the p.g.cohomology in the completions(ef.(1l),n.1l) 1s a

formal consequence of them,

_ﬂ: In the first part of Chap.II, we summarize our non cohomologica

uniform estimations on homomoxphisms of coherent shéaves(cf.§ 4.1).

We then give a cohomological vWersion of those estimations, and’ we

derive, from such cohqmologicél results, all the lemmas in Chap,I,TI

which concern the uniform estimations on the sheaf homomorphisms(§h,2)‘

The uniform estimations in § 4.1 contain results on the open map
_property of certain Koszul complexes, which provide a cohomological_

generalization of Hilbert zero poiht,theqre@uand are a non cohomologicw

version of the main lemma, Lemma 2.5, in the d.p.uniform estimations

in §2(cf.Lemma 4.2~ Lemma L4.4). Such a fact, together with an open

map property of the de Rham complex(Lemma 4.7), is our main result on

the open map property of the sheaf homomorphisms, and may be worthwhime

pointing out in connection with our treatmenﬁ% of completion theories.

2

5. Finally, in Chap.III, we prove the key theorem, Th.1.7, for

the geometric arguments in 81, § 2(as was indicatéd in § 3), which
concerns a p.g.uniform estimation of the structure sheaves of the
complex euclidean spaces, We prove Th.1l.7, by reducing it to rather

elementary p.g.estimations on Cousin integrals(on the euclidean line)
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OQur reduction depends on certain filtrations defined for the sets of
the cochains (in guestion) and some algebraic machinaries for the
filtrations, which imply a strong sharpehing of the standard degerency
theorem in the spectral seguence theory . The algebraic arguments and
the p, g estimations on Cousin integrals in Chap,III may owe their owh
interests, aparting from the applications to Chap.I,II , (For the content
of Chap IITI indicated soon above, see the beginning of Chap, ITI We
add a brief outline of Chap;I~~III in the beginning of each chapter,
Such an introduction may be useful for understanding of the content of
each chépter and of the whole line takin in this paper)

6, In giving the application of the cohomology theories in §1,§& 2
to the analytic de Rham theory( §3), we should quote our results on
the Cghe Rham theory for certsin stratified spaces, whose outline was
Will be published

4 N tZ T~
candgin3dy
elsewhere in a near future , Except thr part of the a?ﬁIIEEtijn,ﬁo the

i

given in [ 15 32’\/ and inG177 The details of TS 3,

de Rnam theory in..§5, this paper is completely self contained .
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The author began the study of the contents of this paper and of
the analytic de Rham theory in 1971, and the very early versions of the
content of this paper were given in.E]ijl andtiéjgbnsiderable parts‘of
the explicit computaions in the uniform estimation of the presént paper

~depend onL{{]. However, the present paper is written entirely newly from

Eiiﬂ Finally, the contents of thef paper seem "to deserve tO be generallzed:
‘qéﬁﬁﬁgpqg B

in more general s1tuatlons.vour P.g, cohomology theory is glven in a more
or less categorical form. Generalizations of the content of §IL seems-to
beivefy desirableiin that line(cf.n,6, §1.2), Assuming the p,g, cohomology
theory in §1, the most 1mpon¢ant facts in giving the. d.p. cohomology
theory are the open map propeties of the geometric complexes mentloned
hitherto . From the scope of the arguments in.§2, the validity of the
open property as well as tﬁe clarifications of their geometric meanings
seems to be desirable for more generai classes of geometric complexes,
Finally, our explicit p.g.unicorm estimatioggand the elgebraic'machinaries
iTL Chap,III seem tojbe tried, their applicablities for more general'types
of'cohomology v.rlthdl’clons‘l The author hopes that he will try |
possible genrallzatlons about what are mentloned above ,We also hope that
the contents of the present paper provide a basis for p0531b1e generallza—

~tions,
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Chapter I, Cohomology with polynomail growth and completion theory

Here, for convenience of reading'of Chap I, we illustrate the basic
notions and the styles of the formulations in our p‘g,unifurm estimations.
Wof this we first let C" be a complex euclidean space and z eoordinates
of 1t We set g:=z] +1, O:=structure sheaf of Cn and, for an element d

—(&l,é pr= R+2, we define:
o), {H (@,9s8), =G0 (@< alg@) in ¢},
U0 05), o= Yegre H(C058); -
We.then recall that a clas51ca1 conseguence of Cauchy integral formula
implies:
(O)i O(Chhg;g) "’{polynomials~in z'}
I{ett letting X be a complex space, we may say that

Coh(X

oherent sheaves over X'L
(0)2 Gov(xX

c
3‘: collection of all{open coverings of X J

and the cochain map
(0)5  C%:Con(x) X Cov(X) D(E,4) —> ¢4,
constitute the underlying data for the cohomology theories of coherent

sheaves over X._ﬁ]ow our first task in $§1 is to give p_ g, versions of

(0)2,(0)3, which yieldy a generalization of the sets in (0); , with
respect to the underlying varieties, coherent sheaves and cehomology
degrees, Our main results in §1 for thevcasevef the degree =0 are a
generalization of (O)i, while those for degreeéil.ihsﬂles the vanishing
property of the cochomblogy groups*): in §1.1 we introduce spme abstract

notions, p, g, filtration, g-structure of abelian sheaved dnd p.g, functions;

*) ¢f,Th.1.5 and Th,1.6 . Also see Introduction.
%) This is an obvious abstraction of the ‘absolute value’as in

(.0)1 to general abelian sheaves(cf. Def,l.&l).

3
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we see that such nokions suffice to generalize the sets as in (0)1 to

genral abelain sheaves(De£‘1.45) and to give a p,6 g, version of Coh(X), denote

by Coh(X)p g ? to reduced complex spaces, Also)using the p, g.and a'distance
. ‘

function?of a topological space X, we define for each subset Y of X what we

call sELE-COVering of Y ;guxf in a concrete»p,g_fashion(Def;l.7);
In the first part of §1l.2, we attach, to our anal&tic vatieties in
the main body of Chap.I(cf,n.l, 81.2), a p,g, version of Cov(X), denoted

by Cov(X)P by using the arguments in§1.1. Next take a p.g, sheaf H

g’ ,
EgCoh(X)p g Then, using a p.g.version of the cochain map as in (0)3, we

attaﬁh_to H what we call ‘p,g, cochain collectior, C“(X,ﬁ) in symbol.

b.g

Such a p,g,collection contains all necessary sets of p g.cochains in our

P, g uniform estimations, and may be Eggméquwpgsic underlying data for

our p,g.cohomology theory. We note that the above p.g,collections, COV(X)p

anz C%(Xiﬁ)p_g , are parametrized in a certain concrete fashion, where
the main part of the parameter space is a product_gjs(s:>o); we define
what we call p,g.estimation maps, which are a cbncrete transformation
oflgfs(s:>0). The main results in 81, Th 1,1 ~ Th 1,6, are given to
the p,g.cochain collections . We use the p, g, estimation maps for the

explicit estimations in those resulisy -

9
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In§2 we éeneralize the p.g‘cohémology theory in §1 to what we called the
d.p_cohomology theory(cf.lntroductinr;)° We give a generalization of the
p. &, cohanin collection, which we call d. p,cochain collection( §2.2), The
‘main uniform estimations, Th.2,l~. Th,2,4, of §2 as well as of this paper
are formulated in terms of.the latter cochain collections(§ 2, 2). The
content of §2 is more general than the one of §l, by the introduction of
the new factor of what we called the a d estimatiohs(cf.Introduction),
However, the algebraic style of the formulations in &2 will ve given

parallely to the one in %1,

Terminologies and Notations

Here we summarize some terminologies and notations, which are used

throughout the present paper
1 TFirst letting X be a topological space, we set:

)uv(K) }
ay {0

o open sets oof X
Covo( s= 20

%lectlon of all{abelian sheaves over X

V\X)

Tor an element_éz JJVO(X) we set Al = .We use the symbollg%égqul)

nKAk

for the g-nerve of_é_
(1, §% = {az(Ag- 24 C 45 1A% %Y,
2, Por a positive number a, we set:

+ + :
(2)l 2 ;={r€-R_; r 'Za}.
We use the set__l frequently in the uniform estimations in this paper, Also
we use the symbol_g_, as usual, for the set{re&%;r >~O}..Horeover, for a
subset T of R, we use the set:

+
(2), 1 :=ftem tzal.
We use such a set for the case T=Z=set of all integers(cf.Chap II).

10
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Next, for an element 0'=(0~l,0‘2)€. R;Q, we define:
+2 . oo+
(2); RS := {(rl,rg) SR R 3r 20, r,Z o,k
When o =(1,1), we use the symbol R{g also for R';_g .(This symbol is

concordant to R-{2=R; XR{(cf.(Z)l). Thirdly, for elements_d=(ﬂl,6~2)

€ r*? ana a6R+, we set:
(2)4‘ a°&:=(a&l,&2).
v Fi
Moreoyver, for elements 0‘=(0‘1,Oé), (r:@rll,-fz) €R+2 , we write tr;rf/, if

(o) ‘ o~z<r/ >o-’ -7:7\" - 4
ol‘éol and 0,2 5 - When 7,777 or 7,77, we write oo = O~ |
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§ 1. Cohomology with polynomial_growth

§1.1. Polynomial growth conditions

1. Cochain collection.Tirst letting X be a topological space

and (4,F) an elemenet of Covo(X)_XAb(X), we make:

Definition 1.1, By g-th cochain(resp.cocycle) collection for_
(4,F), we mean the collection of all subsets of Cq(é,;'rf/)(resp.zq(ﬁ,@).
We use the symbols _Qq(&g),gq(_g,g) for such collections. Here we check:

Proposition 1.1l. The following two facts are equivalent:

(1.1); 244,F) C §c¥7h(a,n).
(l.l)2 For each D Ez_q(;A_,gv), there is an element D € Qq—l(é.’@ so that

(1.1), DC §D .
Proof. Taking D to be 2%(4,1) € 2%(4,F), (1.1), insures (1.1),.

Converse_lsf sett,ing__)f:()q'l(_i&__,ﬁ") Eg__q"l(,A_,vF\), we have (1.1), from (1.1).
In our later arguments, we do not work with thef;ﬁ;_ole spaces’

Cq(_&,_:?\),. .. but ﬁith what we call p.g.subgroups, cq(gL,Q .o in symbol,

ee.. OF cq(g_,a},;..., which are characterized by concrete p.g.conditions

(cf. §1.2.5ee also n.2 soon below). We will derive corresponding

facts to (1'1)1 (* vanishing property’ in p.g.cohomology theory) from
correspondences of (1.1)2‘. In the later arguments, the former is also
a formal consequence of the latter, but the converse is not true. Our
main subject in§1 will ve to get similar inclusions %o (1.1)2 in our

p.g.cohomology, by making explicit similar correspondences to the

H
one;D—>D in (1.1)2. OQur main results in such a direction are given
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in Th.l1.1~ Th.1.6 in 81.2. The remainder of §1.1 will be devoted
to define what we call p.g.cochain collection, which is a family
of elements of Q_q(é,;j\)(characterized concrete p.g.cocnditions), by
making clear basic notions in the definition of such collections.

The arguments will be given in a somewhat abstract fashion.

2. P.g.filtration. We begin n,2 by making a definition, which

will vplay a basic role to define the collection mentioned at the

end of n.1.

. *)
Definition 1.2 . (1) By b-(resp.p.g-) filtation fox an abelian
+2

roup 3, we mean a map 6:R —-——)2“—~(resn YR 2\) satisfying:

(1.2)1 6(a)> 0 for each aé_R_ (resp. W (@) 0 for each SE_R+ ).
(1.2), B(d) D 8(a) if &’z a(resp.WE) DYU(s) if 429).

(1.2)3 (Archimedian property) ¥or any a,a’e & *(resp. q, &e ), there
)

is an element a€R’ (resp.& e’ so that

(1.2)5  6(d)> {b2 b 5(b,B)e8(a)xo(dKresp. W()>{0sv" ; (b, B)eW(A)XV()} .
- : ' #
(2) ve call Ua ei.,ﬁ(a), Udei_Lg W(Q ) respectively ¢-bdd. and )
VY -p.z. subgroups of 3.

v LFRPRNy
{(vh no confusions occur, we aroo the terms bdd” and ‘p.gf from

the terminology just above.)

Definition 1.2,. YWe say that b-riltrations 91,92 :gf——> 2§~ are

D

eguivalent, if Gi@T)(i=l,2) are cofinal with respct to the increasing

inclusion as in (1.2)2.

1 1"
Definition 1. 3. Letting B be a subgroup of _B_(resm.w :B—~>38

e

a arzo.w rohisa of abelian group), we call the b-filtration 9'7“ Sa

—> 2= B 8(a) ns' 3 (resp. wo: ,1+aa — 23‘9w6(a)) the one induced from

Cland + - 6

)
{
f-?)ib)-~ initial of “bounded’ and ‘pad’ = abbreviation of bounded

13
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to B'(resp.to B" by ). Moreover, letting g, 6 be b-filtrations of B B

we say that & ,"él’ are compatible withw, if, for each vert , we have:

(1.2)4w§(b)c'6”(b'), with a suitable b &€ R*.

The Yinduced filtrations)) ‘equivalence) and ‘compatibli’cy) as above are_

defined for p.g.filtrations in the 31m11ar manner to Def.l. 22 Now

taking B to be C%(A,F) in n.1, let ¥ be thip g.filtration in Def.l.2;:
Definition 1.%. By q-th'P -p.g.cochain and cocycle collections

for (A,F), we mean: _

(1.3); oXa,58) =B (C I, T, 22, 750) =R €24, 1),

where'r@'is. the induced filtration of ¥ to Zq(A,F)(Def.l.22).

Also we set:

(1. B)Z c(a, F;‘f) 6:=\P—p.g.subgroup of Cq(A,F)(Def.l.Zl).

(1.3)y 2% F;Y) = 2%, 0 2%, |

x;oreover, ‘when A con51sts of the single element X(i.e.A ={X}), we set:

(1.3)y DOLF®, gr= 2008, 859),

Now we w111 construct p.g.flltration in a geometric manner, For
this we first make a definition, which is a slice abstraction of
‘absolute value’ for analjrtic functions ete. in the standard meaning:

Definition 1.44. (1) By g-structure of F €Ab(X), we mean a family
€] ={6U;U€"uV(X)} of b-filtrations GU:R 2 508 ,B =I*U,F), satisfying:
(1.3)2 QsU.(a)an(a) for any U'SU and aeR*, where € =restriction:

r U';"if‘) =INU ,F)
(1.3)3 The stalk @ of B at PeX(i.e. BP.R 3 a»0, (a)-—%i;npeu(a) satisfies:
(1.3); B, is a b-filtration for F,, and Fy=U €)+e (a

(2) For an elemen’cfP EF, we call 1nf(a6R ; ep(a)af}’?)(é r*U0)
the © -absolute value of}?P.
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We call the pair (#,0) simply g-sheaf. Vhen there is no fear of
confusions, we write the symbol (Q{‘)G)} also as ‘;E,).Letting (K’«Qv;{)

be a reduced complex space, we define a g-structure e'j(: {BU;UEOuV(X)}
by

(1'3)4 eUzi""Q a'?E(U’Q%{)aF{%E(U’Q\K); ¥(B)l<a on U}, wherel |denotes

the absolute value (in the standard sense).

Definition 1.4,. We call GX the standard g-structure of 596(

One check easily that the absolute value defined by the standard
ag-structure’ coincides with that in (1.3)4. For ng we define the
standard g-structure by 9}{9 %}U, where 6‘15 assigns to each aE__P_\_"'

the k-times diruct sum of the subéet in (1,'3)4(of E(U,VQC{)). We
define g-structures for gneral cohereant 'shéaves in n.3. Yow returning

and a

£

to the pair @,;:‘\) in Def. ;.41 , ‘take ak\sahaheafgf of

1 * :

homomorphismw:F —7F .,
T 2IE

i )
B R M.edfro;l \E,: (,,5"‘0)’

Nefiniti A . :
Definition 1. te BY_‘q, struewr for F

we mean:
1

1 7 L . PEL ')3‘_" : ) *n. . + " )
(1.3)5 0 .= {°U=f:. > a= 6 (a)k= e‘éa)&i*(ﬂ,’g ) }U,JG.AJEU,_?L > a%’%?\éa) } .-
where € is the g-structure of F as in Def.l.4. woA?

Next the following simvle definition plays basic roles not only
in our geometric construction of p.g.filtrations but also in many
aspects of later arguments:

Definition 1.44. By a defining function of p.g.structure of X

(or, sinply, a_g:vg,;i_'gglgiion » we simply mean a map g:X———DR; .
We call (¥,g) simply a p.g.pair. ¥ow, using the p.g.pair (X,g) and
the g-sheaf (7,0) as in Def.l.4,, we define p.g.cochain collection

for (A,7) in the following fashion:
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- Defimition 1.45.(1) We say that an element Y ecqgg,vg) is
(g,8)-3-growth(d é_f_t_"'z), if, for each _A:é_ ﬁ”‘A, we have:
(1.3)6 lﬁzAf(Q)lgq.g(Q) on t4) , wherel 19;—9 -absolute value(Def.l.41).

(2) By (g,e)-p.g.filtrationﬂf_g;:gg@_,g) , we mean:
(1.3)7 Wg,e:__R_"'zag —>the subset of Cq(é,g) consisting of all (g,6)-growth

cochains.
| Letting the subsheaf F' of F and the homomorphism u)-F-?Fn be ‘as

in Def.l. 4 , we use the symbols 6 ‘09 for the g-structures for F F
which are J.nduced from & to &‘/(resp to F byw ). Then we easily have:

Proposition l.2.il’g,e,= (‘kg,e)' and \kg’weﬂumg’e , where the

right sides are induced from ‘23,91‘73_ ‘Cq(_j_&_ ’E:) and to Cq(ix_,g:') by @ .

In n.3 soon below we define a p.g.filtration for certain coherent

sheaves in a more explicit manner.

1 b
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[av]
.
6}

g,coherent sheaf. Letting (K’OY) be a reduced complex

space, take a p.g.function g of X(Def.l.44). We begin n.3 by giving
a v.g. ca-Lwtvon on coherent sheaves over K which is used in the

remaindey of this paper:

Definition 1.5. By a (g)~p,g.resolution of an Ox—coherent sheaf
kL, we mean a pair K=(w, {KJ 3= l) cor31st1ﬂg of an Qg-homomorphism W
and matrices & (12j2p-1) with entries ln'B(XHwA’%gp g The pair X

must satisfy a resolution as follows:

k I : A\ k
P -1, _ _ _ _ . 1w
(1.4); © >0y > > Oy > K, —0.

(For later convenience we call 0, in (1.4)4 the'first resolution

art’of %,)
03 L 0L Ly

Convention 1.1. (1) By & p.g.coherent sheaf over X, we mean a
vair ﬂ—(L,“ as above; starting with the sneaf\&»<our explicit

uniform estimations depend not only on I but also on a resolution

like (1.4)1. The terminology {nglm§ggggias above is convenient for

We arrange here some data which are useful in later arguments:

)D o+=collection of all p.g.coherent sheaves over X,

(=4

We define a map(length mao)
(1.4‘-)3 lg:Cthg)p 911——9 EQH( =length of the resolution of\m)(cf (1.4

and we also define an inc asnnb filtration of Coh(;j ot
D

) of, (L3)]

ol
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(1.4), Cohp(_X)p'g:={vI;IV€ COh(K)p.g; op < ot .

Our coherent sheaves in later arguments are in Coh(_zg)P g Next letting

the p.g.sheaf}:l\/be as in (1.4)1, we mean by standard g-structure of in

the one induced fromw:Q l—%vﬂ\gcf.Def.l.d,Z and (1.4)1). This g-structure
: k

GH is determined by w, while that of\?\/l

W . .
the analytic structure of X(cf.n.2); we may say that 9@ is determined

is uniquely determined by

[¢]

(uniquely) by the analytic structure of (E'X)' Now letting ’Lk'g,e S
&

denote the (g,GH)-p.g.filtr—arfcion for Cq(g,g)(cf.Def.l.45), we get

W

wg’e -p.g.cochain collection etc., which are obtained by applying

Def.1.5 to Wg,aH. For later notaional convenience we arrange here

some notaion fof such gollections.(The key point in the arrangement

is®(1) to drop-¥ne term GH from Q{g,e se.. and (2) to wrltewgzdkg,e

A4
simply as cg’, when no notational ambiguities take place.) Thus we have:

<9(A,H;8) ~ (cochain :
(1'4)6{ . -~ P.g};—_- yg-—p.g.{ }collection for (é’\:ﬂ)
_ZL(g,‘I_Ijg)p g cocycle

(1.4), ©U(A,Hz8), ,i=¥ - p.g.subgroup of CH(a,H).

g

(1.4)8 {Cz(A,Ejg).g}:z { set of (3,9 )-d~-growth cochains with value in \g]
z(A,.Hs8), c(a,H;e) N 23(4,H) .

(For the above sets, collections and subgroup, see (1.3)6 and (1.3)1.)

Also we will abbreviate(\{g-p.g.) and‘(g,eH)-) in the above terminologies

simply as‘' g’. The data as in (1;4)6,\/8 Will be frequently used in

the remainder of §1. .(cf. §1.2,81.3). Using the above notaion wve>have

the following easily from Prop.l.2:

k
Proposition 1.3. Cq(AJ;_{jg)é'=qu(A_ ’vQ’Xl;g)d (cf.Def.1.4).

1.8
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Y 3 q :
(The similar relation to the above holds for C (—A—’E’g)p.g and

&

a s s .
H; .) We finish n.3 by the following remark for convenience
C3(A, ,g)p.g ) i 3 by ’ &

of later argumnets(cf. $1.3).

)
Remark 1.1. (1) For Q\;{(k> 0) one can attach the p.g.coherent
- *
i k . . . .
.Qa(l———>5lx——>0, with the identity 1i..

as the p.g.coherent sheaf is useful

sheaf in the following manner:0->

This trivial realization of 9§

in later arguments. Unless we say otherwise, we mean by the! p.g.
7
coherent sl’xeaﬂ“_"\/X the above (trivial) one.

(2) Next we deflne a suhcollection of Co"x(X)p g

(1.4)9 Coh (-}Qp.g:= {ge Coh(,_X_)p‘g,' where the first resolution W:
g;—?ﬁ_(cf.Def.l.S) is defined by a matrix X(i.e.W=X), with entries

in P(X,Qx;g) } Note that E/is a subsheaf of ,Q,;((, with kl—'length of

colums of K, and we have a p.g.filtration for b=y by means of the

incolusion: HC—?O (Def’ 1.4, and Prop.1.3). Writing this filtration

2
as E{g, the set of\kgr-g—-g;rowth cochains with value in w}gcf.(l.u)8)

is explicitly as follows:

(1.8) 1 CHAE Y, =cU(a,008); N cMA B (er.(1.1),).

—) A

In §1.3 we give a comparison ofEE' and the standard p.g.filtration
g
\yg, which 1s a key fact in our pn.g.uniform estimations(Lemma 1.2).

4. P.g.covering. Here we assume that the p.g.pair (X,g) is
as in n.2, and we fix a mapP d:XXX>{0,051, to which we impose the
single conditton’ *).4=0 on the diagonal Ay of X. We define a type of

p.g- coverlng, which is used in the main body of this paper. Wort&s_ﬁ
lettim

1.9
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P be a poiNtt of X we use the symbol U.(P):={a€X; d(?,0)< r}. Then

taking a subset Y of X and an element WG{;{Z we make:

Definition 1.6;. By g=p.g.covering of ¥ of size o~ in X, we mean
the following collection™) of elements of 2% .
(2.5); 4,(¥;g):= {T(pig); Pev Y, wnere T (q;e):=0,(2), witn g (2T
Next take subsets XﬁY'-of X satisfying Y2:YF\X' and an element0!§3;2
| satisfying o'zo,
Definition 1.62. We call the map:
(1.5), s:B(Y ;) D T(Pse)—> A,(¥;8)> TolPse)
pLgLyefining_ggp(from the left side to right side). Here the left side
denotes the g-p.g.covering of Y' of size o in X', and'ﬁé(P;g)::ﬁ;(P;g)an
Fixing Y(resp.X',Y'), the p.g.covering in (1.5)1(resp.the p.g.map in
(1.5)2) is determined uniquely byo—(résp{c-,o{). This fact will be
useful tq'fix our ideas and to simplify argumetns in later explicit
- uniform estimations(cf, §1.3 and§ 4). Also such coverings and maps
~are suitable for our geometric applicatioans of the uniform estimations
to’geometric situations(cf. 81.2,82.2 and83). The coverings and the
refining maps in the main body of this paper will be the ones in (1.5)1,2.
Now, by Def.l.Gl,z we have introduced all necessary basic notions

to define what we call (p;g.cohomology theory for analytic variet;§§f

-

the first basic datum is the p.g.function g;&:&Rl which is used to
measure the p.g.broperties of cochains and coverings. The g-structure
for abeléin sheaves is used to define the p.g.condition on cochains
(cf.Def.1.41). TFinally ‘ distance function d’ is used to define the
p.g.condition of the coverings. As was checked in n.3, the g-structure

for coherent sheaves may be regard as determined by the underlyin analytic

structure of the varieties; we may regard the p.g.function g and the

#*) In our later examples of the varieties X,_AogY;g) is a collection

of open sets in X ,

7 0
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¢ distance func_tior;) d are most basic ,_f_addi,ti.onal__da‘_ta) to the analytic
~varieties, which are used to define what we call p.g.cohomology for
those varieties. In order to emphasize this, we will sometimes call

(X,g) and (X,g,d) as just avove ‘p.g. pair)and‘ 8. ’criblef
5. Flnally we arrange here cgln concrete maps, which are used

in later explicit estimations:first, by a pos1t1ve monomial , we means:

M(t):at (a,»>0), where t is a variable. We call a map L-R 3(01,0’)
——->R+29 &1 2) to be of lexponential 1 lln_e__a_x:g:_type(or, 51mp1y, el—map")
if 0‘1-;-_ (o )exp u( ), —L( ), with a positive monomial M, a finite
sum ¥ of positive monomials and a linear function L(t)=ct;c>0. It
is easily checked that a composition of el-maps is also an el-map.

Next making a notational convention:

1
(1.6)O a-(b‘l,&z):(adl,&z) for any a,d, and 62 ER’,

we set: \
(1. 6):'L }%;g i= {E ‘R X},:ZB (r,0) >R }(R+29 (' 0) } , where r ~Ml(r),

o =11, (x” lm (),
(1.6), _rs_p (Wv*?)xa 5 (r,05d) = (R xgH2)xat? 9( 2638) ¥, where
(,rl’o«');, (r,9), with an element ,E' E:”‘p g’ and §’ =M3(r )03'.__;2(d+6‘),
(Here ‘\I :—13 are positive monomials and c'al—maps.) R”"XR"'Z);%%%E‘?‘ (;1+X2“{+2)
We write the corfespondence:_l?_,_?.gaE—‘?_fgp.ga B - 5 G - w’
as 7, where 2,B° are as in (1.6)2(cf.Fig.I). (_E_{+X§+2) 7‘:3:’2——759 (_R_fx_RJ'z)

Definition 1.7. We call an element Eé_E__p.g.

an_estimation Jfor p.g.cohomology(or, simply, p.g.c.map) and 5 =1(3) €3,

=p.g

ite first part

!
In the later estimations, the map E concerns those on coverings, while

the map I concerns those on both coverings and cochains(§ 1.2). 1ettinrr
o

&
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the element (r;s3;4) be as in (1.6)2, the estimation:(:;?)’“7(1534)=E‘(r;'5“)
concerns that of coverings, while the element g con‘cerns that of
cochains. Note that the factorization in Fig.I insures that the term
[.3} has no influences on the correspondence: (r;g) — (r';oj). We use thié
fact in § 1.2. Next take p.g.c.maps E E = E . Then the corﬁposition

1° -—D.g
+2 42

Eze El is not) in genral, in Ep g." However deflne an order in R KR “xR

by
' . ' ' ' ' ) 1 ¥
(1.6)3 (r;>33) > (r ;39738 ) &> r<r , o~>0o-  and 3},

.

;}T_I‘hen the setﬁp & is closed under the compisition in the sense that

there is a p.g.c.map E3 e_gpg satisfying
(1.6)3 0 ng(r;o—;e}) o EzeEl(r;v;S) for each (r;r;3)e (0, 1];<R1 XRI

We UWS® this fact in later p.g.estimations frequently, without mentioning
it explicitly(cf.$§ 1.3). Also we usé the symbol: E, e E,E, to

indicate the inequality in (1.6). '

""'Finallly, the p.g.c.maps as above will be used in ourmain results

"in the p.g.uniform estimations(cf.The1l.1l and Th.1.2). Our explicit form
- of the p.g.c.maps are chosen An such a manner that (1) the p.g.estimations
obtained by such maps insure our p.g.anales of H.Cartan and (2)

the p.g.c.maps' are concordant to more eleentary p.g.estimations on

sheaf homomorphisms and on Cousin integrals(cf. 8y and 8 6). Fixing

the explicit forms of the p.g.c.maps as above, considerable paf’cs of

the arguments will be reduced to those of p.g.c.maps, which are

essentially algebraic and elementary(cf. §1.3. Also 'see, in particular,

§u.2).

/\ (\9
\\9\



206

1l.2. Main results

Here we summarize our main results on the p.g.cohomology theory
in §1:in n.1l~n.4 we introduce some basic data, which will underlie
the Qrguments in the cohomology theory in the remainder of Chép.I. Using
such data, we givevour main results on the uniform estimations in the
p.g.cohomology in Th,1l.1~Th.l.4(cf.n.4,n.5). Also dropping the explicit
estimations in these results, we give analogues of Th.A.B of H,Cartan

in our cohomology theory in §1(cf.Th.1.5,Th.1.6 in n.6).

: . . *) . R .
1. Geometric data, As was mentioned , our anmalytic varieties in

Chap.Il will be Stein varieties with suitable glgebraicity(and will have
similarities to affine varieties). Here we introduce such varieties.
(i) First, by a coordinated complex euclidean space, we mean a
pair'(g?,z) of a complex euclidean space gf and its coordinates z. When
" “there is no fear of confusions, we use the terminology (gggplggmguclidean

) )
space C"(z)(or, simply,‘euclidean space C'(z)) as a synonym for ‘ggg;g;gg

-eyclidean space (Q?,z){ We then introduce a geometric datum:

(1.7)6 23=(§?(Z)X Q?ki),%%g?(i)ﬂUé,Pé), where g?(z),gfzé) are euclidean
spaces and Ué(f??é) is an open set of C- , V

and we set:

(1.7)0 An,:=collection of all geometric data as in (1.7)6 -

The underlying variety of_giwill be Q;Q?XU'. We regard g?ng as the

L '
ambient space of XEQ?XU; and the point P, as the ‘center® of X. As we

%) ct,Introduction’,

23
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will see in later arguments, the uniform estimations, which are given
to varieties in An., are most basic among the ones-in 81.2.(In §1.2 we
introduce two another types of varieties(cf.(l.S)o and’ (1.11)0)‘. The
p.g.estimations for such varieites will be derived from the ones for
varieties in .nge, by using explicit relations. of the former varieties

to the latter;see Cor,l.4 and Lemma 1.3 in 81.3.)

f affine type, we mean

a geometric datum: ,‘
! n . . .
(1.8), _X_:(_C__(z),UO,XO,h,PO,H&), where XO(QPO) is an analytic variety
. . n . .
in an open set UO of C°, and h is an element of P(%’QHO), Q‘go being
the structure sheaf of UO'
Moreover, setting
11 . ) .
(1.8)O Dy=divisor of h(in UO), D=Xn (D, , and X=X,-D ,
the final datum Hy in (1.8)8 is a lh"li -p.g.resolution of Oy over Uy-D,

('cf.'(l.4)l)', where VQ/X is the structure sheaf of X and the first term

. : w o .
of I&{- is of the fom:“QUO_D —_ ,\,Qx(ci.(l.tl)l), with the natural

, 0]
homomorphism w .(Here “Q/UO"DO is the structure sheaf of UO-DO.)
The datum X must satisfy:
(1.8)1 D 9PO , and X is smooth,
(1.8)2 the germs of XO,D at Py have no common irreducible components.

We set:

—a°‘
(ef.(1.8)y)- ArdH:

(1.8), An, :=collection of all smooth«fanalytic varieties of affine type
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The underlying variety of X will be X-—XO—D We regard UO—DO as the
ambient space of X and the point PCXO as the "cen‘ter of XO, e

The p.g.uniform estimation for _}_(.G_pg_lla will play basic roles in
semi-global estimations in later argumen’cs(cf.—é 2). (Note that we incly
the p.g. resolution HX of the structure:s}meaf,‘gx in (1.8)O . ‘The

—~—

resolution HX is used to ‘give an explicit uniform estimations for the
sheafng_;see‘.§1.3.)

In the remainder of 81.2 we will fix geometric data'l(u__é An, and
gé&a of the form in (1.7)‘O and (1.8)'0. In (iii) soon below we fix
some additional data and notation for such varieties.

(iii) Pirst, to _&;L we attach the following p.g. and distance
functions:

+1 Ao Cn
(1. 9) { l {'Z’ M%, {Cé&:: natural distance * of {C E:; XC (ZJI

where z—(z z!). when there i_s_ no fear of confusions, x-(e wr;fce dx,dz' aly
as dz,dg . In our frame work, p.g. and distance functions have bgsic
meanings to define what we call ¢ p,g.cohomology theory? for analytic
varieties(ef.n.4,51.1). The p.g. énd distance functions for ’_2(1,2(_ as ah
may reflect closely the analytic _stmcﬁures of _’_f,g{_ and may be natural
ones for studies of p.g. properties of coherent sheaves over E/,_X_. Our
p.g. and distance functions for X €Any,XEAn,, {vL the remainder of
Chap.I will be the ones in (1.9)O(cf.also Remark 1.2 ,n.6, §1.2).
Next, gX,dX as above are determined by X. We will use the symbol
also for the p. g. pair and trlple'(__,gx). and (X,gx/, X)(cf n.4,81.1). A

when there is no fear of confuaiosn, we use X fox its underlying vall

X“\ /7
WL

%) natural distance of Cn(z) is defined to be dzi= N E’]

Z 9 ZE\J °
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X For the Varietyj:eAns we use the similar notai:.j_onal convenience to

the above,

3. B.8 parametrization. Take analytic varieties X € An, and _X_eAnga-

We then attach to _f}z,‘)i_what we call ‘p_ g cochain collection’, which will

contain all necessary sets of cochains in our-p, g, uniform estimations
for j_(v_,_)_(_(cf.lntroduction of Chap.I). The arguments are given parallely
to _)'j(_’EAn and X € An, , . For notational simplif.ica“«’:ionJ we set:

=0
] % * * ~ o~ -t 1 ] _ .
(1.9), (X .X ') :=(X,%,By) or (_)_(_',X,PO)(cf (1.7)g, (1.8)y), and Doy
) 1
::UO or D .

We construct the p, g, cochain collection in the following three steps.

=

First we define a parametrization of open submanifolds of gg* by

: (Psr) X (2) :=C"ruL(P)
(1.9)1 Vl_(-x-:v:ﬁzapo,l* XEBVE P;r)}.? XT(P):=U;(P)r(\X_

y

) . .
where Ur(P A)),Ur(P) are the discs in % , c® of center P’,P and radius r,
and we 's'eteg

=(V)

. ' *
(1.9); owr (X)) =¥
V: +2 . . .

.)(_31 » we define a parametrization of elements of

Next setting MX“
CovO(X_%) by

P

(1.9), wexz Me = Vgs XBE? 2 (r30)—> 4, (X1(27)), where Xi(2")=E,(2")
or l(T(P) as in (1.9)1, and

' ®, * . %, % %
(1,9)2 A (X (P )):=gz*-p,g,cover1ng of _}_(_r(Px)‘_ of size 6~ in 2(f(cf,(1,6)1)~
We then set: v

(1,9) Covg(L)y o i= uysx(My,)

Thirdly, taking an element H €Coh(_*) (Def 1.5), we define a ﬁarametri—

-zation of sets of p g cochalns with value in H by:

¥) Note that an manlfold X (P ) in ouv' (___) b g does not share
particular p, g, propertles However, the suffix ¢p g ? just above makes the

notatlonlito the ones in (1.9)2, (1.9)3 .

Q4
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}1{ X&) 25 = =(u3d) —> Cq(A (X (P ) g)& :=set of all

d -growth cochains with value in H(cf, (1. 4)7))

(1,9)4 Cq }\

&
A
=i

and we set:
(1.9); A, :=Cy

We define a parametrlzatlon Z% by changlng Cq ? %o
: v

(Zq g

P, g parametrigation table
Mg x 232 D1 =(k59) -——Cvgi—; LB, o DA ECD.W, ,
Vi *BY 25 )=(v; ) —--z.__>uovo(X )p g DA,
Dy XKETV=(P ) — K sourf (" )p 5.2 (%) .,

lI

ll

_}_(
M
)}“
The manifolds , their coverings and the sets of the cochains in our

p. g, uniform estimations for X will be taken :E‘rom Ouv (X ) D.8g’ COVon)p,g
and Cq(_;_( H) g The last collection contains all necessary data in our
p. g, uniform ;zstimations . In order to erﬁphasize the role of éuch a

collection in our uniform estimation, we make:

Definition 1.8, We call CQQ(_*,Ij,)p o g-th p g_cochain collection

)
o)
=
{m

_3 . bstimation data . In the uniform estima- Fig.I.

-tions in n.4, we use the p, g,c.estimation map E - (R+;<R'L2 +2)___;7 (’3(+)<’1+)
ggi; g and 1td first part E CE - _(Def.1.7). Lz | B

P +2 +2 A +2
Next note that our uniform estimation does not (R%R 5 (R" xR™)

work for all elements of )\X%(cf.(l.9)3)but for
elenents of a suitable subset of )\Xe+ More. preCisely, take subsets U]'.(QPC'))

?
of U

1
o and Ul(BPO) of"_UE)(cf (1.7)0, (108)0), and we set. Dl’lf'zul or (DﬂUl)
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~

(CD.,-.) Also taking elements T=%,.c R’ and %= T € 2 we set—é'
O X* X=

(1.9), V!* Dy g X(0,F) /JX Ve X 57 and Ay, /ix.xg_{z.
We fix this restricted parameter=space in the Ijemalnder of §1 . Our p.g.
uniform estimations for X" in §1 will work for all elements of /\,X*"

- 4, Main results -Now, using 'l_:he sets of the coverings and tITe-
cochains in (1,9)1’\'3 and the estimation maps as in n,3, we will give

our main results on the p g uniform estimations for )_(_%= iior ;{_ &= Anga

First we will be concerned with Cech coboundary operator:
A

N

Theorem 1,1, (P.g uniform estimation for Cech operators 5;{ ) -

There is a map__.esz Co_h(_X__) DE—-?_._JP g ,E (q 70), with which we have:

(1.10), s 734, (K (P7) )y < ch"l(A (X .(P ) )/ 5 with (e e’) EH(r;,,.;g;
Here the _parameter (P;r;w;g9) is ln%(c D ’X ¢ xR )4'1"'2 ﬁ+4) MoTeo:
8=p, g, refining map: X,Lr (P)) e A (X (P"))(cf.Def, 1.6,),

over,

*) R+,\,°_:=' lere _iﬁz; & Z&Y} (cf.the end of Introduction of Chap,-I).
%) For the p,g.refining maps: , see n,4, 8§1.1. In the later arguments
when there is no fear of confusions, we use the symbol‘s ’ for the D g,

refining map in: question (without mentionimg it) .

29
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Next we will *be concerned with the' rrsolution of HECoh(X ) (cf.also

(1. 4)2)
w Theorem 1.2, (P.. g.unlfom estimation for. T'GSOLtJ.QIL)
There is a map EX" Coh(_) PR R E‘Sq 0), with which we havy
(1.10), "2%(4, CUEI WIS Zq(.Av\(,_I((ﬁ)),Q,X*)J arith (') =By (x5 59),

where the parameter (P;r;e;d) is as in Th.l,l. Moreover, q)H ,_é{(x. ~—> H,is

the first resolution part of H(Def 1.5).
For the proof of Th,1l.1,Th.l.2, see §1.3. Also we give applications
of Th.1.1,Th.1.2 in n.6, 81.2 and in §3. Here we add the following

U .
Corolally 1.1, 3herg_§g\g_£gp_£8:£+—9_”§; g’ which Fig,Il

satisfies the factorization in Fig.IT.(In Fig.JT ‘1g’ Con(X), ,—S &

denotes the length mapjcf.(l.d,)z), and the projection lg l,
. . -Z—_}; El

]

% is as in Fig,I,n.6,%31.1). , ; P.
The similar factorization to Fig.IT holds slso for the map SX*in T™.1l.2,

(Cor.1.1 is not a consequence of Th.l.l. But the proof of the latter
will also insure§the former;see §1,3.)
Nowjin an accordance to the parametrization table in n,2, we rewrit

Th.1.1 in the following diagram:

%) Strictly, the map ES in Th.l.l depends. not. only operator § but
also the cohomology degree q . But the influence of the degree g in
determining the map 23 is quite small(cf. § 1.3); Here and in the remaind
of this paper, we use the phrase ‘there is a map 8 )(q>O) ,ee3 @8 a syng
for‘there is a map 55 q(q7 O),.... The similar remarks also holds for tH

map Exx in Th.1l.2.(See also Remark 1. 2 at the end of n.l on ”che depen—*
~dence of the maps€ 8 2,00 On the other geometric data like.C (_}_( ».}p

yeoo)

29
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v
Fig 11, P.g.uniform estimation for Cech operator

73 o

H Qrv¥* o]
- 2L By o 2 25X ) P
q-1 | U g >
CE, >4 1(§§)p;§—950q l(Eg(A)) - s+2§5k )

.
7 Covo(gg_ )p.g
s

) TV o
> Covo(_)_(__)p &

(The similar diagram also holds for Th.1l.2.) Next we assume that the

variety X X in Th.l. 1,Th.1.2 is ix Anla _XEAn (cf (1.8)0), and take
2

a point P &€ Dy, )("(Ul (\D) We then set ILX.—(O X PJ’L (c:ji‘.(l.9)4)e -

For an element U=(r; a~)€u (=(0, I'))( R+2 ), we write the p.g.covering

Av(_)gr(}?))(cf.(l.9)2) as _—-,'x.@) Moreover, we set:

-Q . - o *) q, :
(1.10)5 U@ (R) B gi= Yopo © U4, (?) H); (=gy-D.g.subgroub’of © (4,.1)

 Then, from the explicit formulaolons of Th.1.1,7h.1.2 and from the

factorization in Fig.I,n.3%,8% 1.2(of the p.g.c.maps By Gij_p g), we easily
£ .
have:

Corollarly 1.2, We have the inclusions:

(1.10) {S éq(i‘@) ﬁu)n gC § ¢4~ l(A /(P) 8o, g(q 1),
. 4 1s” Zq(A}L(P),w CaJZ(A[{()H) q70),

where [Lis a suitable ,@1@@@1&.,9ﬁ#

Cor.1.2 is given in terms of the p.g.subgroups as in (1. 10)4, and may

bel suitable for geometric apvllcatlons than Tn 1.1,Th.1.2, where we
mor
used the sets of the cochains, C LR,(P) ,...)3 yeoeos ‘We use Cor.1.2 in n. 6

¥) The similar fact to Cor.L.2 holds also for 5('6 Ano. But we do not
use such a fact(cef.n.6, §1.2).
*%x) cf. (1.4’)7,

30
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Here we make a remark on the explicit estimation in Th.1.1 .

Remark 1.2 As may be clear from its formulation, the estimation

1“
X . . ..
map EHéiﬁb g is taken independently from the point P, which is the origin
‘ *
of the manifold X:(P) in question When the variefy X =X&An,_., the

1?X*(£>P*) has, in general, singularieites , and the above

independence is never of obvious nature, As we will see in 81.3, 84,2

divisor D

and in §5.1, this independence is insured by certain uniform estimations
on Weierstrass polynomials and the coherency theorem of X, Oka (oe, more
precisely, the structure of the proof of ﬁis theorem) , From its formulatio
we may regard that the coherency theorem insufes a uniform structure of
the coherent sheaves with respect to the points on the analytic varieties;
The independence mentioned just above'plays a'very basic role in our
treatments of the cohomology theoires in this paper(cf§:21§3) . As iﬁ

the case of +theories of cohernet sheaves, where no explicit estimations
are involved, +the coherency theorem of K Oka will play the basic role

in our cohomology theory in this paper N ext Cor ,4.1 and cor. 1,3 concern

a type of unlform estlmatlons with respect ot the p, g sheaves on the
analytic varieties in question , Though we do not use those results in
this paper, the factorizations in Cor,1,1 and Cor 1.3 may be usefuvl, when
ome concerns a family of p_ g, coherent sheaves .

Remark le 22. The remark here is of technical nature for the proof of
Th.1,1. Lettlng X" be an varletyy in Anla or Any, we use the phrase Th 1,

X
b,g.c map EX*-tIéXt letting C be a collection of p,g, coherent sheaves

’
holds for QX% as a synonym for thst (1,10)l b2lds for 0,,, with a suitabl

over X , we use the phrase Th,1,1 holds for C ’as a synonym for (1 10)1
holds for each H & C (by changing Coh (xX*) in ™.1,1 by CJQ . then we use
‘this terminology, we assume that the factorization in Cor,1.1 holds for

C .We use the similar terminplogy for Th.l,2 and Th,1.3,Th,1.4

*¥) The similar remark also holds for Th,1.1,

31
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5. An affine analogue. Here we give anganalogue of the results

in n.4 to affine varieties. The content here is chiefly given for
purpose of geometric épplica’cion(cf.n.e soon below and § 3). Ve d-o

not give corresponding explicit estimations to Th,1.1,Th.1.2 to

affine varieties™). Our results here will given in a similar form to
Cor.f.2. In order to formulate such results, we first mean bgnooth

a
imbedded affine variety a datum }_(_' as follows:

! n ' ‘ L . : . . .
(l.ll)O X =(g(z),X ’EI«X') , where X is a{ affine variety in a euclidean
space gfl(z)(cf.n.l;«*ﬁ 1.2) and gyt is a(iz ”resolutlon of the
structure sheaf"‘g}'(, of X' over gfl

We then set:

(1. 11)O Aff:=collection of all iﬂ iloedd@d affine varieties.
Letting an element g & Aff be of the form in (l.ll)o, the underlying

analytic variety is the affine variety X' . In this paper, unless we
. . . **) v
say otherwise, we regard ZX ’stK') as the analytic variety. When we

regaxrd IL;t as the algebraic variety, we write it as (X where

1g """’X ,alg) 3
the underlyi-ng topology is that of Zariski. The p.g.and distance

] -
functions for X will be:gx| = [21+1, dX':= induced distance from

the natural one dz of Cn(z) We write the p.g.pair (X /) and trlple

:g)_{—
’qx,d 1) also asX(cfalsonl §1.2).

5
Next setting /&Kr:::Rlz, our coverings Wlll be taken from the famllyﬁ\

(1. ll)l Covo(X ) -L_D_(X )H vé}ix_} , where A (X ): -gj:v-p .g.covering
of X, of size o 1nX_(Def 1.6 )

Taking an element I;Ive Ooh(_}_(__)p g our underlying datum for the p.g.

*) For the explicit estimations for Th 1,3, Th»l_4, seeslj and

$4,2, where the proof of these 'theorsms is given ,

¥*) As in n,3, we use the symbol X A also for its underlying variety

. l'.
(N
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cohomology(given to g;) will be the followigg p.g.group;

v(i.ll)z Cq(_Aw(g'),g)p'gpg&-subgroup of Cq(_j_\_&%(‘i),mp.g’(])ef.l.? and
(1.4),]).

Thirdly we will use el-maps L R+2 R+2(cf n.5, 1.1) in our estlmatlons
soon below, We set: |

(1. 11)3 L= collection of all el-maps.

For each qu uO we fix a vrestricted parameter space /\LX/:—_I%‘.&;mth
an element &= 0;,' < R{z, our uniform estlmatlons w1ll work for }[X(cf
also n.3, §l.2). Iow we give an analogue of Th.l.l,Th.l.Z to 2(_ in
the following fashion:

Theorem 1.3.(P.g.uniform estimation for Cech operator$ = & /)

There is a map 8 :Coh(_") 9H’-——->L9L (q70), with Whlch we_have
(1.12); 5234, (X) g)p ;< gcq 1(A A0 Do g Wlthcr_LH:( o).

-Theorem 1.4.(P.g.uniform estimation for resolutlon)
.8 “‘,—-%L’BLH(Q‘?O), with which we have:
(1.12), s "7 9a, () ¢) c_w}fzq(____\(x ) H)p g \utho-—-LH«(G'), '

where wHa OX,-—aH is the first resolutlon of ‘Ijv(cf Def.1. 5)

There is a map EX' Coh(___ )

(In the above o is in the restricted parameter space ]LX/ ) Also,

corresponding to Cor.l.2, we have:

Corollary 1.5. We have the following factorization:
, CO}],(K )p g & (Here Y1gklength map(cf.(l.4)2) , and
(1.12), & (4 € = =gor & 1.)

The proof oi‘ the abeve results is glven in §1.3(cf.also §4).

‘JJ

i
i
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6. P.g.complexes, Here we give our analogue of Th,A,B of H,Cartan
to the p.g.cohomology theory. For this we fix the following data as
in Th.1.1 ~~ Th.1l.4(cf.also Cor.1,2):

7 the local analytic variety X€ An
(1.13)0 and the parameter space }S( (o, %) X Ry
the affine variety X and the parameter space/l,

.-——

An, , the point P&D,

and we set:

a3); @, U =@l or (X', K40, d by, 3_411,(?)) or A (X))

for each j,(, (r; G)C/i (0,7) X'B@V or =°‘C,(§£ =ﬁg_ ,
where the point P € D is as in Cor.1l.2. :
% '
Letting the p.g.sheaf H =H or‘H be as in Th.1l.1, or Th.1l.3, tle make

*
), we mean:

Definition 1. 9.+ By p.g.Cech complex for (A oH,

1.1 0 A LH > . e q
(1.13), _-—?C A,,8) ﬁ* —>C (Aﬁ,glv)ﬁ
We write this complex as C (f;i

H) p.g
Next, assuming that H 1s of the form in (1.14)1, we call the

*
following complex q-—th p.g.resolution complex for H :

K 7o

q p-1 a H. q .
1.1 0 A — 0 4 o H
(1.13)5 0——%7( ,gx,)p ety = ——> 1% a0 l) ol B EA

Thirdly, we regard ,U.Xu = /L(J.LOP/ xr as the ordered set in the

following manner(cf. (1.13)0):

; i ’ i 4
(1'13)1,1 m=(r;a) >‘lll=(r';o-’)<.—9 r<r', *>7, and U= 0 >/t=ﬂ\: .

Then 1ettingl(_P denote the germ of X at P we make:

R | ] ]
Definition 1.9,,. By p.g.Cech complex f‘or:_ggP,AI:I/) or (_}g__,ﬁv), we mean:

* | 1
(1.13)5 C (XP,M) —1im C (A w‘)p g C (X H ) 1= :hlm C (__/L,ﬁgp g
We define ‘p g. resolutlon complex for (_)_(P,H) or (X H ) by operating

the similar limit procedure to (1.13)5 to the complex in (]_.13)3 .

94
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~VWriting the g-th cohomology grouﬁs of the p.g.Cech complexes in Def,1.93
as Hq(XP’H)p.g’ HQ(XE,H')p.gQ we have the following directly from Cor.l.2
and Th.1.3: |
Theorem 1.5, HI(Xp,H), , &0 and ae(x' ,H‘)p.g'_—’—";()(q70).
Next applying the standard syzygy arguments to Cor.l.2 and Th.1.4, we
easily have: |
Lemma 1.1. The -th p.g.resolution complex(gz O0) for (XP’H) and

(x',5') are exact(Def.1.9,):

K X k
i od AP p-1 1 ... -4 1
(1.13)g 0>1im 25(4,(2),04") ——y -~ —=1im 274, (%), 0¢7)

Wy g
— 1in 7 (4, (P),H); o

(and the similar exact sequence for (X',H').)

DP.g

where we set ApﬂPX=AO(Xr(P)).

Now, in order to determine HO(XP,H)p.g, HO(Xf,H')p.g, we let QP,QX/denote
the natural homomorphisms from the algebraic object to the analytic one:
(1:13); Op:0y (xD)y —H(Up,00) 5 g 5 By 100X 0y ’alg)‘qHO(X' Ox' ). g3
where v
(1.13),}'0X (#¥D) :=sheaf(over XO) of meromorphic functions with the pole D.
Then we hage:

Theorem 1.61. The homomorphisms QE,and.exy are isomorphic.
If X' =" then Th.1.6l is a classically well known consequence of Cauchy
integral formul§¥QIf XO is smooth, then we get‘Th.l.6l also easily from
Hartogus theofem on removable singularities(in the codimension one case).
For general X,X' we derive Th.l.6l from what are mentioned just abvoe
(efon.4,§1.3). Finally, avplying the étandard Syzyey argumenﬁs to

x*)

Th,1.6, and Lemma 1,1, we easily havé:

2
*#%) c¢f. also Lemma 1.2 in§1.3,
Q'%@ﬁ ef. (O)l in the introduction of Chap,I,
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arguments to Th 1.61, we easily have:

Theorem 1.6,. The following complexes are exact:

32 ﬁl kl @y
(1.19), & —— ) —> Oy K, — > H k@ ,I;l)p . UH> 0,
1 —4;
F(—alg’gx"alg) EE(X 1g’9x *alg ) 7 H O ’aé’) P.& 0.
Th.1.5,Th 1.6 are our p.g.analogues of Th.A,B of H.Cartan( ).

Applications of Th.1.5 and Th.1.6 will be given in § 3.

Remark 1.33. In [ 1, H. Yamagughi showed an analogue of Th.l;é,
Th.1.6 to algébraic locally free coherent shegaves over affine vérieties,
by using Th.1.5 and Th.1.6. Next, note that, in Th.1l.1 ~ Th.1.6, we gave
a- more or less categorlcal treatments of the.p.g.uniform estimations.

At present, we lack the notion of Kp.g. maps% In this direction, S.Kamiya
([ 1) gave some funcgfiial treatments of our p.g;cohomologybtheory. 1t
seems to be quite desirable to give a suitable fﬁnctofial generalization
of our p.g.cohomology theory in §1.
Remark 1.32. As was mentionedf’cohomology theories with p.g.condition
 were studied by P.Deligne-G.Maliotiost([ 171 1) and by M.Corbalna-
P.A.Griffriths(l Q,]) for ~locally free algebraic coherent sheaves over
smooth algberaic varieties. Our results for p.g.coherent sheaves over
the analytic varieties as in §1.2, together with the result of -
H.Yamaguchi([21]), are more genral than theiTs.’ In particular, the
independence assertions mentioned in Remark 1.2 are not found in (21,011 13.
Also, our proof of Th.l.1l.~~ Th.1l.6 dependé:injthe uniform. estimétions on
p.g.estimations on
homomorphisms on coherent sheaves in §£1.3 an‘*cn—CUus+ﬂ—*£;;;;%ls (cf.

Chap.III), and is entirely different from in L;i])‘ﬁli], which use the

§— estimations.
¥) ¢f.Introduction.

34
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8§1.3.-A key theorem and key lemmaé
B

Here we will reduce Th.1.1~~Th.1.4 in $1.2 to a key theorem,Th.1.7,

and key lemmas,Lemma 1.2~1.4. The latter is proven in Chap.III and$§ 4.

1. A key theorem First setting

(1.14)O Euc := collection of all products C (z)XC (z )} of coordinated
euclidean spaces(n.1l,§ 1.2),
we define a map(dimension map) dim:Euc_ 's X—-Cn(z))( Cn(z )—>Z x2*¥>(n, n)

The p.g.and distance functions for X are: gX_ Zl +1,with 2=(z,z ), and

di =dz(_natura1 distance of X _)(cf n,1, § 1.2). Taking an element (P; r,a- o)
eAM-Q_ X (0,1} XRT X_Rl » the set of the cochains in Th.l.7 soon below

is as follows: .

q o= -

(1. 14)1 C (,Aa\(x (P)),wX )¢ =set of all ng—a\ growth cochains with value
in the structure sheaf O"’ of X(ef. (1. 4)8), where

(1. 14)2 _}(_ @' ))~—gY -D. g.coverlng of X (P ):=C"X U (P ) of size o-
in ¢ xc® , wit?h (2"):=f0' € & ()34, (@4F) < = }oef.1.6)).

Then the following theorem is most basic among the resul'ts in § 1.3:

Theorem 1.7.(P. g.unlform estimation for OX,X—C XC ).

-~

There is a map 8 Euc_ 's X—-—}E

g E:(q>0), ' Fig.

which is factored éds :_L»I_l\ Fig.I, and with which we Buc &
‘have the following for each e Euc': +‘l,dim (s .

' ¥ q ~ 1 a-1 R > E,
(1.14); s 2 (A(X,.(P)),0¢),C8C (__o\(xl,(r)) Wals &
with (r',o.';al) Ez r,»; ), where (P I‘,'r 3) is. 1nA~ =_c_:_n)( o o ex_g;“z.

¥) d o _natrural distance in C (z ).
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As may be clear from its formulation, Th.i.? will be most basic for

the proof of Th.vl.lNTh.l.G.(among the p.g.uniform estimations givinv

in §1.3). The proof of Th.1.7 will be given in Chap.IIT in an independer
manner*)from the contents of Chap.I,II. Here we derive a consequence '{
of Th.1l.7. For this we first set: |

(1.114)3 Euc:=collection of all euclidean spaces }g'=§_n(z).

A ]
We denote by t dimo’ the map-Euc 2X ———?'7+9 n, and we also define a map:

(1.14), 1’ Euc;X =c" (z)—-—?Aff?(C (2),X =c" ,‘IK/) where H, ,denotes
the trivial resolution of Q’X’ 10 =0 ,->Q0(,—90(cf.Remark 1.1).

By means of I we regard an elemenet X- (z)e Fuc as the elemenet of
Aff‘ we use the terminology for Aff(n.5,81.2) for X . In particular,
the p.g. and distance functions for X are: gX,— |z| +1 and d.(; =natural
distance of ___(z)(n-‘_"c, §1.2). Next taking an elemenet (553 )éAfR+2XR+2
we set:_’” ' ’

(1. 114);,' Cq(A (Y )5 Q, l) = set o‘growth cochains with value in J,

1
wheredArr(X Y:=g <! P+ g covering o (in X_) of size o (Def.1.61).
We use el—mans f‘or the estimations in Cor.l.l4 soon below. We set:

(l.l'—l)4 L=L)(L, with L=collection of all el-maps(cf’.(l.ll)B).

To an element L—(L ) € T=LXL we attach a map:

1’1"
(1w, L:RZx g ®3(030) —> RPXRPD (1, (0,1, @49)) .

We then have:

3€
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Corollary 1.4 . There is a map E:EuCBX'=Cn(z) Fig,II
~T3 1.,,(q>0), which satisfies Fig T, and with Buc _ &
hi ’ h’ following for each X € lamg~

~which we have the following for eac Buc: | 7+ > T

(1-14), s*‘zq(A,,‘(x'),oX{)&c § 0¥ (au(x") 001057
with (v’;d-')=LXx('r;d~), where (+-3;3) is in AX|(=RIZXRIZ),

Proof, Letting U.';_ denote the disc inAg(w) with the center O(=origin
of C¢) and radus r=1, v;'e identify ¢” w#ﬁgél?c}m;&Ui . We write the
projection: 0" x U ==> ¢® as T, Then, writing the left side of (1.14)5 as

: ) ’
_Zq, we have:?t;zq C‘.Zq(Ar(CnxUs_),O)a\',where O:=structure sheaf of Cnx U; »
Apply Th 1,7 to the right
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side of thé incluéion just above, and we re%trict the resulting inclusion

of the form in (1.14)l to g_nxo'(gg;“). Then,comparing the explicit

estimations in Th.,1.7 and Cax,1.4(cf.also the explicit forms of the

p.g.c.maps and el-maps in n.5, §1.1), we get easily (1.14)5. g.e.d.
Comparing (1 14)5 with (1. 12)1,1}1 1.3, we ea811y have the 1mpllcatlor
Corpllary 1 ‘l: Th.1.7—> Th.1l.3 for each ,Q,‘{v" 6‘*‘110.

" The right side will be our starting point of the proof of Th. 1.3,Th.1.4
(cf.n.2 ~~ n.5 soon below).

2. Sheaf homomorphisms. Le utlllg X be one of }_(_éAnO, {L_eg_r_z_la- or

1
X € ALf as in Th.1l.2 or Th.l.4, we will give here a lemma on the title of

n.,2, which will be most basic in deriving Th.1.1~Th.1l.4 from Th,1l.7.
For this taking an element I ECoh'(X*) (cf.(l.4)8), we recall that
such a sheaf H is endowed with two ¢ natural1 p.g.filtrations: the first
one, ¥ , is induced from the ireSMution K:O.r"i‘—?H of H, where K is a
matrix \frith*entrles 1r1f(A ,w( ,g,y) (cf (l A)Q)’ and has been used
hitherto 1'.11 81, The second one, 117 in syn‘bol, is induced from ‘che
lﬂClUSlOﬂ:H (_;'),,\6, k~1vng bh. 01 colums of K,and letting the parameter
(?57,05d) or (3 &)eA have ’che similar meaning to Th.1l.2 or Th.l.4,

o
]

the set of 3 ~g:owbh cochains defined byw'is as i‘ollo”s(cu (1. 4) ):

1 2% }
(1.15)1 Cq(_éq\(g_ ):;:I’;Y)&:= ( (Y ) h) nU (A- (-‘- ) o*r* )A .
(Here ;t:* denotes the manifold _J_L_r(; ) or _}_{_ as in Th.1.2,Th.1.4.)
We write the corresponding set to W explicitly as follows(cf.(l.4)8 ):
' ¥ . 3t k
(1.15), ¢ (¥ ) 1) = KO (A, (X)) .00 a -
Fow we give the key 1emma , mentioned soon above, in terms of

1
a comparsion of the sets of the cochains~ in (1.15)-! 10°

¥) ef.Remark 1. 22. ) . ~
*¥) ggs =p.g. function for Xi= & 7141, In3'l or @#l(cf.Th.1.9,1.4).

£R¥) For the sets of the parameter A’_#, see n.2 and n.5, §1.2.

4.0
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There are maps. 8&)( :Coh' x ) Qg—erL’:? L and . Fig,III
) €y¥
E}I(* A —-—>L, which is factored in Flg IIT, and Wl'bh Coh (_)p -g-————X—?L '
| | 18 v
which we have: Z+ L

(1.15); s ed(a (T YY), € ct(a (Y ),W,y),,_wn.th (o;8) =L, (o- a), where -

the parameter (o;d) ;”As__as_..lnw.(l.lS)l .

For the proof of Lemma 1.2, see §4.(See also Remark 1.4 at the end of £1.3

3. Consequences of Temma 1.2, First we prove the implication:

Corollary 1.5. Th,1.7 + Lemma 1.2—>7Th.1.,2,Th.1.1 for An,.

Proof, Take an element X < An . Then, applying Th.l.7 to the i'ight

side of (1. ll)Z,Th 1.2, we easily have:

(1.15), Th.1.2 for Anj—>Th.1.1 for An,(cf.n. 4 §1.2).

We prove the left side inductively on Cohp(v) (p=1 2,..)(cf (1. 4)2),

using the standard syzygy arguments:if p=1 then H=OX(IC>O), and we

have directly Th.1.2 from Th,1l.7(cf.§1.2). Assume that (1)p=2 (2) Th., 1 2
holds%%gr Cohp"l(ﬁ and (3) HE Cohp(i/) ertlng H as .--?OX ....'L;OY
—>H-—>0, we define an element ) 6Cohp 1(X)p g(\ Coh (_) to be:

K

) .
""ZQX —»EIJ(CVQ&)%Q. Now taking a parameter (P ;r,v:a)CAz(CU:-) xg_*»(,g“%(ﬁ

(ch’i‘h.l.Z), we set:

(a) 2'%={gccd(a, (2;1),08); sus9=0} ,uhere we set A (Psr)=A (X.(P)).

Then letting the p. g‘ filtrations 1}3{,\}_’1 for ;Ii have the similar meanings
to W,V for H(as in Lemma 1.2), we have: §2'9C Cq"'l(A (P;x), »Hy 3 3&1)&.

Applylng Lemma 1.2 and Th.l, ** )’co the right side, we get: |

(v) s*8z2'9¢c 29 (a y(p5r) .1 ,ﬂl;‘i’l)&,csc (4, (P'r’) B3 )y, where (o &)—LK (o736

and (r”,oii;a:/): (r,q,&) are defined as in Lemma 1.2, Th.1l.2.

*) For ’che sets _’f_,’,}_,_of estimation maps, see (1.14)4. Also the set

L in Fig.III is the first component of I=L xL, and lg=length map(ef.(1.4),.

) For this terminology, see Remark 1. 2, and Remark 1.3,
“#) By the induction hypothesis we have Th.1.2 for CohP~ l(_)p’g; by

(1 15)2 we have Th.1.1 for CohP~ 1(__)p g -

4
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It is clear that (b) insures:

(¢) s¥7'%¢ 79 (A,,,ot-),, + c%(a w8y s where A=A g(®3 I’)

Finally operating the homomorphism e to the both dides of (c), we get the
desired inclusion (1.11)1,Th.1.2. Q.e.d. |
For later gotations, we rewrite Cor.l.5 in the form:

(1.15); Th.1.7 Syzng(Lemma 1.2) o 1.2 for Ang—5mm 1.1 for an, .
Next take subsets of A, A of An; . ,Aff(n.1,n.5, §1.2). Then the similar

syzygy argumnents to Cor.l. 5 insure: e

—‘ Proposﬁ;mn 1,4, If Th 1,1 holds for each O.X’X eA(resp. Th.l.3 holds_

L — ,\K

for each o) ,g e_j_\_ ), then we have Th,1,1,Th, 1,2 for A(resp, Th,1.3,Th 1.4

Taking _A_' to be Fuc(n.l,81.3), Prop.l.4 and Coxr 1.4 insure:
4
Th.1.7 for each Oy ;X €Euc .

Corollary 1,6. Th 1.8 Tacesoss
syzygaY§Lemma 1’2)7\ The1,3, Th,1,4 for Ruc,

We give here an analogue of Cor,1.6 to An, . For this we define a sub-
. 0 . |

-collection Any of An, ~as follews.

(1.15)4 -Aﬂgazz&ééﬂla; X is of the form:(_Cf(z) Ug+Xgs .X’*IX’ O)}

(cf.(l,S)O), where X, coincides with the ambient space Uy. Horeover,fy

is the trivial resolution of § :O-eQ/Xﬁ—;Q/’X:eO(Remark 1.1), where X:=

X

0
Thus X coincides with the ambient space UO—D . This paroperfty is similar

~D, with the divisor D of hX’

to the one of X C (z) € Buc(C Aff)(ef, (1,24)3), and_,AanC,An3 has

a similar role to BucC Aff:

Gorollary 1.7, Th 1,1,Th 1.2 for Any—»Th 1.l for 0y:X & Ang

"‘—>T_h_f}_zl Th.l.2 for Anga .

4_1_2\
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The second inplication follows from Prop.l.4. The first one 1S

proven in n.4, by imbedding varieties X & Any  to higher dimensional

euclidean spaces(cf.Lemma 1.3 in n.4 soon below).

Diagram 1

LPrestal .
' ' Syzygy Th.,1l.1,Th.1.2 fo:c'_.gn_e
s Euc —_— _ . ‘
Th.1¢7(OX.'sX€——— ) (Le 1.2) _—’%' .
¢- —imbedding — — —> Cws 2,0
Cor.l.4(-9x ;X'e‘ Euc) (Lemma 1.3) ‘ Cor.1,7§9_)£,,x_€ Anla)

L 4——symyey  —— 7 \J/

2 .1l. r
(Lemma 1.2+Prop 4) Th,1.1,Th.1.2 for _A;lga
the final

Th.1.%,Th.1.4 for Euc
(The theorems at the bottom will be the starting points of

,___vaf_mmiof Th,l.l~ Th.1.4(cf.n.5).)
f Th.l.lo Th.t.48ct.n.2).7
4, Imbedding, First taking a euclidean line C(w), we define a map:

(1. 16)O I: An 9 X—>An, 3 A=(C(w))g_ (z), )(_CXU )(cf n.l, §1 2), where

X=X,-D, with X,=U,, is as in (1.15)er .

0 0’
Setting %ﬁf:l—hﬂ, S:=:§£:=locus of h’i in z , and Ti =biregular map:S—=
X=Uy-D, we will use the imbedding'rr_;(T:X=Uo—D <> S and the p, g sheaf Hgs
X
00—

7% ;gs‘—eo over _zfor the proof of Lemma 1.% soon below,(Here
37 and 'Q'S are the structure sheaves of z,s.)Namely, letting the parameter
(P;r3;7; Q) CAV(CU X (0, r))@+2x JJ'2) be as in Th.1.2, we will compare the

following two sets of Q -growth cochains in Lemma 1,3 soon below

04 (£, (P)) ,04), In~ |
(1. 16)1 q :=set of g:_{| -qd-growth cochalns with

¢ (”A_G\Cr(P)),HS)a z) + |wi+1
value in {“’-.z_ (cf.(l,4)7 and Def,1_45)

By
where ‘( ) ( )‘

A (X (P X (P Un-D
(1.16), Ao ;vr" )i =g-p, g, —covering of { Sof size o in {MO l—

e, @@ X (») X =cxvgd -

(Herelr(P);_zn Ur(P),gr(P):{:XUr(P), with the disc in UT(P) C. C, are as in

(1=9)2, §1,2).
*) The element hX is also as in (1, 15)4-
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Temma 1,%, (P, g uniform estimation for imbedding),
g LB g UnITOTM eStimatlor

~there is an element B 6 ‘E‘P (g 7‘0) with® which we have:

| { 6T (A(E(2)) OX)yDSX(TLX) W', (F(P)) s
(1, 16)3

T2 U (2)), 0,0 CHUIEAD) digyr

with (r o' a.) EX(r;o,a) . whs)er'e ws_natural ‘homomorphism:Ho—0 and. S_x;,ss

_are the ‘p.g.refining maps’in X,S,

We check Lemma 1.3 in$4. 2. Cor, 1,7 follows from ILemma 1,3 as follows:
apply Th.1l.1 for_A_r_l_O to ES’ which is a p, g coherent sheaf over .Q_XUO.
Then we have the inclusion of the form (1. lO)1 for the right side of
the second inclusion in (1.16)3 . Using the first inclusion in (1,16)3,
we pull back this inclusion to X(by means of ILX)‘Then we have the
desired inclu?i§11 in (1 10); for A o A

Mnally, we will complete Diagram I in the following fashion

Diégram II -

: ] i) IR a O

Th. 1.3%,Th.1.4 for Buc L .Lh.l.l,ih,vl.z for —é{l—la
< - - — extin%lifl . 4) 5 .
Cor 1. <~ Lemma 1. - .

Th.1.3(0- 31X 'e L Th,1.1(Qy;Xe Any )

3 (D .__\_..—. )_ (Lsyzygy ) o S X a

. ' emma

Th,1.3,%h.14 for Aff Th.l.1,T,1.2 for An,

(The second implication is insured by Prop l.4 §Cor 1.8 and Lemma 1.4
will be given soon below,) By Diagram I,IT, the remaining task for

the proof of Th,1.1~ Th a & is to prove:

Corollary 1.8, We have the following implications:

hel.1,Th.1.2 for An Thel. 1 DX &
(1.17)1{ 5 }__ { Thel.1,for each .’)\, XCZAn
©h,1,3, Th.l.4 for Euc

_ ih 1.3 for each O\l -KC AfE

! - Y 1 R N - © 1
#or the oroof of Cor.1.8,we attach to elem»‘ﬂus of 1;1}.’»,»._9_‘511_ their ambient

#) Note that Hg Qg are obtained by regarding the structure sheaf

of S as the sheaves over X,S .

*%) Tor the precise form of the refining maps s, 525y» see (2.13),

in Prop 4. 72
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Spaces:

( ) An, 5X=(c™(z), Uy Xo,h Hy PO) :)Y_(C (z) sUg»¥=Uy-Dy,h ,;jy,Po)
1,17), J.:
2 {AffEBX -(c (z), x yHy ,)’? DU.CQY (c (z), ' c ’ﬂy'

(For the above notaion, see (1.8) and (1.11),,In particular, H., is the
0 0 w_és

p.g,resolution of the structure sheaf Ox of _}i:XO—-D, with D=locus of g on Xos
and ‘I:'IX. is the trivial resolution of ¥=Uy~Dy:0-Q Y——}QY%O with the pole

: O fhoniY ')We will prove Cor,1.8 by extending cochains on X to its
aji = diyig m:)%
ambi@nt space€ ¥ »

5, Extensions of cochains, Letting the variety X e—Agla and _X:J(_}_(_) be

/ .
as in (1.17)2 and letting the parameter (P;r;e;d)C AX’ have the similar

meaning to Lemma 1,3, we compare the following sets of the  cochaind¥

q _ _ ,
(1,17) JeilEING: (P))’WX) :=set oflg(=]h ll Y=)growth cochains with value in 2%
1 ‘ v

a2, (®)), By al L
where .
" Ao\(Xr(P)) X (P): =XNU,, (P) 3 X=X5-D
(1.17)1{ :=8-D, 8, —coverlng of{— §of Size ¢ 1n{ }
A, (Y (P)) Y (P):=Y0U.(P Y=Uy-D,
Also letting the affine variety_z & Aff and Y =_9_(z) be as in (1.~l7)2,
*)

we will compare the following sets:

X
(1 17) iq:i ;,"Qx‘i}_ =set of all g(= izl +1)-J-growth cochains with value :Lng%
Y HX‘. -

where
1

3
(<) .
(In the above, the parameter (033) is in X,(C_?l x_I_j hen we have:
— (Cf. Th, 1. 3).

*) cf (1‘4)8 and (1,3)6 .
#%) U "r(D) =disc in C? as in (169)1, 8§12,

+ I

1
A (X ) X '
(1,17);{-——0‘ ');x;-: g-p, g.coverings oi‘{ ,‘} of size o~ in{
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Lemma 1.4.(P.g.uniform estimation for extension).
. [ad ‘ -
_Take suitable Ey € -E-p.g and Ly & I1(g=z0). Then we have:
*-9 q
(1a7) {s 23 (A% (P)) Q) & WyZ (goi(zr,(P)),,@IX_)? (s ) =By (2,73
where{

?
8" 29(8,(X) 051 )y € Oyr 234y (Y1) Hygr s (¢'33)= =Ly /(o59).
Hergtdx, v/ .are the natural homomorphisms:H -‘29 and HXr——QgX!.

(We prove Lemma 1.4, by extendlng cochains on X to- UO—DO,..(cf‘ 84.2).)
Now Cor.1.8 is derived from Lemma 1.4 as follows: first applying the

Th.l.l(for.gx) to the first inclusion in (1.17)3, we get the inc}usion

of the form-Zi.lo)l for the right side of the former inclusion.Then,

operating Wy to that inclusion(of the form (1.10)1), we have the

desired inclusion of the form (1.10)l for Oy. This insures the checked

first implication in (1.17)1. The second implication is checked in the

similar manner to the above. Thus we have Cor.1.8, and we also finish

the proof of Th.l.1l «JTh.1.4(cf.also|soon below Cor.l.S)T)
) ; €he remark) - X

6 , Proof of Th,1,61, First recall that we checked the comparison of

‘meromorphic’and 'p, g’ in Th. 1. 6, for elements of &noa and Buc(ef,n.6,81,¢
Then, using the extension of the cochains in Lemma 1.4 for Any o ASF,

we get ‘h.l,6 for_ég1 LJALE from the correspohd%ng fact?*for_gggakggg,
Thus we have shown that, for the proof of Th,l,1 ~ Th.1,6, it suffices

to prove the key theorem,Th.1.7 and the key lemmas,Lemma 1,2~ Lemma 1.4,

*) See also Diagrams I,II .,
*¥*) Also, in this step, we use Th.1,2 "y Th.1l.4 for an® | muc
Peicaiat - T Benhahdhd
This follows from Lemma 1.2(cf,n.3 §1, 3), and our use of those theorems

is legitimate(cf also Diagram III at the end of 81.3),
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For convenience of understanding of the logical structure of §1.3,

we summarize Diagrm I,IT and the content of n.6, §1.3

as follows:

Diagram III

Th,1.7
(0y;Xe Euc)

le = -

Cor.l.4
(OX;XGEHC)

Th.1.61 for XE&Eue

& — —
v

Tholo3 ,104‘
(for X&Euc)

: \'4
Th.1.3
(OX;XEAff)
Th.1l.6, for XECAff

< — —

Th,1.3%,1.4
(for XEALT)

G — — —

Lomma 1.2 > Th.1.1,1.2.
(for X €An,) (for X € Ang)
Lemma 1.3 0
(for Xe&Euc,X eAnla)
Cor,1.
(OerGAn o
Th,1. 61 for XEAnla
Lemma 1,2
™ (for X€Euc, XEAng y— — ,
& v
Th.1.1,1,8
(for X&4an],)
TLemma 1.4
(for Xg ATf,XEAn) ) — — ~»
Th,1.1
(0y;X & Any )
[131’1.1.61 for XéAnla
Lemma 1.2

—_ >

(for XeAfT X E€Any ) l
Th,1.1,Th.1,2
(for X& Anla)

We will finish §1.3% by a technical remark for the proof of Lemma 1.2:

Remark 1.4. Letting the varietyes X &€ An

Lemma 1,2,
Coh'(;‘(_')
(1.18)l L,oh (X )

X éAnla

we define the following subcollections of Con' (X )

1o x' € Aff be as in

Pg’

(cfn2 §1.% and (14))
:= {H € con (X‘e)
ox =X E AIf and writing H exp11c1tly in the form of (1. 4)1.

(cf.(1. 4)5} , where X =

Ky kl K

k
.0. iy
(1.18)l H:0 >0y

the element 3y must satisfy:
(1. 18)l the entrles of K (O<3<p) are in E(XO,O (>’D)) orf‘(X

p -1 > p-1
Oy~

5> — — ——50, —23H-0 ,

alg’ OX’ alg)

&)
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according as X =X € Anj_ or=X € Aff

(Recall that, for an element H EECOh'(X%)p.g , the corresppnding condition
to (1.18); is ‘the entries o Kj are p, g, with respect to the p, g,
function gx%=l§]+l or izl +1 {(cf.(l‘4)9).

Now recall that Lemma 1, 2 was given to Coh'(X%)p g . Here we check:
(1,18), one can replace ‘Coh'(X%)p % by ‘Coh"(X%)p g in Lemma 1.2 -
Pirst, if X<5Anga or X'GE ruc , the; the comparison ;f ‘p.g’ and(mgromorphi
(or, rational )’in Th.1.6; is a well known fact(cf.n.6, §1.2),. and (1.18)2
is legitimate. On the otherhand, Diagram III insures that (Lemma 1.2

>
for Anga; Tuc as well as the extension of cochains in Lemma 1.4 imply

Th.,l.6l for genral Iehn, and X'éi Aff . Thus we have (1..18)2

*YN ote that Lemma 1 4 follows from am estimation on local
parametrization of analytic varieties, and is independent from Lemma 1 2
(n,5,88-.2)_, Also we use Lemma 1.3 in Diagram III . This lemma is also

proven independently from Lemma 1.2(n.6, §4.2) v

4-Y
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§ 2 , Cohomology with alg@braic division and polynomial growth

This section contains the main results c;f this paper: first, in
§2.l, we summarize some algebraic notions concerning the a.d.and p, g_¥)
properties of certain complexes. Using such notiohs we give our main
results of § as well as of this paper in§2_.2. In $2.3 we reduce the
~results of §2,2.to those in §1, by using#s)ome uniform estimation on the

a.d.and p.g.properties of coherent sheave§,

82,1, Algebraic division conditions

1, Open map property , We begin § 2,1 by arranging some terminology -

which wibll be used in later érguments: first, . : a filtered group iS§,

as usual, a decreasing sequence B= {B(m)}rio of abelian groups B(m) .
When there is no fear of confusions we write B(0) also as B.By a filtered
complex we mean such a one:

(2',1)l 0—E ——5—3—9_@_9—~—-—7g5&9 , where dq(q Z0) is a homomorphism

of filtered groups e'md the augumentation e is that of abelian groups ,
Letting ' F:0E —Spem ¢ 5. .. ¢'%5be an another filtered complex,

a homomorphism w_g—"?_f_,‘_'_* is a collection QW ={u):{‘0q7; ;:O} of homomorphisms
coq:_cfl —> Q_'q(of filtered groups) and that of abelian groups toI:E———?E'
satisfying the standard commutativity condition.Nex’c let —9—={—Q;, ;"LéM}
be a direct system of filtered cpmplexes » Writing Q;L as:0—> E}ﬁ&?gﬁz_e
’—~-9_C?L—i’f—> (cf. (2.1)1_) and'(:ﬁ‘L as {g%(m)jn(:O - 5 we make:

¥
#) ‘a.d’,: ‘algeb:caio division” and ‘p'g’épolynomial growth(cf,
Introduction),

¥%) cf. also Introduction.

~
e
o
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Definition 2.11. We say that C has open map property(resp.is

AlL—exact) if, for each qGEEjUO and}x%ﬂ;)there is an elementﬂﬁQJwith
which (2.1)2(resp.(2.1)3) below holds:
(2.1), there is a map a.:_Z__+——->.Z_+ so that d ,Cq,(m) DQ 7Q+l(C}l(a(m)))
q-—l ,7q ¥ - . 0 0 ~1_q-:
(2.1)3 diok, ) ek’JC (CK)(q—_-_l), e}(Ek, 7. (C )(o 0), where c}L =C )
®
= a .
and Cﬂ—-”zﬁzio Cpu‘
R . g+l, ¥
f#]= 1 . s
(If#){=1 then (2.1)2 is equivalent to say that dM:CH;“9Z (6, is an
open map, With respect to the topology determined by CEL,...) The
following equivalent condition to (2.1)2 is useful in later arguments:
, v
(2.1), there is a map b:Z—>7" satisfying lim b(m)=o0 and aC (b (m))
¥ v
D0,z (¢ (m)) for m>>o.
pe e %)
The open map property is important because we have:

Proposition 2.1 . If C satisfies the open map property and is

urexact then we_have:

(2.1). {]_fﬂHq(llm G, /%(m)) fa 4 ]}\%—Ig<llmm Hq( /C;L(’n)))NO(q'Zl)
L

%}m yA (é_p CF/C (m)) = 11m(11m VA (ﬁ /CH(m)))”’llm(llm %m?m?

KQ?E?%# is_the natural homomorohlsm 037—4>c /UK(m)

Remark 2.1. Take a Noetherian ring Qv, an ideal 5 of Q and a complex "
3 “ (Yo}
c* of o_modulesf*)o-—?00_9_5cq_9~— , We set‘g?:=££?0q}m=o . Then Artin-Rees

theorem insures that if C* is exact thenﬂgf satisfies the

e

¥) For the proof of Prop,2,1l and for roles of the open map property

in other standard comparison theorems in the completion theory, see

‘IDB%gl r133.

*%) We understand that the avgumentation map e:E 2go is of the form:

E=0 and e=zero map ,We use the similar notations in later arguments

(cf.Def.2.52)4

5 O
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open map property,Also it is well known that the above theorem insures

‘the exactness of the completion of Cfof,[fzj),ln spite of this basié
character of the open map property(involved in the above result), it

seems that such a property has not been taken up in general siturations,
(The author knows no other examples of complexes.of general nafure, where
that property is emph%sized explicitly ) Aé was mentioned*), the conjecture
of S, Lubkin for such éipropety for local de Rham complex 1s our starting
point of the studies of the contents in §2 . The open map properties will

be given*%gr some complexes in § 2, §3% and part B,$§ 4.2, As we will see

in the coufse of.§2, the most substantial part of§ 2 concerns that property

v
for certain Cech complexes of global nature ,

*x)#x%) cf, Introduction,
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Finally, letting C*:-_ {Q_* ;ke),(}be as in Def 2.17 , take an another
13
direct system C —{g ,he}i%of filtered complexes, Writing gf,gn as
T 0, .a - 'O, ,o'a...
O-»Q}L——y_gy_—?-ii“—-é and O->L}L—-7_C_’k—:>--—r_§_#_ <+, WEe assume thgt the complexes

1 1
(of abelian groips) O—%E}r-? CE-—) ~$C& and O——?I]L_—-% ouo——) ~-90”q—}' coincide ,

(Here ¢%=c%(0),.. .)

" Definition 2.12. We sat that C. C are eguivalent, if for each qegjuo
and Me ,LL, there is an element }L?}L, with which we have the following for
each m=>0:

(2,1)15 &gi(m)c C)l’q(m')’ with an element m'é_g'.F satisfying I:higm': oo,
and. if the converse relation to this holds .

1
Proposition 2.,1,. Assume that C,C are equivalent .Tf C satisfies

1
the open map property , then C satisfies that condition,

2 A.d, filtration, Let X be a topological space 0 a sheaf of ring

over X, K an Q-module and f=( £. )J o1 @ subset of _P‘(X 9) We write {fg’}jil
as ", By m-th standard homomorphism _fo;nv__, we mean the homomorphism T :
0°39 =(¢.)—> 02%. Y (1£j = s), and we write the image F0°C 0 also
- S 0d o J _ Wy
as f70, We use the symbol _fn}g for the Qﬂ—submodule of X, which is . . ° -~
spanned by elements ':? - ¥ with lf & me and ‘feK .

Next take an element A & CovO(X), We then make the following

definition for later terminological convenlence

Definition. 2,2, By f-a.d.filtered group of Cq(A,}E’)(or, g-th f- a,d~

filtered cochain group for (:1_;_,‘_19), we mean the following:

q 1R ith £Ox=
(2,2) {c%a ,’if&)}m=o , with £K=K .
ITn n,3 soon brlow we will combifte Def 2.2 with the p g _filtration in-

Def, 1, 21,

%) COVO(X)=20uV(X)(Cf.the end of the introduction of Chap.I),

o
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3. D.p.filtration, First taking an abelian group B and a map

$: (2 v0) XIB_+29(ID,6~)——>2:B—, we denote by §m the restriction of 3 to
m ¥ 32 (2R*?). setting B(m®), ,i=Ucpr22 G )(C B), we make:

Definition 2. 31. We say that & is a d. p.flltratlon of B, if we have:

(2. 3)1 § R -—92;a is a p.g.filtration for each meZ *yo(pef.l. 21)

(2,3)2 _1§(m,§) C B(m ?{’) for any m>m , and $ §m’ are compatiblé
with the inclusa.on.}.}(m ,§)p.gc_,y_f_s(m;@p.g(Def.l.Zg).

Next letting the geometric datum (X,g,g,;) be as in n.2, we take
a p.é.function g:X*—aﬁ_I(Def.l.ArAr),.‘\'le will define d.p.filtrations for
CQ(A,}Q(cf.n.Z), by meané of (£,g). For this we assume that Xis a
homomorphi¢ image of “Qk(k> o):gk—“—’»;g—»o, We assume that O is endowed with
a g-structure 9(Def.l.4l), and we endow K with the induced g-structure,
6_ in symbol, from (8,w)(Def.l. 45) Recall that (g,8),(g, I{) define

K
p.g.filtrations for Cq(A o ) cd(a, K)(Def.1. 4 ). For an elementd\e_;_'z we sed

v [c%(a,0 ,g)l (8.,6) 0
(2.3)3 q set of{ } —J-8rowth cochains with value in{ }
c(A, K g) .J (g,0 K) X

(cf.(1. 3)6 7) )Also recall that Prop 1.3 implies:
(2.3)5 oAa,K8)FwWed(a,0%8), -

Next we use the symbol Fm(—m—th standard homomorphlsm for £): O —90(cf n.2)
sk

for its k-times direct sum:O :=g 4o -+,9v By o 4 0+ « » +0. Then
assuming that f CF (X 0; g) we make: A »
Deflnltlon 2. '5,,. By left and rlght N };g':[
a¢, oSk. Qey £0
(£,g)-d.p.filtrations of_B_=Cq(__,I§), we ¢ (A-‘QJ ’g)d 301(_,_g ’g)d

mean the maps in (2.3)5 soon below: ' \ c%(é:imﬁ’g)&

. , k
v \ ,, Pcl(a ,0% 58
1788 o+ +2 . B: — £y
(2.3)5 {r‘E}g}'("Z‘UO)Xi 3 (m;0)—>2" 5 o4, L3g), 0 cl(a, .

#)'D.p? = %@.d? + ‘p.g’, vhere ‘a.dldalgebraic division’ and | p.g*

Spolynomial growtW(cf.n.2, §2.1 and §1.1).

53

*%) cf.also (L.4)g .
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We use the following notation for the first set in the right side of (2}%

= (138), 2308, £7K38), 10 By (msnETH0).

<

(2.3), c(Ang)

Note that (2.3)3 1nn11es

(2.3)5 Cl(_,me; :=CJC%(Ax£3§;g)& (ef, also Fig.I) .

(Here and in Fig.I, we regardng as the trivial p.g sheaf:0~?0k_£;0§s>0)
with the identity i(Reggrk 1.1),) We use the notaion C (A fm g)},.r.
for the second set of (2. 3)3° Moreover, we set:

(2 3)g Cq(A me;g) U&CP+2 c3(4,1K;38) s (ef . (2.3)), where the
symbol p indicates the symbol ‘1 or ‘r”’ ' ‘
The left filtration 1?&’& makes use of informations of the left side of
the homomorphism ﬁJtFm:Q?k-;£§)and the definition of the sets in (2,3)4
is concordant to the similar gets in the p,g‘cohomology‘theory in §1
(cf,(1,4)8). The left filtration is suitable for later explicit uniform
estimatign(cf.§2.2), The right filtration rgii’g is, as we will see
soon later, suitable(for applications to the completion theory:

os 3 - . Af . f . - PR
Definition 2;33, By g-p. g subgroup of Cq(§,E;~O, £;*1=11mm&’45£$ .

we mean:
AL
(2.3 KR, o= 1imy CULE), /W),
The word ' subgroup is justified by the Tollow1ng'
Proposition 2.2lv There is a natural 1ngectlon

(2.3)g i:0%(4, K’*%g)p o C 5 CHAK ALy

Proof,First, from (2, 3)3, we have the exact sequence:

() 0. —>c3(4,£%;s8), ,—> UL, K58)_ Mt c9(a, KAL)
b.

where the homomorphlomjg_ is induced from the natural one: T-%?K/fmk and

1=1nclusion:Cq(AJ£jg)p . €~;;Cq(~ht),(Thus we use the information of the

right side of (a) in the definition of the right filtration rg%’w ).
1=

It is easy to get (2’3)8 from (a), gq,e,d.

54
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Concerning the right and left filtrations, we remarkf)

- . . mr' ]
Proposition 2,&2). C%(A,.i;,{a;g)p_g - “% A"im:é;g)P.g'

This follows directly from the definition of the both sides;see (2_3)é
In Lemma 2.3 ,§ 2.2, we show that the above two filtrations are '
(equivalent’for the varieties of the type in %1,

4. D, p,c estimation map. Finally we introduce an estimation map,

2 1

which will be used in the main estimations in §2(cf, Th.2. -1~-Th 2.2, 8 2. 2)

Definition 2,4, By a d.p.c. estimation map, we mean a collection

E=(¥,exp M,L), where ¥ is a p, g.c estimation map -e_Epvg(Def.l.S), M

is a positive monomial(n.5, $1,1) and I is a linear map:jf;; mﬁj_{'yacm;c'?o
Recall that ¥ is a map: D: (_x3+2 +2) a(r;r;b)‘—;gz(g-’-)\ﬁ’*zx_?iZ)a (r/;c;f;c’é-')1
We regard E as the mag‘*) . |
(2. 4)1 E:D X (2710) D (r5033) xm —> Dx(Z'vo)>(x ,vaaalxﬁ(m)’_} , where

o =exp li(m) . ‘

(In the later estimations, we write the perameter spac@ D X(Z'W0) as

(v ))( (z%v0) x3+2, see §2.2) Note that the correspondence:(r; a~)_,>(r /‘
is given by the first part %' orf u( & L )(cf.Def.l,S) We call &' .
also the first part of E, The correspondence: (__UO) 9 m——%L‘*UO);f_}(m)]

will concern thefa_d part’of the cochains (cf, §2 2). Ve call this

S
correspondence Lhe a.d,part of ¥, The map & is factored as follows:

&* *A_‘C‘ ) % ¢ __z_+00) X 2%

— 2 5 (@r*?) ;\c‘/(fw)xfz

!

(Here T 'denotes the a,d.part of E,)

1
2 4
(2,6),

t'.??

#) If we repiace the symbol * C%’ in (2}3)7 by( C% > then the

corresponding fact to (2‘3)8 fails in genral; the right filtration is
more sultable than the left one for application to the completion theory

’ a7 '
*%) "\Iriting d’é”_B_;Z as (';lll;»a;)b we set a'av:z(a'glﬁa2)(0f-(1-6)0)0

[}
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£2.2. Main results

_1,Case of local variety, Letting the local variety X=(Q?(Z) »Ug» Xgshy e
C

J):J s el (x

satisfying (1) f. (PO) 0(1=j2 s) and (2) f s% 0o(X q? ,r)(l,.g,.s) for

be as in Th,1,1(cf.also (1- 8) ), we fix a finite subset f=(f. 0:9x
&

each irreducible component X P ,VOL the gergﬁgo at PO . Here we generalize

Th,1.1,Th.1,2 to the present d.p. cohomology theory , which is given to

the pair (X §). As in 81, the underlying variety for the arguments here

is X=XO—D, where D =locus of h, The p, g, properties of cochains etc, are

measured, as in §1, by the p, g, function gxzzih*% , while the a.d.properties

of the cochains will be measured by f .As in §1 we use the symbolfalso for
- X

. . 2
X and (X When there is no fear of confusion, we use ‘X~ also for

’OK
(_:é’gx,_f) and (_)__(_;_i;)‘

(i) D, p parametrization, Here we generalize the p, g, parametrization

in n.2, §1.2 to the present d.p, cohomology theory, First the parametrizatio
of the coverings herg is same as that in n.3, §1,2(cf.(1.8),): '

2 . f < - R 7 -
(2. 5)1 Iyt }lxz= . A+&§*A9M=(P;r;f)~—;’COVO(&) 39 A_:=A0Q£T(B)), where

we write D as D,.Also the manifold X (”) and its p_g, covering A are as

oy

[b'

in (1.9),,
Next, we form a product'f -—,a‘x(d O)x\’ , andi for an element gﬁECthK)R
(Def.1.5), we define the following parametrization of sets of cochains:
!
(2.5), Tyi= M(00) A Z20Tsm39) —H5 08, 558)g  (oF (2.3),),

(Ve define a parametrlzatlbn Z% by changing ‘C%’ ‘o (Z%)(cf,(2.3)4)3Then,
w/
1]
we generalize the p, g Cophain collection in (1.9)3 as follows:

(2.5)5 FEms =0T = {F0,. M s (}lj'md‘clﬂ,_/i x(370) k332 },

5
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We call -—-l(X’H) the g-th (£,g)-d. p.cochain _collection for H. We

deflne (f,g)-d.p. cocycle collection Zl(X ;I)p by changin%'bhe symbol
cd 1n (2. ‘5)3 to 23. Such collections contain 211 necessary sets of

4 B
cochains in the d.p. uniform estimations in n.1l. We will fix the p.g.

sheaf H as above in the remalnder of § 2.

D, D, Darametrilizahon table

Ty )g@ag_uo)x T =(usms 8) -———-u———>cq(x DS . C%QT(&(P')_),fgw;ga

)tx—mx H¥EF ) h=(P; ) K s oovg(®)g.g D AZR(E))-

* (ii) Estimation data. We will use the d.p.c.estimation maps Eéﬁd,p
. (Def.2.4) for the uniform estimations in n.l. As in§1.2 our uniform
estimations will work for a subset of the parameter space bleat’cing Dl’X
be an open subset of Dy, which contains PO(—orlgln of DX,_,,,(cf.n.1,§1.;_

we take an element (r * m) &R R{ZX Z+ We then form a subsetMH

2 B 2
Dy 55 X %(0,%) X Ry ofﬂx— xR XR and ,uH X 27 xR of Ty ,Uxx(z“uo)x__l g

As in §1.2 we call tH restrlcted a;arnet_e;;' space for H We flx'Z'
\MJ

the remainder of 82,

(,ii)Now, using the sets of the cochains as in the table soon above

(cf.also (2.5)2), we generalize Th.1.1,Th.1.2 to the d.p.cohomology

: theory'

”‘heorem 2 Jo(D. p,unlform estimation for Cech operator S S )
There 13 a d,p,C. estimati

. s Zq(— p; fmlma ion 2&1; E C-——d P(q70), with whlch we have
1 (_ (®)), H)dC 8¢ (_Q(()x (P)), me)a , where

(256)1 (I‘ 6. m";\)"’ (I' D“,m 6‘)(Cf Def 2 4‘)0

Theorem 2. 21 (D D uni form estlmatlon for resolution of m)

h N
There is a d,p,C,map. JJH SHH (q ?O) with whlch we _have:

(2. 6)2 s zle(x (®)), me) Cw;, /Jl(_%( (), Ox)a , where
(2, 6)2 (r s\,m 3)_%(1' som;d)

+2,
)..
) 2 .—-{O‘Cu ; ozF}and ZaYc{'mCZ m7m";(cf the end of the 1ntroduct}
of Chap‘,i[)e In 1]{1.2:22 we are concerned with the structure sheaf O and
MYy .
we should understand that U.= T | '
1wty

2O e

59
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ndw g ~7H is the first resolution of a,(Def 1. 5)

Note that the sheaves _::mo in (2. 6)2 are, in general, not free sheaves.
In order to complete the resolutq.on in ’_131'1.2.21 we give:
Theorem 2.22.(D.p.uniform estimation for {E?Qr;'rgzl ).
There is an element E Ey (q 0), with which we have:
(2. 6)3 s z3(4, (X.(P)), fmo )d - Fm 23 (A (X,(2)) Q% )y » vhere
(2. 6)3 (0! 30 &,)—El(lr,b,m,a),

and 0 —> Lls the m-th s,_’g,a_r_l,d.a.m__h_o_mgmovrphi.sm,‘ioi f(n.2,82,1).

In Th.2.1'v Th.2.2,, t_hﬁxparameteéal’ ;r,o;m;9) is in the restricted

parameter spacezg(ﬂ,x)((o,'f))(fh, X_Z‘\- X R ). We will rewrite Th.2.1 in

the folléwing diavgj’raniz—c:f.also Fig.III ,n.4,§ 1.2).
Fig.I.(D.p.vanishing properties for’ Cech operator)

q
T, 3T Zy 7"1(_ M8 > 2l 7) o
-~

b.g

\E% ' cq-1 i \\
x IE ('c)__Ji__acq (x,m )%.g-_‘Lng—l(ngc)) = s*zg(fc)

v - ~ |
- VoY I
EN: \sw‘)(%’g'

u

~ -

- - s

”ror the prom of Th, 2 lN Th 2 22, see 5 2.3+ Also appllcatlons of these
results will be given in n.3, n.4,%2.2 and in § 3¢ As we will see in
3 2.5, Th.2,22 concerns an open map property of KoSzul complexes; which
relates to a cohomological generalization of Hilbert zero point theorem
(cf Lemma 2.5;see also Introduction). Th.2.2, will also fill the gap
;De‘bxveen the d¢psand p.g.estimations in §2 and €1, and may be most basic

among “Th.2.1 ~~ Th, 2.2,

m—

#) Also, in Th,2,1 ~~Th,2.2,, we drop the term ‘g’ from the sets of

cochaings(cf, also (2.5),)-
| 2

*i) The map EI;[ in Fig,I is the first part of EH(Cf'n'4, £2,1).
~
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2, An affine analogue . Lietting the affine variety X'G Cn(z) be as

in h,1.%, we take a finite set f ~(f )J 1 C[‘(f ,;,H,or') L where

<

the p, g, function gX;=lzt +1 is as in n.5, §1.2 . Similarly to n.l, we use

! - 1 i t
the symbol X also for (X ,ov.t) (u ,I) and (X 28! ,£ ). We generalize

here “h,1.3 and Th,1,4.The set of the p.g.coverings: uovO(X )p g

{;x_o_(;x{');eééi’z} , \\Therep_éé\(«;(' ) is the p_ g covering of _{Z’ of size &, is
as in "h.1,3,7, 1. 4. Next we set T.,:= U X(z*V0), with/ux':__ *+2 Then
1] 1 R
taking a p,g.sheaf H & Coh(X )p g(Cf" Def. 1. 41) , our d,p.cochains in n,2
will be parametrized as follows:
3 42 o , s Sy ke
(2.7); €3 Tyo= X (Z*UO) P (sm) —2 53(4,(2), £ gy, (et (2.3)3)

4
ey

. *) ¢t -
Taking an element (T,'n) & X 7%, we setT: '{,’._2)( Zf“gm Jur d,p,estimation .
5 :

soon below will work for elements in 'Z ¢ Thirdly, our estimation maps
here will be of the following form:

(2.7>1 ’ A—J':e{ X (2700) D (o5m) —3 7 ;((u 00) D(L(0, D,(mﬂ ), with an
el~map_£ and a linear map L=ct;c >0 .

e write the collection of all such maps as E(’LP ~

Theorem 2.3, (D.p,uniform estimation for CechA_operatorS=SK:),

(==,

For a sulitable -J.-( _, D we_have:
" ! t
Ay ! o' Q-1 Yy of B .
(2,'])2 s 7 \:@',\(_f}_ )3f»,,'(/ )p‘c S (A: X /’i; vv)p g’ ’w:L‘F‘l (r7- m) w( ~sm

“heorem 244 b (D,p, uniform estimation for resolution).

20r a_suitable i, S p we have:
> !

) s 74 x'y £ B < Wzl m g

(2.7)5 87238, (x) L), L2t )2 ) g vt

_where 3 is fresolutiaon of H(Def.1,5)

3 According as W 7
we are con.oerned with Th, 2.), Th, 2. 47 or 1h, 2, 4o,

A e fz '2*

s} I b (%,0 r X 4

( 9 ], erexlds on Lo ,Il) or X . ”‘hub e shoul L'lC e i"S baQO. tha or -‘Z ’
T d U t 54 =0,

according to the thorems just above. - ™

i
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theoren 2.4, (D p.uniforn estimation for {i’ '}q 0 )- For a
suitable 3&1 = -j—@:i, we have:
1
q 1 Tp‘m q 1 S T .
(2'7)4 S Z (A (X )’i. ’Q’X )p g C— o Z (Al(x_ ):QX') cg ’ with G’Um) l-’zi( ,Il'l)

In the above the parameter (gym) is in T _Rgx 7

For the proof of Th,2,3, Th,2.4 see £2.3,

127

5.0pen map properties, Here we show the propevrties in the title

for some p,g filtered cpmplexes, For this we first set:

D T 1 1 ' .
(X yH,* L ,g%):=(X,vL,_,gX) or (X d L ,gx_')
%.—LLK.—(O T) X-L ol‘-,l.t .

We regard,L(,(,x as the dlrect set in the manner as in n,6,81.2, l‘or an

(2,8), (cf.n.1, n.2 , §2.2)

element l(_ (r a—)é}L< (o, r)XR or ~0~6/{,v , we denote by‘A)d_the D 8,
covering A (X (P)) or A (X_)(cf.*h 2.1 and Th,2.3),We generalize Def.1.9

to the present d.p.cohomology theory

Definition 2, 51. By left (g%,_f)-p,g,filtered Cech complex for

(_}L, L/) we mean the following filtered complex(cf,n,1,82,1):

. d -
(298)1 0—>7Z7(A 7%) '_';..L_L(A_),Uw P. gé___;___:_qg*(A"_j) ——>)

where we set:
t
(2.8);  §(a,.8)S 4 i= {l(g,{_, i )p g}m o (of (2.3)),
and 1~—-1nclus10n~zo(A}L,f)p g (A}L ) w .
k X Kq kl 'L{“
Next we write H in the form of (1, 4)1 0—=9 gia ——— Ow ——-—%H—so,

and we set:

, [ Y]
Q a ._{a *m
(2.8),  BH(apH)y o =80, 278 ) .
F : : k.
(Wo dofiy Ao, d.
(We define _Z_l(g}&,%ig-)pﬂ;g in the similar manner to the above_ )

LO



244

Definition 2,5, By g-th left (g* ,ﬁ)-—p,g;-filtered resolution comple:

for (4 .4 )(q.-O) we mean:
- ¢ %o Mge, YE o m9E
(2.8)5 00— (_#,NXE) > -7 (A wx*)p LW E )y > 0

where the augumentation map is understood to be the zero inap(n 1,§2.1).

We write the filtered complexes in Def.2, 51,2 as C (A H ) g and
d d
_1( H )p g . The rlght (f »E )-p g. filtered comnlexes C (_l_x,L,};I)P g 2nd and_

—z'%(‘A'}L’E)P, g will be defined similarly ., Then we have:
Lemma 2,1 (Open map properties of the left p.g filtered Cech and

resolution complexes). _The direct systems of the left p, g filtered

* * *.d . : ’
complexes -{’Ql(_é#,g )p,g.}}'— , ’{Z_q*(AH,_ﬁ, )p‘g})“satlsiy the open map prope?gg
and are },(—-exact(Def.Z 1) ,where it runs through j,/%cf (2,8)q) »

_Proof® Let E;i:@ ’2)—> (R*xa"?) and L

H.Z —->Z UO be the first and
a.d,parts of the d,p.c map % in Th,2.1 (cf. also n.4,%§ 2, 1) Then, letting
the element i=(r;e )C}-LX(C ) be as in Def,2.5), we have directly the

following from (2. 6)1 and (2 4)1 :

' .

(2 8)4 s zl(_” fmw)p 8 Cq‘l(A}L,fm g) g with jt’s (‘r'm')%Evé(r;fr) and

=[] @0y, '
Comparlng this with the numerlcal criterion (2‘1)& for the open map ‘
property, we have that condition for the Cech complex deflned for_X_eAr_l%a,
The open map property for the Cech complex for_g_g'e_‘ﬁ_f_;'_ follows from Th,2,%
Sixilarly to the above, Also the open map properties for the resolution
complexes. defined for dX_é_Alg and X & ALff follow %rom Th. 2. 21, Th, 2. 41,
Finally, the ﬂ_—-exactness condltlon for the Cech and the resolutlon
complexes follow from the ! P, &, exactnesses, Cor,1.2, Th,1.3,Th.1.4 ,
and we finish the proof of Leirgna 2.1. gq,e,d,

*) cf,also (2.14) , n,4,8 2,3, which is used in the proof of

Th,2.2, and Th,2,41.,

1

Gt
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For the right d,p, filtration we have the similar fact to Lemma 2,%!

Lemma 2.2, (Open map properties of the rlght d. p..f:L11',:c'<z=ﬂcl<)ns)7

The direct systems of the right p,g filtered complexes ( H%)

.8

and {Zq(A ,LI ) I} satisfy the open map property and are/,(-—exact‘

P.8’°
By Lemma 2,1 and Prop 2,1, , the following lemma insures Lemma 2.2,

Lemma 2.3 (Egquivalence Qﬁ the left and‘righ,t_d,_p,iilizrations)
The direct systems.{c (%Lﬁ ) g}p. and -& (A w p g} as welll as

* ie ) q
{ZI(A}L,\% )p.gi} and {Z (A i, )p g ,@i}are equivalent(Def, 2,1,) .
_' Reéalling the: definitions of equivalence’and Prop 2422, we see
eas‘ivly that the proof of the following leads to Lemma 2 3:
Lemma 2.3: Ve have the inclusion:
!
. *® m q * : - ,
(29); sTRALTH), 4 0fy »2" By oo with m flyr(m)],  and

a_suitable parameter }L’éﬂxﬂ_, where m3>0 and Ly is choserd“in an

independent manner from (A3 m).
The proof of Lemma 2,3' is given in § 4,2,

4,2,g complexes, Tirst, letting the pair (A ,H ) and £elX ,dyx

o £
be as in n.%, we define:
. g k Ay
(2 9) (A ,{ ) -=11mmu (A ’&»)p g/vr(gk, 24 )p‘g’ where H =
Lim_ q /£ ™0 (vef.2 3) .
A ) L % is, as in Lemma 2.1, a linear map. Also the pair (4.5

<*
has the similar meaning to Lemma 2.1.

a
[
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.,gj ég
Denoting by E-P the germ of X at P, we generalize Def.1.9 to the

completion theory as follows: ' .
Vs 1 /o
Definition 2.6. (1) By p.g.Cech complexes for (X,,l) and (X 4, )

we mean the ones:
~Y /\lb

¥ &
(2.9)5 ¢ (Xp,H), ¢ l;gm ¢ (Am)p g *x »E,)_p,g }Ll_n;c (AoB )p g0
where X, i run through ﬂX },t Lyt - . : |

(2) By g-th p.g. resolution complexes for (X? ﬁ,) and (}_( ,_VJ )(q_z 0),

we mean the complexes(cf. Def 2.5, )

_ Ky ~ K k
L (02K ,“X g2 1>~-— 1529(x ,oxl) o 20 “)ps-L_;. 0

q h{o—l ﬁl q Ay
0—23(x’ ’wX’)p g—-———-—a-‘*_—?Z (x’ OX Pp.g L 4 ’w)i—?o
(cf (2. 8)3,Def 2. 5 ), where Kp 1,...,?0&’,... are the completions of

X .
—l 9 e L4 bl h
D R

Now, using the above p;g.complexes we generalize Th:1.5,Th.1.6 to

“the completion theory as follows: first denoting by Hq(_P,H) the

p g;.oo

q-th cohomology group of C*(E_P,ﬁ) .., we have the following generaliza-j

p.g’"
~tion of T™h.l.5 from Lemma 2.% and Prop.2.21.

~
Theorem L.5. HY(X,,H =0 and HY(X ,ﬁj)p g = 0(qz1).

.8
Also, applying Lemma 2.3 and Prop.2.l; to the p.g.complexes in (2.9)4,

we have the following generalization of Tewia 1l.1l:

Lemma 2.4. The p.g.complexes in (2. 9)4 are exact.
Finaiﬂy we will detémlne the structure of H g_ V)p - O (__ "QX') p.g* é

63
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For thss letting the sheaves wﬁ,(kD) of meromorphic functions over Xq
0 t

and WX,,alg of (algebraic) regular functions ovex'gélg be as in Th.ly61

(ef. also (1,13);) . Then we have:

Theorem 2.,51.~ There are natural isomorphisms from|meromorphic
the

and algebraic completions_to the p.g.completions:

B..5. (% Oy 4 Dur:B(x'y B Ox' 3

where the left sides are as follows?)

! . : ‘ . m.s ., e ‘ 'm
(2.9)5 Oy (*D):=gim, 2y (*D)/E"Qy (%), Qxrrangi=lily Qg varg/® "Gt vange

Proof , We prove the first isomorphism in (2,9)5 . The second is

proven similarly, First, from the isomorphism GP:QX (%D)DgzsIfRzﬁ,QX)p g’
0 : =Y.

we Bee: that the following natural homomorphism is an isomorphism:

A . . 0 .m0 s

<-:O * - B .—,\1 v I

(2 Bphy (9) o= Hinin 27, (9).0p) /P2 (4,(2),0D)p ), vnere we
write A ﬁAvjz (P)) as,ANfP) (cf.also (298)0). |
On the otherhand (2. 9)4 » Th,2.2, and Lemma 2,3 -imply that
(b) 1O (AP’QL)p_g £ right side of (a),
and we have (2,9)- , g.e.,d, '

finally, applying Lemma 2,4 to Th.l‘6l, we generalize Th,1,62 to
the completions fi ﬁ' as follows:

Theorem 2, 60, ﬂhe following complexes are exact-

> HI(x, )

__911(1 &&)____;I’(z &#) ____> B (9 57

f)
-- =5 G(*D)P —t— “B}*p)p
(2.9,
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Th.2.5 and Th.2.6 are a generalization of Th.l.5 and Th.1.6 as
well as our anaologue of Th.A.B of H.Cartan in the p.g.cohomology theory
in the completion, We give an application of Th,1.5,Th.2.6 to the

analytic de Rham theory in %3,

§2.3.  Key leamas

Here we give key lemmas for Th.2.l1~~ Th.2.4, which concerns the

N * 1 .
open map properties of -Q‘X*’ where X =X or X (cf.Lemma 2.5~ Lemma 2.7).

e

Also, using those lemmas, we prove Th.2.1 —~ Th.2.4.

1. Koszul complexes, In our proof of Th.2.1-v Th.2.U4, we will
take Th.2.22 and Th.2.142 » which concerns the a.d.properties of O, %,

- as the starting point(cf.n.?,) n.4), Recalling that the a.d.properties

. * 1
in 'I'h.2.2,Th.2.l¥2 are measured by the powers of f :=f or f-, we first

* %
attach to f ™ what we call m-th Foszul complex for f
*m *m *m

F F

0 ) s s-1 .
(2.10), 0—3Q.+ >-sz*_=’ - 95F _._e-ng* —E=—50, 0.
Here the 'QJX ~homomorphism Fp is given, as usual, in terms of the

% ® .
exterior product as follows ):~ for a point Q&@X , let S?_g denote ‘Q'Q

(:=QX*,Q)—modu1e consisting of differen;cial forms of degree q with
coefficients :Ln,,gQ Letting x be a (formal) indeterminate, we denote by
the identification: O(p)BH- (H’J)J-—-? \R,pQZ ‘8 deJ , where J exhaust:

Q
all indices J—(Jl<-v<,]p) Then Fp is defined by:i

Q b =A-um— Q’ where

¥) ef. J.P.Serre [ J.
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where we set l‘0m:= j.—s:l fgldxj and A denotes the symbols of the exterior

product,Noting that FI:__lem(cf,n.Z, § 2,1')’%), we use the Koszul complexes
in (2.10)0, ™ in sybbol, for analyays of of the sheaves f%mOX.‘Ac(=F'*mo}sc%)
(cfon,2 soon below, The lemma in n, 2, Lemma 2,5, will be our key facts

for the proof of Th, 2.22 ,Th.2 ‘42, which concern the sheaves meX, In

)

later arguments we use the symbols ¥ *m

'm *m
’Fp b

t
,FI;,A-o'o or F m,Fp yo.es for F

* t
according as we are conceened with X =X or X ,)

2 , Open map property for F*, Letting the parameter spaces/QCX(C. DXKR+x%ﬁ

and]\l_xt:;l{"'z be as in Th,2.2, , Th.2.4,(cf,also (2.5)1,(2.7)1),
we form a product kX:"—'/MX )(RI%CDX)( R+XR{2XRIZ) » Also we take a linear

%) Drec - = Mm-S N A8
¥) Precisely the homomorphisms F,_y and T are:0y 3 (‘?j)jzl — Oy

9Zj:s__l (_—ZL)jfgfl (?j - andZ\jil ‘fj-f? o This difference of the signatures

does not cause differences for the ajppiications of they results}t‘or FST

I ﬁ)‘

1 ’
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have the similar meaning to %.2.22, Th.2‘42; Also we take a linear

function I ¥*>0 , Then we have’

07 xx=C0  xx¥3 Gy

——

Lemma 2.5, (Open map property for ﬁ)‘ Choose suitable d.p, estimation

map Mg By & By,p 200 B & L __d p « Then, for each (Wym)e 2% 27 _satisfying.

m >Ta‘ 2ﬁ(m) we _have the following incluSion{l=s<p):
(0.10y. | ° L)) 2 NN ) HONC U, (P)>,_f_mp,§}"“)&
1{3‘(()(1(:%0'(-)9 ,Emo ;E ) n(.ﬂ 7?1)-1(0)) CF qu(_m(x) f O(P"l))

with ’(r’;r’;’ﬁ'f;a') (r v;T;d) and (of;@ o EX-(G- m) Here the parameteres

(P;r;033) are inAX(C:Dl,Xi,ﬁ “+25(R+2) and o is 1nAX;(C ) .

If we fix an element mE_Z_ , which define$ the homomorphisms Eg, then
Lemma 2,5 insures the open map property for I"I; . As we will see soon below,
Lemma 2,5 plays the most basic role in getting the d.p, unifoyrm estimations
in §2 from the p,g.estimations in §1.Also Lemma 2,5 will concern a
cohomoloigecal genralization of Hilbert‘. zero point theorem(cf, part B, §4.1),
Lemma 2,5 will play the most imp‘o'z-:ba.'n.‘t' roles in the lemmas given in §2.3,

%+ Here we will prove the following implication:

Lemma 2.6, (Reduction of d,p. uniform -estimations to.p g uniform-
estimations). _
t Th,1,1 F Th,2.2
(2,10), W_—"*"}%- Lemma 2,5 for{ } {"‘“’”’““2:(-
I — v
The .03 ™, 2,4, J »
#) cf. Def, 2,4 and. (2e7)1

E

6o
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Precisely, in the above implication, we use Th.1.1 and Th.1.3, applied

to the structure sheaves BX and Q' Note that Th.1.1 and Th. 1'3 do

not concern the a.d.prop.erties of 9

vse++s While those properties are
[
2.

the basic factor in Th.2.22 and Th. 42'., we rewrlte Lemma 2.6 in the

following symbolical form:

#
1
(2.10) Q__g uniform estimatlonj r_Qux oo&n map property for F

—>d.p. uniform estimation_ for O

b.fx* * ‘
We prove Lemma 2.6 in three steps, First we introduce a type of

auxili:szrly estimation maps, which is used to fill the gap between the

estimations in Th.2, 2 ,Th.2. ll and in Th,1.1,Th.1.3.

(1) Pre d. p c.map, Denote by D D the parameter space (R XR+2)')LZ }ﬁ+2

and (R X.R ))g_ > on which the d.p.c. and p.g.c.maps operate. Then we make

pDefinition 2,5, By a pre d,p.c map we mean such a map: Fig I
] : L R ' B .
(2 ll)o E:D—>D , where B is written as E=pr-kE , with a D 5D
T . . ' " pr
d,p.c.map B(Def,2.4) and the projection pr:D—>D , )
Take D, g, C. and d,p,c,maps E, ,Eys»Then, for each T =(r;r;m) & . =~

(O,l))(R X? X~’+2 and the pre d.p.c.map [ as in (2,11)0, we have:
(2, 11)(') El(z, )> BB (z), and i‘—z('L’)>‘E *5,(T), with suitable pre d.p.c
maps _El,"r?jz ,(For the order 7> , see (1.6);,)

(ii) Letting tﬁe parameter space Ai and the linear function Losxx
be as in Temma 2,5, we check that the s;_mbol( cd ’ in Lemma 2,5 is changed
by ‘Zq(’b'g’using the pre d.p.c,map instead of the d.p.c.map).(In Lemma 2.6‘
soon below, the paramete;c (P;r;038) or @6{{{* is as in Lemma 2.5, Also

the elements (ﬁ’,m)e£+&+ satisfies:m >LO’X*(m)")

6]
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Lemma 2,6: (1) For a suitable pre d.p.c map B we have(l= p<s)
(2.11), " (B8 E.00) Py (B Loy € Fp_lzqgﬂ.g_ﬂ. ), 98"

with (r@&) E (r: sm3d),

(2) Tor a sultable el—map —:—[’—X' we have: _
(2.11), s"(2%8,(x) 2"y BB N o erm sty g ), 4
with o =Ly () '
Eroo?. The proof of (1),(2) is parallel, We prove only (1), For this
we first remark that, by applying Th.l.1l to the right side of (2.11)1,
we have:
(2. 11)1 s (1eft side of (2,11),) CSL- cq‘l(A gugr, (?)) Q(P 1))az (q>1),
where (r o &)_HX(r o3M;d), with a pre d P. C.map EX’ which is determined
by 4}_.
(Remark that the estimation in Th.1l.1 is given by a p, g, c, map; a'noh from
(2.11),, we have (2. 11){.) Now, using (2. 11)i, the proof of Lemma 2.6
is given inductively on p: if p=1, then, remarklng that Fm OX-—P_QX
injective, we have (2. 11)1 directly from Lemma 2, 5 Assume that pZ 2 and
that (2. 11)1(and s0 (2 ll)l) holds for P < p, Take an elemenet Y from
the left side of (2. 11)1, and we write UYas Y —I«p l‘g , with \f,e
Cq(_é(h(,( , (BN fm O(p 1))6 Here (r;o a)=,~4 (r;r;m;3), with a d.p,c.map

E}( as in Lemma 2, 5 Applying (2, l]_)l for p p-1 to 85’ , we have-

(2) s"¥ert jolay(Zou(2)),gfP )0 + 280, (R (2)),04P™ )) g, with
(r o~,&) J:, (r',e'; ”;’«3’) , where the pre d, p; ¢, map JTX. is determlned by

3; '
the maps 2 just above and DX in (2, 11)1(0:{' also (2. 11)0) .
Finally, operating E‘I;_ to the both sides of (a), we have (2.11)1, qg,e,ds

[
(o
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(iii) Proof of Lemma 2.6, We derive Th,2, 2, from '(2.11)1, Lemma 2.6 .

The proof of Th.2.42 is giveﬁ by using Lemma 2.6' in the similar maﬁherc
Letting the linear function Lo(t)=LO,X(t) be as in Lemma 2.5,Lemma 2.6,
‘we take a suitable linear map L(t). Then we have the following for each
integer m >=>0:

(a) mw-m > Lo(m'), with m' =[L(m)7,

Now take an element ‘PCZZq(A (P) fmo )a , where A (P) =A gﬁ;(P))(cf.Th.Z,zé
Then settlng m :=[L(m)] and fi:=m-m , one can write ¥ —_-FI;I 11? ,, with b"le
Cq(_#jp) i? X)a ,By (a) one can apply Lemma 2, 6! to J? , and we have:
(b) s"¢'e 0l (L. (2).9 (P 2y + 22 (E (2)),05) o7 s with

(r o's 3)—1Xﬂr ;M3 3) » (Here EX is the pre d,p,.c.map as in Lemma 2. 6 )
Operating F2~1 to the both sides, we have:

t
x~ ~ ' s
() ™Y €] 12%4, (L (),09)a’ -
On the otherhand we see easily that the correspondence:
’ [ 4 ] ']
(d) (r;e5m;3) — (T ;o3m ;9)

define§ a d,p.c.map, which is determined by E

v and L(t), It is clear that

(¢) and (d) insure Th,2,22. q.e.d.

By Lemma 2.6 we see that the open map property for_Ef in Lemma 2,5
suffices to get Th.2.22 and Th,2.42 from the p,g_uniform estimations in
81, In n,4 we give a lemma, which is used to get Th, 2.2, ,Th. 2.1 from

™. 2,2,(resp, Th 2,3, Th«2.41 from Th.2.4,) .

7.0
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4, Letting the p.g sheaves _@,}5 be as in Th.2 1, ™.2,3, we assume
T . / 1 v
that é,v}jv are in Coh(i(_)p’g, Coh(X_ )- (cf (1. 4) ) . Thus ILCOX, g C._..\Ql
with a suitable kE.Zj. Then letting the parameter spaces ZH’ 'Z , and the
p ? i .
estimation maps F’H e;‘"}d,p and EE' 6-—Ed‘,p have the similar mean;_ngs to
Th,2,1, Th. 2,3, we have:
Temma 2,7, We have the following inclusions:
e ' Qca cw 4 »
o.10y§ & (CUE @)L gnC3L#Q§@))w» o(ﬂgx:aouf%
e . 1 $
s (c%(a (2,05 ned(a (1) ,8) € T;cq(A.(_) fmoxl) ,

where (T';0%s m,&) (r oM ) @QL(% m ).. gﬁ(fr’;m) - and the parameters

MoreoveY:, “j O *9,0‘& s+, are the first. resoluj;on of H Remark 1,1}|

M"C‘(
Ve prove Lemma 2,7 in §4,2 .Note that Lemma 2.7 concerns the exact

complexes ’ and is of Artin-Rees theorem type , The role of Lemma 2,7 in

our d,p, estimations in&§ 2 is similar to that of the above theorem in the

completions of rings(ef,L1d) , Here we check the implication:

(2,13) ‘I‘h.2.22 + Lemma 2,7-—> Th.2.2,—>Th, 2,1 (and Th. 2, 42 + Lemma 2,7
a_?Th020$l ”"_91‘}1! 203) L4

(¥rom a simple observation’f)we see that Th.2..21,2, together with Th,1.1,
imply Th, 2.1, Here we check the first implication in (2.13),) The key fact
for (2,1%) is the following inclusion, which is similar to (2 11)]'_ :

-~ k g
@M)uﬂggmﬁamﬂ%@mmmmummmf%m
(Tis follows using the similar inductive argumen’cso&le length of 'I;l,).)

: to n,: :
»Ac’cually, remarking that 2%(a (lr(P)),anaC' (left side of (2,14)), we
'easily have : Th.2,2. from (2,14), and we also have the first implication

1
in (2.13),

#) As in n,3, we consider only the case of the local varfiety’)EE‘:A’n]a..

n%
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We will conclude § 2.3 by the following proposition.

Proposition 2.3, For the proof of Th,2,1 ~  Th,2.4, it suffices to_h‘

prove Lemmg 2.5, Lemmg 2,7 and Lemmd 2.3 ,
FOr the proof of these lemmas, see §4.2.
Remark é.2, Here we m3ke some remarks, which gre used in the later

Arguments . Firstl‘awe saw the following implication in (2.10)5:

(2.15);  Lemma 2,5 —> Th,2.2, .

Next we rem3rk that the open map property in Lemmq 2.5 is given in terms of
the symbol (Cq ), Using the similar (syzygy) é‘irgmnezlts to Lemmda. 2.6' , we see
egsily that Lemma Z.Sand‘ Th.2.2, enable us to change the symbol' ¢’ in

(2.12) in Lemmg 2.7 to the one (Zq_)(Namely we have the following inclusion)?
(2.15), J(z‘l@(,@r(m,_fi‘pﬁ”)ag\(x{grl(on 0 2MA(F (P)) ,ﬁ'Q§P§1)>ﬁ3,
By (2.15_)i, we h3ve the following implic&tion:

(2.15), Lemm& 2,5 ——35 (2.15), - |

Thirdly, & s we checked in (2.14), the symbolfcd “in Lemma 2.7 is changed to
AN (by using Lemmg 2,7 and Th. 2.2, ).This fgct, together With (2.15)4,
insures the implicgbion: |
(2.15)5 Lemma 2,5 + Lemma2.7 —> (2.14),

We use (2»«15)1,\5 in the proof of Prop.4.2(in n.4, § 4.2) .
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§3, Applica:tion to Analytic de Rham theory

—

Here we summarize our applications of the cohomology theories in §1,82
to the analytic de Rham theory, As was meﬂtioned%), we use here our results
on Co:de Rham theory for certain stratified spaces and regl a,nalytlic‘: varieties,
which were &nnounced in €[5 B and C17J(cf.Lemmz 3,2 @nd Lemmd 3.3), The
details of those results will be published elsewhere 1n a4 ne’r futufe(cf,[iﬁj ).

1. Letting the smooth local variety _)g:XO-D and the smooth gaffine

variety X x' be as in §1, §2, we se#:)

' ‘
(3.1) 42 "a.lg l‘alg rationgl differential -formsJ
77’0 sheaf over £ meromorphic diffe‘rential forms with

the pole D ,

1
ioreover, let the subvarieties V,V of XO, _X.' in§2 , we set:

’

~
. ' *D) = i ] : m 3 o
(5. 1) Sy (40):= 3im, Ry ) IR CD) |, v,y SlonRy ,alg/;,w,ﬂgﬁx 2lg >
where and Ly alg denote the ideal shegves of V and va.lg '
We Write V-D ss V , dnd, takingd point P&DNV, we denote by X X5, \7;, the

germs of X V at P. We then set:

(3.1)5 H*Q(P,c)-= Lin, H' (X0U,C) , where U exhaust all neighborhoods of P in
X (a.nd we define H ( __) similarly ).
*)

Then we hfve:
Theorem 3.1 H*( Q=1 (Q‘X(*D) ), 4nd v (1{ L)< H dj—(—E(lg;' X ’a.lg)>°
Theorem 3.2 H (V,,0)2 H' (Sl +(*D)p) , .and H(V ,C)<H (f(yalg,s’i rag))

¥) Similarly to 31,82, Xa]ga.nd V alg denote the algebraic vqrieties

whose underlyinﬁ,analytic varietges dre _X_,V' .

7
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(Th,3.1 is given to the smooth varieties X,X, , while Th,3.2 is dgeneraliz -
-tion of Th.3,1 to the varieties V,’V’ , which have in general singularities_)
Except the concrete style of the formulation, Th.3.1 is the well knowyn
theorems of A.Grothendirck in573.The sécond algebra_ic iéomorphism in Th.3,.2
is due to P, Deligne(cf,[r( ]),The first andlytic isomorphism in Th.3.2 .3
seems to have been not known., In the both theorems, the analytic isomorphisms
are stronger than the algebraic ones( The analytic isomorphisms, together
with standard Gaga arguments, lead. to the algebrdaic ones . The proof of the
former is harder than the lgtter(cf.L51 ),) e note that the Arguments in
CL57 ,L7] use the resolution theorem of H, Hironzkda . We @lso note thdt,
in the proof of the first isomorphism in Th.3.1,E] uses & comparison
theorem of H.Grauert-R.Remmert(on the behgviors of coherent sheaves under
proped maps ).As we will see soon la.i:er; our proof of Th,%.1 gnd Th.3,2
is 1lqrgely different from the arguments in L5J, £7] ., Qur proof i$ more
close to that of the holomorphic de Rham theorem for Stein mgnifolds(cf.
H,Cartan[ 13 ): | |
(3.1); H*(Y,Q_)gH*Of(Y,ﬁY)), where Y is& Stein manifold and Sy is the
shegf of holomorphic differentigl forms over Y. |
As is well known, (3.1)l is & form3al consequence of the following facts:
(3.1),  H (1,%)=0(az=1), HO(Y,RY);N:E(Y,Q;Y) (Th.A,B of H.Cartan for&l) .

. q0_ p d e - .
(3,1)3 Exactness of RY’O"’—Q'?QY —-?SZY-——? (Poincare lemm=) ,
Th.A,B isamdin aesult . in the theory of Stein varieties, while (3 ..1)3 is
based on the dnglytic contractiblity of theanalytic mcmifoldg. Our ..
'proof of Th.3.1 qud Th 3,2 is patterned on the proof of (3.1)3 indic'clted Qbove

We Also use & topological fact(Lemma 3.5 ), whose correspondence does not

/3
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appear in the'proof of (3.1)l

2. First lettingsgk,szkl be the sheaves of holomorphic differential
N

. . ;
forms over z,zﬁ, we set:sﬁ&.=£;pm S;X‘£V X andS%&v.~11m SLX /IWC%X

’ t
where &V andvgvl'denote the 1deals of V,V . Then, from our main results,

Th.1.5,Th.1.6 and Th.2.5,Th.2.6, in §1, & 2, we have: _
q N
Lemma 3 1. (1) H (XP’Hk)p g0, H x' R )p = 0, and H (xp,%)p .

N%(JGD)P 2 H (X 9')(')p gN f(xalg Sz()( ’alg)

(2) Hq(xp;ﬂx) =0, B(x' ,?ux )p.g & 0(az1), and H (XP,%)
=8 omy, L O’ sex' p.e = DXy s By alg)

_ Lemma 3.1 corresponds to (3.1)2 in our p.g.cohomology theory and in
‘p.g.cohomology theorg,in the completions{‘As in the proof of (3.1)1,
Lemma 3 1 will play the ﬁost basic roles in our proof of Th.3.1 and
Th.3.2. Also we note that Lemma 3.1 concerns the Stein and the algebraic:
properties of X,X', which may be the most impbrtant proﬁerties of these
varieties(cf.also Introduction).

3. Next let jx be the injection:ccashgu , and we define:
(3.1),, Cq(x',C)p.g:=§];_i_r_rl70q(AO_(X'),C)p'g , where C?(Ao_(x'),c)p -
‘= j—lcq(Aq_(X'),Efég)p.g » and the p.g.covering A (X') is as in Th.1.3.
We define Cq(XP’C)p.g similarly to the above.r Then we have:
Proposition 3.1. (P.g.Poincafe lemma). The following complexes are
‘exact: 3 ,
0 —5¢%(xp,0),  — cq(xP;fgap?——ﬂLy cd(x, Ry —
(3.1)g { -8

0 —pcdx’ o),  —> ctx ) —2 5 el /R T

where d denotes the exterior differential operator.

17 if
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Prop. 4.1 will correspond to (3.1)3 in our proof of Th.3.1l. The proof of
Prop.3.1l is essentially very elementary(cf. the end of § 5.2), Next letting
the finite sets f=(f;);%) CP(XO,NX ) and £ (£ )52 8 e IMx' ’9X'> ¢ be 3s

in §2, we set:

(3.2)5 SLX =t as™e Q; £+ af ™R ana

q q ‘myl Q YWoF-1
(3.2)5  CAAMX) ), o= FIRAUALD Ry %), o+ an At AR Y,
Also letting the p, g,covering ,(gP), attached to _K?’be 2s in Cor.l1l.2, we

!,m:=

define the p.g.complex Cq(AéP),%,m) similarly to the @bove.
Lemma 3%, 2,(P, g open map property for de Rhgm complex) . We have the

1nclu81ons

(5.2) (A, &P,m)p nd~1(o)) - qu(Ak(P) Q,m b (o351, g20)
' pzl, g=
PR QY )y g O a7HO)) € a4y, 88, =

-where the parameters N, 7 are chosen suitably in the mannner as in Lemmd2.Z2

HMoreover, m’:[LX(m)]and 'fﬁ'zﬁl_, (m)]',with linegr mqps LX(“t)=CX‘t~ gz_p__d_LX/(t)

=cixio t;c}i, CLI >0 .
For the proof of Lemm 3.2 , see Lemmg 4,7(cf,part B, §4.1) and the
end of &5, 2, Our proof of Lemma_ 3.2 uses certiin open mdp properties for
Koszul complexes @nd i+ &.d.properties of (topological) contrmctiblity of
dnadlytic varieties(cf. §5.2). Lemma 3.2 is, no longer, of obvious néjcure_

Now , gpplying Prop. 2.11 to the open m3p property in Lemma3.2, we h&ve:

Lemm] 3.3.(P,g Poincgre lemmd in the completion theory). ghé following

complexes dre e*ca.ﬂf“ :
0— 00, , —> ATE, ey ———>0q(vP,SL§)p g

0—5 AV ,0), , ——F R )y —- S0 ER), ——

(392)5

. ]
(In Lemmd 3.3, the varieties in question are ,V,V (instead of X,X in
Lemmg 3.2 : byd simple observation of p,g.properties of the imbedded varieties:

~ 1 %
V,V , we have:C (JP,%_)p g &= Cq@?’ﬁx)p g - (c£.T483) . Then, qlso

75
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from g simple observition, we eqsily check that d"l(O) at the first steps
i .0Q . - B
in (3.2), @re:C Q{P,_c_)p,g, ... (cf.also C1%3d1 ).

Now, from Lemmq 3,1 ~~ Lemmd 3,3, we edsily have:

Lemmza_ 3.4 . We have the follmﬁ_,g isomorphisms:

3 % = ] . .
5. 2) {H @P,.)p L=E (%(*D)P) and H' @_c O, (5 H u(,alg,%iv aug))
- 6 * —~ ’ % N ?

These isomorphisms summgrize our applications“of the p.g,cohomology theories

as in Lemmq 3.1 ~ Lemmy 3.3 . In order to.get Th.3,1 dnd Th.3,2, we should '

drop the term ‘p_ g’ from the cohomology groups H*(_}_(P;_Q) » o « « in the left

b.8g
sides in (3‘2)6' In this step we will use our main results on p.g,C?-Ode Rham
theory for certain stratlfled spaces in [15] Ei?j

4, Let C be the]/eu_nblent (euclid ) sche of the loc&l va:c'le’cy )X nd
the affine varlety_g »We 1dent1fy_(_}_ with the redl euclid sp3ce R2 in &
natural mapner, &nd we fix coordinates ;x-.—.(x.) _2n of R « The symbol £ will
denote the shed&f of Cﬂdlfferentl‘tble) dlfferentla.l forms over _’{ . Taking gn

2

open set Y of R R and & p,g function g:Y—-—?ﬂl, we set:

(3.2),  E(V38), = fre &) v =Z&dgK satisfies the following for each .
suffix K and each element J & @+UO)2n:

(3"2)(') IDJW (P)I<&Jg(P) in Y, with @ suitable 85 éﬂl , where DJ:=aJ/9xj
Next tdking subsets 7,2 of X,X , we define: o . '

B, Z) . (2 _
:= g-D, g.covering of { , st of size o in C (""’R ),

'where g is t'xe P. &, functlon(h.X | or Izl +1 of X or X (cf Th,1,1 ~ Th,l. 4)
We use . the symbols NJZ) ,N"r(‘Z\) for sup‘p.Bw(Z) and supp __ch('Z\) We may

prm——

%) Recall tha,ti(_ is of the formjL::Xo-D, with & variety X in U0 . We
are assuming that Uy o7, ' |

15~ 1



261

may callNu(ZJ‘,N—w(Z')v_tha_pE neighborhbtods of ‘Z,‘Z‘ in g% of ‘size g . Such

D.g.neighborhoods {re suitdple for investiga,fiéns of the p,gv, properties of
imbedded varieties(cf. Eiﬂ] . See &1so Pro_p,4.6 , §4.2 of the present paper,
where we discuss p.g.properties in connection with extensions of cochains
from imbedded varieties to their qmbient spaces,) Now we set: -

Ep)y g 1= Aim € (U(2)0)y g0 W)y gi= 1 EAT(2) 00, g}
£Q@), g = L SOLED ), g 5 By ¢ = Lnfl )8, 4
where gqh’£1| or 1zl+1.Also the manifold X,.(P):=X0U.(P), where U (P):= disc

(3.2){

in C" of center Pand radius r, is s in Th.1l.1l. Moreover, we set 'Vr(P):;v‘Vqu(I

Then our main result in O7] insures:)

Lemma 3,5, We have the following isomorphisms:
* ~ ’ *7 o (ST
B (.0 S E(E Q) o)r B (5,0 22 B (8T, )

a0 S=E(EE), ), B (V.0 S ), o)

(3.2);
Note that the right sides in (3,3); may be regarded 2s CTAn&logues

of the 'ané{lyti‘c‘ de Rham cohomology groups &S5 in (3.1)6 , Lemma3. 3,.Also

note that the left sides in ( 3'2)1 dre the topologica&l cohomology gfoups

H*(X,,C) ,- - ., while the left sides in (3.1)¢ , H*Q(_P,_Q)p.g, ... contain

the suffix ° p.g),(This difference occurs from the following situation:

firgt, in the definition of H%(XP"Q)p,g" we used the P. &, coverings NOQC_I,(P)),

whichdre Qgqttached to X—r(P) (cf.Def.l‘Gz) ,and our use of such p,g, coverings

is & main source for the suffix ,‘p,gi mentioﬁed just @bove . On the otherhzmd.,

our proof of Lemm 3.5 is bgsed ong type of stratified spgces attached to

realandlytic varieties , which we call nomgligemmsira;aiﬁﬁd_sm:

- ¥) Lemm 3,5 is given inCl7] for local analytic varieties,3nd is gpplied
to the varietj _}gl . On the otherhand, Remarking that, the Qffine variety X'
is compActified (in Pn(g)DC_n_) dnd,applying the locdl results just QAbove to

’ ] ¥
~eqch point of ‘ne completion of X , we get Lemmy3.5 for X .

75— 2
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(cf .HM). Such stratifiei,spaces admitt what we call p.g.simple coverings,
where the word ($imple’ is ﬁséd in thé similar sensé to the 'simpie
covering’ in the cZde Rham theorem in [21]. The siﬁpleness as above
insures that the ébove coverings satisfy thé strndard Leray condition
for the constant sheaf A(and so for R and C), and they are used to determi
the topological cohomology groups H*(XP,C);... Such coverings are also
suitable for trmeatments of the p.g.properties of 62differential forms

over analytié varieties. Using the abové stratified spaces and the P.g.
simple covérings of them, the proof of Lemma 3.5 is formal(ef.[17] and
[18]. See also Remark 3.1 at the end of § 3) |

5. Finally we will see that Th.3.1 and Th.3.2 are derived from

Lemma 3.3 and Lemma 3.5 in a formal fashion.'For fhis we firsf let eX’EXJ
denote the sheaves of dfdifferential forms over X,X'. Letting the subsets
Z,Zt of X:,X' be as in (3.2)0, we define !p.g.complexes‘of 6§hifferentia
formsﬁ ,
(3'2);.'8x£2)p.g and E&,(Zf)p.g (in thé similar ménner to (3.2)0, by
using the coordinates of X,X‘ instead of those of C" as in (3.2)0).
Moreover, we use the symbols B;(Z), BL&Z’) for the p.g.coverings of

Z,2' in X,X of size o (cf.also (3.2);). We also use the symbold N (2),N,.(
for supp B’ (Z)‘ﬂEB (Z ) . (Thus Né{Z), N’(ZS are the p.g. neighborhoods

of Z Z in X,X .) Then, corresponding to (3. 2)1, we define:
w [ ExUp), o = Lin €00 (), Q(WP) =lim exq\ﬁrnp .

(3.2) . pP. g o, >
2 | eptx )pg I 11m @ (N, (x' Mg EX,( ). : +=1ing (h(vf,)) .
T~
Then it is not dlfflcult*)co check H (8 (XP)p.g) o~y (8(XP)p.g)”"’

and Lemma 3.5 is rewritten in the following manner: e

)
#) From that X,X are smooth, this isomorphism is rather easily checke

%

(ef.[18]. See also Prop.4.6 for tretmants of the p.g.neighborgoods.)

.’7‘ ‘;\ _ 3
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“)& ~ %€ ¥ v P AN |
3. 2) {H Ep,O)Z H Cx(X5), o) » B (Fp,0) X B €x(Vp)p, g) }
3,2 M T v .1 M
. 2 %, 1 —~ ¥ PO | ¥ 1 A X
H QX LOSE €&, ), (V0 EEV )y )
N’ow we denote by T ,"9 the nqturgl homomorphisms from the dnalytic de Rham
groups to the p g, cZde Rhzam groups:
~ ~
(3:2)5 T: S (D)€ (D)0, TiEy (D) p—> €3(Tp), o
*
Moreover, from e simple observation, we have ngtural homomorphisms:)
L% * 7~ X, 1 e * A
(3.2)4 ll.‘_H_ (%(_Q(P)p,g)——? 1 ('XP’Q)p,g P ]“‘- :.H_ (X ’(VP)IJ' g)"'_—> H (VP,_Q.)p'g ¢

Then we easily haye the following diagrams

Fig,I.
H (4 (+0)p) =5 17 (X,,0) E@(0)y) =5 1'(7,,0), ,
- / j lq: b
H (€ (Xp), V55 H (X, 0) E (Ex )y o) == ¥ (7,0

@nd the similsr diggraqms for_)gl dnd V', ).- It is clear that the above diagmam-
jlnsures. the implic@tion:
(5’.2)5 Lemmq 3,3 + Lemmd 3,5 —> Th.3,1 and Th.3,2 .

Remark %,1,As m3y be clegr from the content of €3, the most importqnt

topologicgl fact in getting Th,3.1 and Th.3.,2 is the p g cZde Rham isomorphism

As in Lemmi?.5, klso we use some ad. proi)erties of (topological) contrgctiblity
of @nalytic varities in getting the open map property of the de Rham complex

s in Lemma 3¢4(cf,t152,Also see the end of §5.2) The underlying basic fact
for -the above topologicdl fgcts is the existence of stra.tified, spdces for
analytic vqrieties(=normalized series of stratified spces), which were
mentioned previously . The details of the _'a.bove topological facts dre in
EJ.E'JZ{\’4 and the duthors forthcoming paper[18](The first three dre outlines
of .What @re mentioned soon @bove, while [181will contain the detqils o)

%) Such-homomorphismsare constructed, by using similar grguments to
the one intQJ],which attaches,to the closed differenti?l forms,their cohomology
cldsses ., Seedlso the grguments in §5.1and n.5, n.6 in 85,2, where we glve

some cohomological &rguments ,(Such Arguments have similar algebraic structures

with the arguments inf[af] |, 175___ 4\
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As may be from’the éontext of‘§3, the above topological facts
are indispensable in getting Th.3.1 and Th.3.2. Howeyer, as ‘in the
case of the holomorphic de Rham theorem (3.1)1, and ih the proof of
Th.3.1 iﬁ [5]; the mo#t important facts in getting the analytic de Rham
de Rham ﬁheorem(as in Th.3.1, Th.3.2) are the results on the coherent‘
sheaves in Lemma 3.1. | o '
Remark 3.1. At present, our fesults on the anaiytic de  Tham theory
.are given separatedly, according as we are concerned with the analytic
or topological aspects. The present paper covers the necessafy analytic
facts for the proof of Th.3.1,Th.3.2, while the nécessary topological
facts are summarized in'[jj;]zwu,[iﬂ] aﬁd in [(1g 1. The‘author plans
to write a sUrvey paper on the analytic de Rham theory, which Wiil
include (1) =even treatments of the analytic and topological parts as
above and (2) comparisons of our methods indicated as in§ 3 and the

methods taken in [51,[7].
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Chapter II. Uniform estimations on homomorphisms of

coherent sheaves

§4. Uniform estimations with bound and algebraic division

In §4.1, 84.2, we give the first and second uniform estimations in
the title, which are semi-global in nature(Lemma 4.1~4.6). In §4.3,84.4
we give global versions of the results in §4.1, §4.2. Also using such
results, we prove the 1emma?, whose groof is postponed untii now, The
proof of Lemma 4.1 ~4.6 will be given in § 5.

g 4.1, Uniform estimation with bound

- 1. First we take a datum:

(4.1)0 X= (c™(z), Uy Xgo X PO) consisting of an analytic variety Xé(;?PO)
~in an open set U, of a euclidean space c"(z) and a subvariety Xé of Xj.
The variety Xé may be empty, but should éatisfy:
(4.1)5 X: _XO-XO is smooth, and,when Xé b, Xé contains Py .
We fix the datum X in the remainder of § 4 and in §5; The underliying
variety of X will be:X:XO—Xé. Moreover, for convenience of the formuwlation
of the estimations in % 4, we fix subvarieties X1 .%o of Xy satisfying
(4.1)g %2 % R, DX, -

2. Underlyigng data. Setting Xl.—X —X2 we first define a parametrizaz-
~tion of manifolds in X(= XO~XO) '
(4.1)1 ug: }Lgl = x X R¥3 L =(P;1) —0uv(X) EBU'(P) = {q€ x;4(?,Q)< r},
where d=natural distance in c™(z)(cf.n.1, §1.2).

*) cf.n.1, § 1.2,
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varieties with singularities. Finally, the procedure in>§ 4.2, which
rewrites the non cohomological estimations in § 4.1 in cohomological
‘forms, is essentially algebraic; large parts of & 4.2 is given in an
abstract fashion in terms of the q—sheaves(Def.l.4l).‘The content of
§ 4.2 may be useful for general treatments of the p.g. and a;d. properties

of g-sheaves.

§4, Uniform estimations with bound and algebraic divisians.

§4.1. Non cohomological estimations

In part A,B we give non cohomological estimations of local forms,
which concern the first and second properties in the title. In C we

give a global version of the results in A,B;

A. Uniform estimations with bound

;L. geometric underlying data. In a similar manner to § 1.2, we

start with giving the following geometric datum:
(4_1)0 ;Qp=(g?(z),ﬂa,Xo,Xé,Po) consisting of an analytic variety XO(EBIb)
in an open set UO of a euclidean space_g?(z) and a subvariety Xé of Xo.
The variety Xé may be emptly, but should satisfy: V

1 L ' . . 1
(4.1)y X:= o~%g is smooth, and X, contains Py, if X, % # .
(When X' is the divisor of an element h€M(X~,0, ), the datum X is of

0 : : 0Ky’ ? &

the form which was used in §1.2:X €5An1a(cf.(1.8)o). Note that, in this
case, X:Xé—Xé is a Stein variety, In Chap.II we do not require this

condition. The datum X is more general than geometric data in Anla in§1.°

i



267

We fix the geometric datum X in the remainder of Chap.II. The underlying
variety of X will be X=XO—X('). Moreover, for convenience of the formulatior
of the estimations in§ 4, we fix subvarieties Xl’XZ of X, satisfying
n 1
2
(4.1)g X2 XXX, .

2. Parametrizations. Next we will define certain sets of cross
———

sections to certain coherent sheaves, which are parametrized in an explici
manner(cf.(4.1)2 soon below). The parametrization here is of non cohomolo-
-gical form and is simpler than the one in§1,8 2. However, the formulatic
of the former has some similarities to the one in the latter: first
setting X --Xl--X2 we define a parametrization of open manifolds. in
x{= XQ—XO)
(4.1); v : My :—Jlx R D M= r)—>0uv(Y) DT () := {0 € Fa(p,0) <},
where d is the natural distance in C “(z)(ef.n.1, §1.2).
Next taking a matrix K:OX——?VQK(u v>0), whose entries are in F(XO’VC«X ),
we write the image KOX(C_ VQ,X) as K. (Here OX’Q/X are the structure sheaves
~of X,X,.) We use the symbols e for the q—structures of K, which are
0° £ K “J
induced from K:OX—;;K and the injection:K K (>Q (Def.1.4,). Setting Ag .=
1
“w‘(R , we take ah element (P;r; a)e)\X (CXlx’? )(? ). Then the sets of
1
the croSs sections, which are used in §4 §5, will be of the form:
F(T.(P) K3 6,) NIy <a '
'S Lo
(4.1), { £ al {yef(u (P),K); { -~ } in UI,(P)}’,
RO K 80,1 ¥ (@)’
wherel ‘K | l are the @K- and 9 g-absolute values(Def 1. 41)

V\I L \‘\/

Note that by the definition of eK"" the above sets are explicitly as
follows: ‘

t ~ ~
(1), [0,(2) 380, = x (0(2),95:6), » [(T (2,58, = [T, o%8),

N E(U (P) K) ,where 8 G are the standard g-structures of O QK(Def 1. 43)
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2. Estimation maps, Lettingl;i denote the Fig.Iv
collection of all positive monomials(n.5, §1.1), ' ‘3 -—-——————% r*
‘we set _EI_::T_"LU‘Q, and we regard an element ﬁ:(Ml ’MZ lf Ml'

%R ——> R'

€  M=Mx M as a map(cf.also Fig.I):
(4.1)5 H:R%RTD(r;0) >R% R 201 (r),M,(a/7)).

We use such a map in the remainder of &4.1.

)
4. Bdd' uniform estimation---1., Letting the matrix K be as in n.2,

we take an open subse’c U =U. ,K(9P ) of UO and an element = O'Ké.__R;..z. We

then form the following parameter spaces'

(4.1), Myi= {(Bs0)€ (U)X E'5 r<fm(P)} ~ 1, witda(e)=a(e Xp)"

>\K:=MKX§1

. .
Lemma 4.1 . (uniform estimation with bound--1). Take a suitable

-1 , and

ﬁ € . Then we have:

(4.1)5 i E‘(U (P),v-e ) LT, (P) X5 ) o » With (T} a)_MK(r a), where
the parameter (P;r;a) is 1@,,)\K(C X XR XB;) and 1=1nclg§_1_on‘;Ur,(P)C.?Ur(P)
We prove TLemma 4.1 in§ 5.1.

2, Bdd uniform estimation--2. Here we give an another uniform

estimation, which is derived from Lemma 4.1‘(cf.§ 5.1) and is sharper than
TLemma 4.1' in some aspects(cf.Remark 4.1): first take a se’c‘_};:{hu}u_g C

. - ' - .
E(XO Oy ) satisfying (\ D = X,, where D =divisor of h  on X, and we set:
(4.1)6 Coh(XO;E):.—-collection of all coherent sheaves H over X, which

admits a resolutlon of the form:

. 'kp p-1 K, kK X _
(4.1) 0 =0y _-—--——> —_— = — == 0y ——,—»ﬁm@x)ﬁO, where

Kj (0£j<p) are matrices with entries inP(X’QX) and. satisfy:
(4.1‘)" the entries of K. are in J'(X .0+ (¥D._))( for each j,u).
6 J 0 XO u
Here Qp (*Du) denotes the sheaf over X, of meromorphic functions with pole

D_ .
u

%) Bdd ¢= bounded
#¢) Wnen X, =¢., we understand that d(?,X,)=1,

79



269

Now taking an open subset U ,h(BPO) of U, and an elementU" é , we
form parameter SPaceS}\/(-i(C Xlxi) and A_,&‘:}xh.XBi’ in the similar manner

to (4.1),(by using (Up,y,93), )« Then we have: oo «
Temma 4.1l. (Unifoym estimation with bound---2). Fig.II;f}
/ ~ &
_There are maps 6)1 Coh(XO,.h)B H-—-)M BM‘.J and 8£:§+9ﬂ .Coh(XQ;h) ,_.1?_.;}\4_’
which are factored as in Fig.II, and with which we have lg ,
. €
the following for each ie Coh(X o3h): ) gt —h 5 M

(4. l) i .E‘(U (P>,~, @) CP(UI,/(P) ’w’e’g) s, with (2} a/)—MH(r a), where
the parameter (P;r;a) is ;n)\h(CX )(R+X R ).

We derive Lemma 4.1 from Temma 4.1 (ef. §5.1).

Here we give a remark on the formulation in Lemma 4,1t and Lemma 4.1,
which we use in getting‘ Lemma 4.1 from Lemma 4.1'(cf. & 5.1).

Remark 4.11.4 (1) "_rklu:e.an element h&Ji(X ’Q%O)’ and let QXO(*D) deﬁdte
the sheaf- over .XO of meromorphic functions with pole D(=diviosr of h) .
Then, réplacing the condition: 'the el;xtries of the matrix X are in

f

E‘(X ’U\X ) in Lemma 4,1 by 'those are 1nIL(X0’M( (*p))’ , we get also
(0]

the s1m11ar inclusion to (4. 1) (:Ln Lemma 4, l)for K (after the above TF
change) . Actually remark that %=h%K are in .E(X OX ), with a suitabler d€ 3 __J
and we apply Lemma 4. l to K Then, recalllng the explicit form of the
estimation:(r;a)—> (r ;a ) as in Lemma 4.1 ; we get easily the inclusion
mentioned soon above" for K £rom the application of Lemma 4.1' to K.

r (2) Lemma 4.1 is sharper than ILemma 4.1' in the point that (a) the
parameter space },(h is independent from the individual sheaf Hé Coh(XO h)
and (b) Lemma 4.l satisfies Fig.II(as in that 1emma),, The 1atter is used
to get the similar diagrams in Cor,l.l, Cor.1l.3 and in Lemma 1.2,Concerning
the first, we remark that. the ‘open U =U1’K in the parameter space/vfi(

(ef. (4.1)4) is taken independently from the individual matrix X as in

Lemma 4.1, Actually, take an open set U1=U1,X(9PO) of Uy, and finite points;

*) C,Q‘%f in Pig, L is the length map(cf.(1.4),), l’of

T0
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means for the measure of the a.d,properties. For this taking an open
subset Uy ,% X, (55P ) of U, and an element 0*~'€£Rf2, we form a subset}év
1 l
of X X rY 1n the manner in (4.1),, by using (U, ). Also taking an
4 1 Xl’ Xl

element m€ 7% we set: ’ZX ._li“'XZ+)<R For an element (P;ri;m;a) &
1 l
My ©Exr*z*XR]) we define:

1 x m m
(4.2) {F(EI(P),f 0y), } _{ B(T,(P),0358)4(ct. (4.1),) R
2T _(p) 00 £9eHT(P),0) 1Pz ale(@N ™ in TL(P)}
In the above & is the standard g-structure of Oi(cf.(4.l)2 and Def.l.4l).
We then have: ) |

Lemma 4.2.(Algebrdaic and analytic comparison of a.d;properties).

For a suitable a.d.map EﬁiéE Ea'cl1 we nave™™)
(4.2)5 1 TW2),007 CT (2,87 09, with (rimia)=ng (rimsa)
(cf.(4.2)1). Here (P;r;m;a) is intzi—(CIiiKR+KZ+XR+).

Treatments of the left side bf (4.2); are sometimes easier than the

right side;lLemma 4.2 is useful in treatments of the a.d.properties of OX.
Next we may regard Lemma 4.2 as an analogue of the compariSonvof ¢ P.E.
and meromorphic)(as in Th.1l.6) in our treatments of the a.d.properties.
Moreover, as we will see in n.%, Lemma 4,4 implies Hilbert zero point
theorem for f(Lemma 4.3'). Lemma 4.2 may be a basic fact in the a.d.
properties of OX‘

3. Koszul complex--l, Taking a finite set g=(g f:F(XO’OX )
satisfying the 51m11ar condition to (4. 2)2, weGdenote by G the Koszul
complex for g: 04>OX-—_—9_ ——;O( l___,g - - - _jL}4>OX~%O. We assume:
(4.2)4 the locus W of g (C V(=locus of f),.

Now taking an open subset Ul,G(EBPO) of Uy and an elementtrc_éiiﬁzz, we form
a4subset‘LLG(C:§EXR*) in the manner in (4,1)4. Also taking an element EEEG

&1 we set: Ty:= My X BEXR] .

¥l
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B Algebraic division unfiorm estimations

This . 'PC'C!I Jt v concerns mainly uniform estimations on open map
properties of 0, -—homomorphlsms(Lemma 4 2~-4.5). Such results are our
maln results on non cohomological uniform estimations in this paper. *)

The proof of the results of § 4.2 will be given in §5.2.

1. A.d.estimation map_sj*) We begin § 4.2 by the following

. Definition 4.1. By an a.d d ,estimation map we mean the one:

(4 2), E:R x(Z XR’ VD (r;m; a)-—%R )((Z )4__)9 (Z; m! ;a ), where r _Ml(r),
m =[L(m)] and a :I_/Iz(a/r)‘ exp M3(m). Here Mi(l._él,:j) are positive monomials

and L is a linear function:T=ct;c>0. Fig.1
| RPx(g™%R*)—> RMz*

Ve then set: ’ . LE 6 1}@1‘
l -
(4'2)1 .. d::co_llectlon of_.all a.d.maps. B_+X'(Z,+XB_T) s R Z*

Letting EE E be as in (4.2)1 we call M;

-—a da

and L the first and a.d.parts of E. The map E is factored as in Fig.I.
(In Fig.I, the factor ¥ RY ?in the right side is the first factor of
RR(ZXR).) |

2. Algebraic and analytic a.d.properties. Take a finite set f=

(f. )3 1C_[L(Xo, ), which vanishes at POCXO(cf (4, 1) ) and satisfies:
(4.2)2 fj—v O(XO,.) for each f.(l‘é;;:s) and each irreducible component

X of the germ of X a:!:}?

0’i :
Then the set i‘m-—(_:%m) _1» the m-th homomorphlsm o O ~> Oy and the sheaf

ﬁng =" (Cok) will have the similar meaning to n. 2 §2 1. As in §2 we
use :Em‘ to measure the a.d.properties of QOy-coherent sheaves. On the

EXK).
otherhand, letting V be the locus of £, we also use {;he ‘aistance 1£(P):=

)

ijlifj(l’)] to V/to measure such properties. We will compare the above two

*) cf.also the beginning of Chap.II.

*x) ‘4.4 =algebrraic division(cf. § 2).

¥#%) By Lojasiewicz inequality, we may regard |£(P)| also as the
distance to V., “ 2
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means for the measure of the a.d.properties. For this taking an open
subset Uy (31’ ) of U, and an element 0*3515_11;:2, we form a subset}-(x

of X X Rt 1n the manner in (4. 1)4, by using (Ul’X ,@‘)'( ). Also taking an '
element mCZ we set: T := Mz XZ%X . For an element (P;r;mya) &

l
)L (CX XRXz* XR ) we define:
7
{I‘(Ur(P),__q)a } { I, (®) 0338, (c£.(4.1);) B
o m,

2T (2) 0000 {9eMT,(P),04); (Pl ale(PN ™ in T (P)} ]

In the above § is the standard g-structure of g;(cf.(4.1)2 and Def.1.41).

(4.2

We then have:

Lemma 4.2.(Algebrdic and analytic comparison of a.d.properties).
)

For a suitable a.d.map By & E, g -vet we_have +

(4. 2)3 i E(U (2),0 )m CI"(UI,}(P) fm Qy)gs s with (rimia))= EX (r;m;a)
(ef. (4. 2)1) Here (P r;m;a) is in L~ (CX XRYxztxrh).
Treatments of the left side of (4. 2)3 are sometimes easier than the
right side;Lemma 4.2 is useful in treatments of the a.d.properties of .QX
Next we may fegard Lemma 4.2 as an analogue of the compariSon of ‘ P.g.
and meromorphic)(as in Th.1.6) in our treatments of the a.d.properties.
Moreover, as we will see in n,3, Lemma 4,%& implies Hilbert zero point
theorem for f(Lemma 4.3'). Lemma 4.2 may be a basic fact in the a.d.
properties of QX

5. Koszul complex--1. Taking a finite set g= (83)3— CIL(XO,,K )

satisfying the similar condition to (4. 2)2, we denote by G the Koszul
complex %or g: O—aOX.E__y_ _—70( )———9 - - - E-JF——]—‘—;;QK-—%O. We assume:
: (4. 2)4 the locus W of g C v(=locus of _f).
~ Now taking an open subset U ,G(EP ) of Uy and an element ~G_6 R+2, we form
a subset}l, (C )(R_) in the manner in (4. 1)4. Also taking an element m-mG
ez’ we set.'tG }L XZ——XR .

#) The symbolti ) means the injection: U :( )(_,?U (P) In 1ater ::;'r"gumeng
in queotw on, without mentioning :Lt

we use this symbol for the injec tions
(when no fear of confusions occurs) .
+3) In the terminology of§2 3,

3

G= =m(=1)-th Koszul homomorphism -for 8,
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For a suitable a.d.map E; €E, 4 we have(1=p <t-1):
CE =1 1o ! =1 .
(4.2), 1 (B(T,(2) £l 621(0)) € 6y o0 (2),£70fP )y uith
(r';ml;al)z}:}gfr;m;a), where (P;r;m;a) is in'Z,"g_(—C Xlxgjx_z;*XE;).
We check that Lemma 4.2, 4.3 give a cohomological generalization of
Hilbert zero pbin’c theorem, For this, taking a point Pc—:'fflnw, we formta )
i *. 030 t=1 ot o<
filtered complex Cp:0-30p->-- —>CP G, __ Gy t—> >0, where ~g§:a&f‘9§1‘,’% }m:
and the degr%)one map is GP(O§ pét-l)(cf.n.l, §2.1).
-~ Lemma 4.3'.(1) The complex _C;
(2)_The open map property for Cp at the final steflQf —Y"ty 050 is

ot

satisfies the open map property(Def.2.11‘

equivalent to Hilbert zero point theorem for (f,g) :§9,X’PD-vaO~D(’P , with
a suitable W €20, .
Proof. The check of (2) is easy. To see (1) take an element &6;_’2'1*2.
Then t fj_;—EO on W ’implies: |fj(Q)l§a-d(QJH) in a small neighborhood Uy, of
P in X. By Lojasiewicz inequality we have: lfj(Q)mléa.gg_(Q)[ m., with suitable
m,m'ewl+ and a G_E_{i Applying Lemma 4,2 to g, we have;fglvgx,PngX,P. By
(2) this implies the open map property for Gt—l:vg;é %'QX. Finally, Lemma 4,3
insures the open map property for GP(O:_.<_,_p<t—l), and we have (1). q.e.d.
Hilbert zero point theorem may be the most basic fact on the a.d.
properties of analytic varieties.Its cohomologicél generalization, Lemma 4.3

and Lemma 4.3,may be also basic in treatments of

[]
*) This means that Gt_l(ﬁn Q}E’P)? f,gx for m3>0,Here m’=c(m), with
a map c:27—> 7t satisfying lim c(m)=ca(cf.Def.2.1). ‘
- - m—>
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the a.d.properties. Also note that Koszul complex is intimately
related fo the structure of the cohomology groups H*(XP'WP%9X3P>""’
where X,,W, are the germs of X,W at P, It looks like interesting to

try applicablities of Lemma 4.2,4.3 £o0 investigations of the structures
of the above cohomology groups.(See also Lemma 4,7,n.6, where we use
Lemma 4.1,4.2 in our analytic de Rham theory, by applying those lemmas
to determine the structure of H*(XP-WP,QX,P),...) (We gave Lemma 4.3
in terms of the germ QX’P' Formulations of semi~global and global
versions of Lemma 4.3 will be left to interested readers .)

%. Koszul complex--2. Lemma 4.3 coricerns the single Koszul complex

; oo
G. Here we will be concerned with the family F= ig?}m=l of the m-th
. 0. i s O
Xoszul complexes-omegx———q-490§§)__“_29.?0X __s=1.90x~90(cf.n,1,§ 2.3):
2 . ~
letting the restiicted parameter space jLﬁi(C:Xl)<Bf> be as in Lemma 4.2,
we take a suitable linear function Lo(t)=cot;cot>0. Then we have:
Lemma 4.4.(Open map property for the family F = i };;1)-
Choose a suitable a.d.map Ezfi@a g+ Then we have the following
for each m & Z(lg ssp-1):
(4.2). (EEE) 9B 0 (eme1 or T BT, (2) L ofP7D)
(4. 5 1 {P T = Wy a ernel o p) CEp;l (Url (P);__ \Q\X )e( ’
where (r';’?’n';a'):Eif£r;?n’;a).jﬂoreover, (Bsr) is in Uy (;CXlX RY), and the
o 20 . " 2 ), ana tne

a.d,exponent Eiég§+ of g? satisfies:m ;’Lo(m)(cf.also Lemma 2,5).

If we fix an elementlnégf} which characterize the complex.ﬁw, then

(4.2)5 follows from Lemma 4.3. The independence of the map §0§rom such
T

méigj is the key fact in Lemma 4.4, We use Lemma 4,4 to get the correspon~

=ding
cohomological version, Lemma 2,5(cf.§ 4.4).

55
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5. Exact complex, Letting the set h_{h} 1CP(XO%X ) be as in

Lemma 4. 1 take a coherent sheaf § &€ Coh(XO,__)_ of the form in (4. 1)6
k X k K
0——>QJXP p 1) - - - 1> OXl O>H(COX)—> 0. Moreover, taking

a suitable open subset U;=U;, H(?P ) of P, and elements 0= G‘HeﬂI?,
O=i, & 2°, we form parameter spaces and LH/ by ¥ | ” |
(4. z)suﬁ._{(P nE®N) B r<foa(®} F Ty = Ao X5 -
, Lemma 4.5. (Open map property for exact complexﬂ)

For a suitable a.d.map E.H., E.@-a.d. we have: »
(4:2) (BT (2) ,£505) 0 BT.(2),B) < %o [F(For(2),£° 0gh) 0, with
(r o a) EH(r ¥;a). Here (P;r;d; ;2) is in Z/H(CX xgxzm XRB.)

Note that Lemma 4.5 concerns an 1nclus:.on of Artin-Rees theorem type
(cf. §2.1), and is used in the proof of the corresponding cohomological
fact(cf.Lemma 2,7, § 2.3. Also see § 4.4.) As we will see in §5.2, the
proof of Lemma 4.5 is easier than that of Lemma 4.3,Lemma 4.4, which
concern the open map property of Koszul complexes.(ote that the XKoszul
complexes are not, in general, exact,)

6. Comparison of filtrations. Here we add a lemma, which is used

in the proof of the comparison of the filtrations in Lemina 2.3. For this
letting the sheaf EE Coh(XO;_Il) be as in Lemma 2.5, we define QX-homo-
-morphisms: ;

: X . .
(4.2)7 Kyspt= +35‘m:,QX1+OSk = +1?2———>Q§ EKO‘f + Fm(‘f ', where we use
the symbo %& of the homomorph.lsm.wxﬁvpx also for its k-times dlrect sum:

% :=OX+~ - -+O ~——>QX.—QX+~a+QX(cf n.2, 82.1).
 ky+sk
Also we use the symbol H for the image of Ko,m:g{n::Ko,m(gXl )Cgic( .

%) cf, also (4”1)4

5 8
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Next, in TLemma 2.6 soon below, we use an estimation map, which is
slicely different from the a.d.‘maps in Lemma 4.2 ~4,5. For this we set:
(4. 2),7 _qi= collection of all maps E':E“XZ_"LXP;‘“S(r;m;a)~—>§_+xg_+x_l_{:'
a(r;m;a) , where (rd)=li(r;a), m = [L(@m)) , with a map ﬁC—_ﬁ(cf.n.l,,§4.])

and a linear map L=ct;c>0. In a similaXx manner to n.l, §4.2,we call

the maps M:R'> r—'——i?B:B z and L:Z*";m ———'-;.g+9m’ Fig. .11
the first and a.d.parts of E'. Then, as in n.l, .R+XZ XR %
MAL

4.2, we have the factorization in Fig.II.
§4.2, 1g.11 xzxg-———»ﬂxz

Lemma 4.6. (.Comparison of filtrations). For a suitable
_map 8H.Z ;m—>ﬂ‘ =) EH’ satls fying Fig.III, we have- . ‘EL&"E
(4.2)7 7 BEL) 0, NETLELED) € Ko B (), ), F —HF,
with (I";m’;a'):Eua,m(r;m;a), where (P;r;m;a) is as in Lemma 4.5, {O}-—C-7—71

The proof of Lemma 4.6 is also given in §5.

Remark 4.2 We make here a remark on the explicit es’clma tlons in

Lemma 4.2~4.5 and in Lemma 4.6. For this take an a.d.map E €F, 4 of
. . . ot 1 [
the form in (4.2)1. We then define a series {LE,m}I:;l of maps EE’meE-a.dl
which satisfies the factorization in Fig.I1III, in the following manner:
~ : ! H

(4. 2)8 E}; m'T"x 7t x R"' 2 (r°m'a) ———9R+>< Z+xR+9 (;t5a ), where (rhe)=
(11 (x), H, (a/r)exp My (m)) and ™ L-L(m)] (For the first and a.d. parts
My ,L of E€E, d and the positive monomials M, 1‘73, see (4. 2)1.)
Also it is easy to see that the estimations in Lemma 4.2~4.5, for exampk
that in Lemma 4.5, is given in the form: ‘

H
(4. 2)3 (r m; ;a)= EE,m(r-m-a), where E e_@a.d is as in Lemma 4.5.
Remark that the dependence of E HE, on mé_Zj is quite explicit(cf.(4.2)8),
and we may say that the estimation (4.2)8, derived from that in Lemma 4.5

,e., is sharper than the one (4.2)7 in Lemma 4.6.

#) The set {0 ¥ consists of the single element O 6&'_*00. Thus Fig,II1
claims that the first and a.d.parts of E ,m(mez+)a.,;ce independent of mez+.

oreover, we denote by Ln the set of all linear 1napé"f}(t)=ct;c70 .

"7
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~ 7, De Rham complex, Here we assume that XO is irreducible'at the
origin PO of XO « We also assume that the pair (Xl’XZ ) is of the form:
(XO,XC;), with a subvariety X(') of Xy, and that the coordinares z'=(zl, o sZy)
provide a local parameter at each PE(XO—X(')) . We identify theksheafS{_,}Ié
(cf.§3) with O}((%) in the standard manner: ;5?..;232’1 yIdeibe o)((p)a .,I Y I’)I J
=k

where I exhaust all indices of the fom:(il<.<..<ip), with 1;i1<--<ip
Letting the parameter space TX be as in n 2, part B, § 4,1, we take a
parameter (P;r;a;m)éTX(CX)?R+LR3" X‘RI xz%), and we set:

1 ~ ~d A
(4.2)g  B(T.(2), 8D, = LLT (), ")), .

Then, letting d, be the exterior differential operator on X, we have:

X

Lemma 4.7.(Open map property for de Rham complex), For a suitable
a.d, map Ey & E, 4 we have(pz 1): , ‘

'

(h2)g 1T (P(T@), 50, 0 az'(0) & 4 BT (2),2" QL) , , with
(r’;nf;a’):EX(r;m;a) , where (p;rym;a) is in 'EX( <X 3t x R"’xRIX z%) .
Lemma 4,7 is derived from Th,l.éz, Lefnma 4,3 and from our uniform estimation
on the a.d.properties of (local) contractible properties of analytic
varieties(cf.C 32) . The latter concerns some topological properties of
the varieties, and the details of it will be given elsewhere in a near
future, We summarize the key points of the proof of Lemma 4,7 at the end
of §5.2 . Lemma 4% is used in the proof of our (p, g ,open map property
for the de Rham complex’as in Lemma 3,2 , The relation of Lemma 4,7 to
Lemma 3.2 is also summarized Ak the end of §5.2,

Now, letting the parameter (P;r) be 'as in Lemma 4,7, we form a filtered

complex C:(P) by

I3

" e ~ ( d" oo
(4.2)g  0=P(UL(P),0) —{[(U.(»), &4, )}1;;‘;0-;--V-samur(m,sz,}lz,m»m:o—»

38
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where we set:

1 l
(4.z>9v QL. = TR+ (55 M eax), Q5T
Corollary 4,1,(1l) The dlrect system {p (P);re(0; 1)}- satisfies the

open map property,

(2) The following comolex is exact(formal Poincare lemma):
0—> C—» llm Q_X/me_o —_; ...;11m sz/fm&x -

The first follows easily from Lemma 4.7(by‘dropping the explicit estimation
in it), and the second fdllows from the first by Prop 2,11 ,It is in the
form of (1), Cor 4.1 that S,Lubkin conjectured the open map property for
the de Rham complex , The formal Poincare lemma (4.9);' was proved by
R Hartshorne and by A Fujiki. independentlybby using the resolution theorenm
of H Hironaka, (Their methods are also independent,) The open map property
in (1), Cor.4,1 is also proven by A,Fujiki by using the resolution theorem,
(His proof also‘uses some local contractible properties of analytic
varieties.)

Remark, The content of part B, §4.1 contains all examples of complexes
, which we know, where the open map property hold, From the basic property
of Artin-Rees theorem in the completion theory as well as from the scope
of our eiamples of the open map properties as above, it looks like that .
the open ﬁap properties deserve to be studied for more general types of
(geomtric complexes) ., The author hopes that the content of part B call
attension of analytic geometeres, who are working with complexes of

geometric nayute(on analytic varieties),

ey

R
{

{—
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%, Some remarks. Hefe we summarize some remarks for Lemma 4.l~4.6,%
which will be used in the proof of those lemmas(cf. §5).

(i) Terminologies. We begin n.Q, by arranging some terminologies.
for later convenience. First recall that the estimation in Lemma 4.1'
was given to points of §;=X1—X2 and that the.underlying homomorphism was:
K$O§~;>Ou; we will use the terminology:
(4.3); Lemma 4.1'holds for (¥ ,X,;K) |
as a synonym for ‘the estimation (4.1)5(in Lemma 4.1') holds’ for the
parameter (P;r;a) as in (4.1)5. Here (P;r;a) should be in the parameter
space of the formAXK as in (4.1)5, and the estimation map should be-of
the form 1 € M as in (4.1); . Similarly to the @bove we use the
terminology:
(4.3)2 Lemma 4.2 holds for (Xl,Xz;f)(resp.Lemma 4.3'holds for (Xl,XZ;f,G
Lemma 4.4 holds for (X ,Xz;f), Lemma 4.5 holds for (Xl,Xz;f,K) or
Lemma 4.6 holds for (Xl,XZ;f,K))
as a synonym for the following:
(4.3); the estimation (4.2)3(resp.(4.2)4,(4.2)5,(4.2)6'or (4.2)7) holds
for the parameter (?;r;m;a) as in (4.2)3(resp.(4.2)3,....).
(Here note that (4.2)3f\4’(4.2)6 are the explicit estimations in Lemma 4.2
~ Lemma 4,6. Also remark that f,(f,G),.. are the underlying geometric
data in Lemma 4.2 ~, Lemma 4.6.) Moreover, for the first terminology
in (4.5)2, the parameter (P;r;m;a) should be in the parameter space‘Z§J E
as in Lemma 4.2 and the estimation map should be of the form EX-EEEa.dl
as in Lemma 4,2, For the other terminologies in (4.3),, the parameter
spaces and the estimation maps should be understood in the similar

manner to the above.



280

. . . ’ . oo i —
(ii) Next taking subvarieties Xl’Xé of XO sat1SLy1ng:Xl:)X&,X2C:X2 ,

we have the follow1ng implication:

(4.3)3 Lemma 4. 1’ for (x! x 2,&)-——? Lemma 4, l/ for (Xl’XZ’K)

This is checked easily, by remarking that the estimations in the left
and right sides are given to points in (Xi-Xé) and (X;-X,) and that the
estiﬁation in the left side is applied to the right side.(See also the
explicit estimation in Lemma 4. L) By (4. 3)3 we have:

(4.3)3 TLemma 4.1 for (X,, ) —>»Lemma 4. 1( Lemma 4,1 ! for (Xl, sK)).

O’sing
H
We prove Lemma 4.1 in the form of the left side. The similar implications

to the above hold for Lemma 4.24?VI£mma 4.6,

(iii) Chain property. Thirdly take a subvariety X3 of XO satisfylma

(4.3)4 252 Z,FXBOX .

Then we have the following implication, which will play a role in the

proof of Lemma 4.1'(cf.§ 5.1):

Proposition 4.1. Lemma 4.1' for_(Xi,X sK)(i=1,2)—>that for (Xl,XB;K:

141°
The similar implication to the above also holds for Lemma 4.2 ~Lemma 4.6,

The proof of Prop.4.2 is given in part‘C,App.I.
(iv) Here we add a technical remark for the proof of Lemma 4.5:
rrcall that the gheaf E in Lemma 4.5 is in the collection Coh(XO;hlp g?
Uy ~ .
where —hf(hu)u= is a subset of.L(YO, &, ). We then havel
(4.3)5 Lemma 4.5 for (X, XO,H) for the case :¥h=1—> that for the

genral case: fh & 2.

Actually, assuming that‘ﬂ=h 2, we easily have that L& Coh(Xy;h,)
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¢

o
It is easy to get Lemma 4,1 for (

3,_() from the above two estlmatlon.
(The former is given to po:Ln’cs Pe(X 3), and the size r of UI_(P) should
satisfy the inequality @Ljhg_form_.r<{0’d(P X3) } It is easy to fill the
gap between what is men’cloped just above and (4.3)5,6, by usingelementary
distance‘ properties of analytic varieties; see& author’s forthcoming
paper [ .j.,) '

(iv) Here we add a technical femark for the proof of Lemma 4,1 and
Lemma 4,5, Lemma 4,6:recall that the sheaf H in these lemmas is in

, u . :
Cbh(Xo;_h)p.g » where _l’_lf(hu)u#(]? is a subset of F'(XO’QXO)' We then have:

(4.3)., Temma 4,1 wesed for (X,,X,;K) for the case:$fh=1=3that for the -

7 0 3 .
t

-general _ case?h Z 2, where XO =locuS of h »(and the similar fact for Lemma‘?.S}

and Lemma 4,6),

"o 1, we apply the left side of
Actually, let h:fnulu 1 be as in Lemma 4, D

(4. 3) "to each h (u= ye oo O)‘ Then the inclusion of the form in (4,1)7,
Lemma 4,1 holds for each PEX, —D , and the' size of the manifold U.(P)
(cf.(4, l) ) should satisfy:r <{o-d(P,D ) } (Hiere D, is the locus of h)
But XO.—. (\ul)u Also, by the Lojasiewicz inequality , we have:
' . : . ! +2
(4.3)8 E_'d(P,X('))< Zud(P,Du) <£d(?,Xo), with suitable c,c &€ R ,
This implies:
—(4.3)g Za(z, X)) < a(,R,), with a suitable index u, where the element
c éﬁ+2 is deteremined by the element ¢ in (4. 3)8 .

From thiS -the inequality mentioned just above is replaced by r<fd(P, Xo)i}

arid we get (4.3)7(cf also similar arguments in (iii) ).

94
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(v) A key proposition, Here we give a key proposition for Lemma 4,2

~ Lemma 4.,5(cf,Prop,4.2).In (v) we take an element hE.]:"(XO, X ) satisfyin
D'DXO,Slng , where D=divisor of h, Now we assume the follow1ng.

(4,4) ZLemma 4.4 for (XO,D;,Q(resp, Lemma 4,3 for (XO,D;j_‘,_), Lemma 4.4

for (Xo’D;.i) .or Lemma 4,5 for (XO,D;L,g))(cf.(4.3)m) , where the Xoszul
complex G and the sheaf H & Coh(X >;h) are as in Lemma 4,3 and Lemma 4.5,

: . . *
Then taklng a suitable ) open set Ul“' 1 h(BPO) of Uy and an element”' h
6_1_2 , we define the follow1ng parameter space(cf also (4, 1) ):
y-1 -1

(4.4) /uh‘= {(P’r)e(D"'XO’sing)nUl) XR'; I'<'{9"d<P’XO’simg } }‘.

Also we take a suitable d=dh€. ;‘*)-f an a,d.map B, EJ_‘?Ja_d, a linear function
Lo’h=L0’h=CO’ht;cth>O and an element ‘ﬁ=ﬁhe._z_+. Then, from the four
uniform estimations in (4_,4), we get the following weakere ‘version of ‘
Lemma 4.2 for (D Xo’sn.ng’—)"‘ . , Lemma 4.5 for (D, XO’s:Lng f,H -\)

Proposition 4.2 We have the follow1ng inclusions;
d
(4,5)1, 1 n KT, (P),QX) BC l’(U ,(2), 27 Qx)a
(4.5), +RET@),9), et 0)C e BT, (2), £ ofP" 1>>§<15p<t>,
d -1
(4.5); 10" (B(T,(2) fma@) n () (0)C BT (2), fm.o(P 1)) (12p28)
4
(4.5), 10T, £E), NKT, (P) S fad KOE(U (2,2,
(In (4. 5)4-, the homomorphism Ky-is as in Temma 4,5) In the above, the

estimation is:(x} o a) (r TM;a) ., Moreover, _the par ameter (P;r) is JLn)«ﬁ,1

(C(D"XO’alng)P‘ ) and a is in _}f _The element fi€z” in (4, 5)1150, Batisfic

> m, whils alr (m, m)éZ XZ in (4. 5}3 satlsfles m7LO(h)o
We prove Prop;4;2 in §4.2. Note that if, we drop the term hd ? from

the left sides of (4, 5)1 4> Ve get Lemma 4 2 for (D, XO,Slng,_) . and

Prop‘ 4.2 will play a key role in the proof of Lemma 4.2 ~ Lemma 4.5(cf. §5 %)g

*) Prec:[,sely, the data (U ,h,O‘) and (dh,E Ysee depend also on G

or H, according as we are concerwed with (4. 5), or (4,5),. (The above

data also depend on_f. As in Lemma_&,2~Le;mna 4..6, we write E, s.o...

instead of Eyspsrv-r- )

84
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C. Global version of the results in A,B

-~ ] ~Z 1 1 1

Taking an analytic varietf{§_=(0n(z)xcn(z ), X=C"XUy,Fy)€ Ang(efe (1.7)q
and an affine varietf%&féiCn(z)(cfo(lﬂll)o), we give here a global
version%%) of Lemma 4,1 to g%:%zfor ;zﬁ and that of Lemma 4,4~ Lemma 4,6

] 1]

e x' (In the above the euclidean space On(z),.,, and the open set UO(EBPO)

H .
in ¢" are as in (1,7)0,)

! L

1 Global version of Lemma 4.1. First taking an open set Ul(EBEb)\of
Ué and an element o= fk%Aézfqe , we attach to Xfthe following parameter
space. {cf. also (4.1)7): )

h S . -1 o U
(4.6)g Jhxi= {(asr)€x) 23" r<bhx(Qy 7 ¥, where X := 17 g/ ¥ ama
L m 1 - . ¥ X . W s
%g%'“'hzl+l}" according as z"{JX'} (Recall that %&" is the p, g, function
B3 1

of X and 24(z,z )(cfen.l and n.5,§1.2),)

LI i gt
(4 6)0 /\2{;’; /lx-,\:- )(_Lil °
Next we set:

n % b t A n t
(4“6)0 Coh (X—)p,g :=Coh (X)Pag or Coh (X_)p‘g(cfc(l,4)9 and (1618)1),
(Zecall that such collections consist of the p, g coherent sheaves over

gf satisfying certain algebraic conditions(as in (194)9 and (1.18),).

#) As in Chap,I we use the symbol E:also for its underlying variety
§¢ Also recall that the affine variety zf in (lall)o consists of the data
(gf(z),X,,HXt), where X? is the underlying variet%_oflgl and Hyris the
resolution of the structure sheaf of X'(cfp(lgll)o), We also ﬁse.the
symbol_gj for its underlying variety Xte

*%) Similar global results for Lemma 4.2,Lemma 4.3 also hold for
E?QE’or Kjo Aiso, for‘gf%z , similar global facts for Lemma 4,4 ~Lemma 4.6

hold, But we do not use such facts(cf ) 2) .
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' t
For an element I ECoh (X ) g’ the gq-structures SH,eﬁjwill be as in
(4. 1)2. Also for an element (P r;a) EAX*( C X XR+)Q_11), the set of the
cochains f‘(U (P), E“I"GE) , where 6 = 9 or 9 , will have the similar
w‘/ w '\/

meaning to (4. 1)2 (Here, as in (4. 1)2, we set U (P):= {qQ € X 3d(P,Q)< r}
with the natural metric d in f(z)xg_(z ) or C™(2z).)

Lemma 4.&1.(Uniform estimation with bound for _X** 2(_').
_There are maps )EX*.Coh (X ) BH——‘;M?M _QQQ*EX*: Fig.I*)
g
+
Z -9 M, which satisfy the _fa,,c,’co;r;.zatlon in Fig.TI a_nd with Coh (X3 X."'a i
which we have the 7f}0171<owingfk}forv each H & Coh*(,zi_*)p gt llg \L
- e

(4.6); 1" L(T(2) a0y, CL(F1(2),1:8) 0 , with
(5e)=f (r;a). Here (Psria) is in Ap (CIXR'EY).

We prove Lemma 4.81 in n.3, and we derive Lemma 1,2 from Lemma 4.81 iné4.4

|

2. Globalization of Tremma 4.4~ Lemma 4.6,%to X . In n.2 we let the

e

. s lm 1
set £ _(f ) lC[‘(X ’VQ/X') , the m-th Koszul complex F for f :O_?»Qéc'
m

o
> —}O(%) p %X,_F—;oxﬁo and the sheaves f /(—F QX’) be

as in Lemma 2.5, é 2. 3 In Lemma 4.82~4 we globalize Lemma 4.4
~ Lemma 4.6 to g , by using the sheaves ‘_f__'mﬂx' y++« The estimation maps

1 i
in Lemma 4’82~4 will be in ga.d(cf.(4.2):i). We use the symbols T;,T, for

¥) For the set§ ﬁ,_l\g_ of the estimaditdm maps and the map llg’ yee s See

Lemma 4.1, § 4.1.
o~ ~
*%) i=inclusion:U, ,(P) U, (P). When there is no fear of confusions,

we use the symbol ‘7 for the inclusion in question, without mentlonlng it
(cf.also §4.1, § 4.2).

o
—
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the assigﬂments;E' .d BE'-——7M,L, where }¥,L are the first and a.d. parts of
B . Then, taking a suitable linear function Ly=ILg,y (t)= coticg™>0, we
globalize Lemma 4.4 to X in the following manner:

Lemma 4. 8,,,(0 en map property for the Xoszul complexes {F };:1 )‘,

_ There is a map. EX, .Z SRl _.7“ 9 LX: 0 which satisfies .
the similar factorization to Tig IJT, Lemma 4.6, and with which we have

the following for each (,m) & Z X Z _satisfying m > Lo(m)(l<p és)
(4.6), L0, @, M), N o) C et T, @2 T ),

with_ (rﬁf‘n’;a’):Ex, ,ﬁ(r,m,a) , Here (P;r;a)&(,&ﬁg’f}sﬂl) is as in Lemma 4'~i‘
e k
— . 1
Next letting the sheaf H (C.Oi.) and the homomorphism. KO” OX}—?H
: ' k- +sk
be as inx) Lemma 2,7, we define a sheaf Hr; and a homomorphism KO, OK}

~>H, (n €2*) in the similar mamner to (4 2);: — -
I ! sksq v e Jpesk ok |

(4.6)3 K5rpni0y +0y E +&?2~——>0 ' O k! o1 LB %, and Hp:=Ky, Oy7 X

Moreover, taking sultablecr crH,e Rl and T=f H;eé'*‘ , we form parameter_

spaces:

78 1 :

(4.6)3 /‘IH:= {(P;r) &x X R+;r<{ggx|(P) 1 } lth s= Moy \(Z.. L\l .

Lemma 4.83, There is a map EH,: =X Ea 2 Egngy» which satisfies
the Similar factprigation to Fig.ITL ,Lemma 4.6, with which we have the
following:

(1) (ﬂpen map property for the sheaf H')-

k
(4.6)5 1" (@Y, 2™, ) AKT(2) 1) C 5B (T (2),2™ 0y7),,
(2) (uompar.a.Son of Illtratlons):
¥ ~ L k A 1 kq+sk
(4.6), ¥ CT(EL(2), 96, NFUL(2),ED) C Ko, (2),007 ) |
In the above (r’;ﬁ;a’):EHﬁQF;r?l’;a), and (P;rs;m;a) is in Tu(c X'k ®* kgt X3%)

~

[} .
#) The map E{o is the first resolution, denoted by Wy, in the sheaf
H,in Lemma 2.?¢ The symbol LKé Jis concordant to the one in Lemma 4. 5,

Kemma 4.6, and is convenient for the argumenf[s on Lemma 4.83 .

o
&
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Ve use Lemma 4.8 in the proof of Lemma 2.3%,2.5 and Lemma 2.7(cf§4,2),

2’3 ,
3. Proof of Lemma 4.81v3‘(i) For the proof of Lemma 4'81’\’3, we will

give a natural compactification(=completion) of _}_(_%=X or =_;><_", For this

we first set:

(4"7)1 Pn(,_g_):=U:.|I=10_Q_§_j1 R with_QE::_Qil,(Hamely, Pn(g)=projective space, which
is the natural completion of_g_r_l. Moreover, Q_ﬂ‘ are euclidean spaces, which
cover Pn(_) )

(4. 7)2 :=P (C)xU (ch(4 6) ) or the completion X X of __}g' in Pn(_C_), and
(4—,7)3 D ;:unl or Dn)g , with D:=p" (»g)—g_ -

We then take a point PED* and a small neighborkood T of P in X_, Also
taking an element U = O"P 6_11;2 ; we form parameter spaces /J?, AP similarly
to (4,6)0:

(4.7), Mot= {(@r) € (T-DIXE"; r<imp VY, Api= Mpxat .

Then the following analogue of Lemma_dnl,Lemma 4.4 at the l'point at
infinity)P =y ¥ jwill suffice to insure Lemma 4. 81,9
_Lemma 4.1"( Take a suitable map’g Coh’?& ) ’3H—7>113Lh., Then FE

satisfies the similar factorization to Fig.I, Lemma 4. 81,and

we have the following for each H & coh™ (2(__) gt

(4.8), 1 IT_(0),H; H)ac (U, (Q),B;€) ¢, with (r'3a )=l (r;a), Here
V“\J

(2;752) is 1n,\P<C(U—D'3x_g KL . -

Lemma 4.4 Take a suitable map 51)‘?3"?{”"9.@;,@939’&’3@ ‘a_linear

function LO__IO P(t):cot;co> O.Then we have the similar factorization to
Pig .11, Lemma 4,82 and we also have the following for each (f,m)e _Z__+X_§_+
satisfying m > Lo(m)(l <5< Pp):

(1.8), 1B @, T N Mo w0, T,

with (r' ’r\ﬁ';a‘) By ~(r m;a), where (Q;r;a) is :m)k

98
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We use Lemma 4.8 in the proof of Lemma 2.%,2.5 and Lemma 2.7(cf§4,2) .,

2’3
3. Proof of Lemma 4. 81.V3¢(i) I'or the proof of Lemma 4. 81,\,3’ we will

give a natural compactification(=completion) of flz or =§‘ + For this

we first set:

(4.,7)l Pn(C):=Ujr=locg.1 , with CB::Cne(Hamely, P*(C)=projective space, which

is the natural completion of o™ Moreover, C? dre euclidean spaces, which

cover P(C).)

(4.77)2 X :=Dn(o)in(cf;‘(4,6)o) or the completioni’ of _X_' in P*(C), and

(4.7), D*:=DXU; or DAX , with D:=p"(c)-c"

We then take a point PGD% and a small neighborhood Tof P ili g_g Also

taking an element U:VO‘P eRzz , we form parameter spaces /_L ) AP similarly

to (4, 6)O

(4.7), Mor= {(@50) € (T-DIXK"; refmpl ™}, Api= Upxad .

Then the following analogue of Lemma-ﬂnl,Lema 4.4 at the rpoint at

*

2
infinity P € D" will suffice to insure Lemma 4.81,2 :

Temma 4.1c Take a suitable map ¢ :Coh(X%) ':BH—?IA{BEV,, Then &
P —’'p.8 ="H P
satisfies the similar factorization to Fig.I,Lemma 4:81,and

we have the following for each H & Coh’ (X ) b g

LT, § ) pEad e ! 'y Y -
(4.8); 1 .f“(Ur(Q),H;eH)aC.L (0,.(Q),H;€,) -, with (v ;a )=liy(r;a), Here
(Psr3a) is in,\P(C. (ﬁ’—bﬁnﬁng) .
Lemma 4;4'1 Take a suitable map EP:Z+3'1?1' E' g g and a linear

function ”O"’O P(t):co‘t;cO? O.Then we have the similar factorization to

Fig.Il, Lemma 4.8, and we also have the following for each (,m)e 2zt
satisfying m > L (m)(l £s<p):

y= -1
(4.8), 1" (BEE (), o@)) N @M Hone 2,5 G, %@ ).s,

,Ifﬁ ;a')=E ~(r;m;a), where (Q;r;a) is 1n/\

with (r 7

°or
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; % o K *
(4.8); 7():= {» efng;n; d(?,0) < 1.
Then the following distance comparison between d and dj is checked easily,
by using (4. 8)4 ’
Proposition 4.3 . Yor a suitable positive mono.m;g; 11 &M, JaLe_haye

the following for each (Q;x) C.(U-D )X’{ satisfyin r<{agX,‘(Q)} WJ.th a. Sultc
. — anlere'j;:z

J(U (Q)):DNJ/(O), with r _IfP( T), where

(4.8)5 T (Q) CT (),
the open set Ur(Q) is as in Lemma 4i~l'

Now, Lemma 4e1" is checked as follows:taking an opén set ﬁ(;P) in the

. *n ~ by . . EadPSmc ¥4 .
ambient space QJ of U(C X") satisfying UNMX =U , we define a local analyt%
variety X, e An, (cf, (1.8)0) by .

';i %9 Vgl ot 3
(a) Xy :=((2 ), 0,0, 23,7

and we attach the collection Coh"(')_(;)p ] by (1 ;18)l . Then, remarking that
D% is the divisor of zg:, we have: @

(b) cOhﬁﬁ)p’g C Coh"(g_(;))p’g (cf.’({t.s)g), o

By this we apply Lemma 4,1 to*) Heooh(K._j)p g,,Then, we have the similar
inclusion to (4.8)1, Lemma 4.1", by chan@.n'g the open set 'I'I’r(P), which
15 required in Lemma 4.1", to 'ﬁ?;_(Q)J- using Prop.4.3, we can '¥ep1ace fI"]I‘,(Q)
by ’ffr( (Q), and we have Lemma 4:1" from Lemma 4.1 . X

Next, the check of Lemma 4.4 is sim_ilar to the above, and is -as
follows'first we remark that
(c)1 - ~(za )df C_J_*(U,Wﬁ‘) with a suitable deZ R

f Q’.X‘ in U— ,Mrv'e ea311y have:
Then

(e), IULE ), CIT,. £, f(Ur,_,,L) Cf(“r, g1 )’ 5

J
where & :AP,m(a/r), with a positive monomial M

and that f 9)!._
Pim* which is independent from
Q(:'I}:D*é (Here we write ﬁ’r(Q) as ?J’r,)

n :
Using a similar argument to the proof of Lemma 4.1 , we see easily that

the comparisons of the distance and cochains as in Prop.4:3 and (c), lead

%) 2ecall that Lemma 4 1 is also applied to such a sheaf 1oy (1,
Remark 4,1 at the end of part A, §4.1 |

98
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(da) Lemma 444 > LCMMa 4,4 , '

(Here we apply Lemma 4.4 to the set T at the point at infinity P& D,)
Thus we cb_ecked Lemma 4.1" and Lemma 4.4', and we also have Lemma 4‘81 and
Lemma 4y 82(Cfo (1)).

4 _ Finally we add here an elementary uniform estimation on local

parametriza’tion of the variety X:(Cn(z) UO,X XO’P )(cf.(4.l)o), T tpeg
We set X= XO—XO, and we assume that XO_XO 'sing » Also 'tax{ll'lg a suitable
open subset Ul,X(aPo) of Uy and an element ﬂ‘ GR , we form a parameter

space*)[&:: {(Q;r)e(Ul,XnX)XR"";r<{ci.gX(P)]c—l}, with gX(P):=d(P,X(') )‘_,\.

Proposition 4,4, For a suitable positive monomial’MXe'ﬁ__f we have
the following- for each (P;r) ceM (e xx R*):
(4,9) there is an analytic map CU:UI;(P)—>I'J\"I,(P) , whiéh is the identity
on ’[Tr' () , with r':=I'-'IX(r), Here Ur(P):={Q E-.Cn;d(Q,P)< r}; and ﬁr(P):=Ur(P)!\;
We use Prop.4.4 for the proof of Lemma 1, 4(for the local variety XéAnla '
as in Lemma 1.4),The check of Prop.4,4 is given in part A, App I.
Next letting the affine variety X' C_Cn(z) and the divisor Sc Cnon
be as in Lemma 1.4 and Lemma 1.3*), we fake elements @ = oy, ,E:gSERIZ
and an open subset U' of U O’ and we form parameter spaces:
(a) Myre= {(Bs7) € X x 7% r@__,(?)} , and M= {(2; r) & (SN (Cxuy) A RYS
r<a-gS(P)}} where the p, g, functi on Byt of X is as in Lemma 1. 4, and
we set gs:=|wl , with the coordinate of C(cf,Lem}na 1.3),
We then have the following analogur of Propz‘»l.ll for X’ and S,
Proposition 4.4 TFor suitable positive monomials My,, Mg , we have *
the following for €dch (P;{r)éuxv and (Pir)ell -
(4.9)' there are analytic maps w :UI,(P)—%' (Ur(P)n X') and @';Ur,,(}!)
-—>, (U (P’)!\S); which are the identities on (Ur,(D)AX') (UI"(DI){‘ s) ,
where =’ =ily, (r) and r’~hq(r) Also the discs U (P) U (P’) in C (z)

¢(w) XC™(2z) have the similar meaning to the one U (P) in Prop 4.4.

#)




290

We use Prop 4.4 for the proof of Lemma 1.4 for _I_}'_' and of Lemma 1.3 ,

Proof. Let ;' and S denote the completions of X',S in PM(Q), P(C)X,UO ;
Then, taking a points Py & IE'—X' and ?’Oe(]?(g)-g) X Uy, we have the :
similar fact to Prop.4.4 for (Xx ,PO) and (S,i;o)(using a similar arguments
to Lemma 4-1"), Thén, using the distance comparison, Prop.4.3, and the
similar arguments to the ones in n.3, we have Propn4,4' from the above
analogues of Prop.4.4 at the. points at infinity Po, fg and from Prop 4.4
(applied to finite points Pt':‘l_)_(: and TE s ). g.e,d .

[
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§4.2. Proof of the lemmas in Chapter I

In n.l~n.3 we give a cohomological version of Lemma 4.1~4.8, and,
using such a result, we prove the lemmas in Chap,I, Lemma 1.2 and Lemma 2,2
Lemma 2.5 as well as Lemma 2.7, which concern the uniform estimations on
the sheaf homomorphisms. Also, using the results in n.l~n.3, we prove

Prop.4.2 in n.4. Moreover, we prove Lemma 1.%,l.4 in n.5,n.6, by using

/Prop.4.§g'é

j: Comparison of cohomological and non cohomological estimations.

Here we give propositions, which play a key role in the proof of the

first set of the lemmas just above(cf.Prop.4.51,2). Such propositions will

be given iﬁ an abstract manner in terms of g-sheaves and is more general

than the pne used in the proof of the lemmas. In n.l we fix g-sheaves

QE,GK),(E,Q ) and a homomorphism @ :K—>H(of abelian sheaves). Also we

fix ; ﬁ.g.fﬁnotion g:X——?g% and a distance function d:X X X-—>[0,«) satisfy%

d=0 on the diagonalAX(CXX X)(cf.Def.l.44 and Def.1.6l). HMoreover, we -

fix an element ?;E;g?, and we assume the following for each P & X:

(4.10)4 &(Q)/2 < g(P) < 2g(Q) for each 0ET(P;g):= {QGX;d(P,Q)drg(P)"x"l

(4.10)6 the triangular inequality:d(Ql,QB)'§d(Ql,Q2)+d(Q2,Q3): hold for

any oy € Up(Pig) (121 23). e

For a point P € X and an element (r;a)eigfﬁggi we séﬁ:

(4.10)5 IMT,(P) ,1;© )a=\={‘P€f(?J;(P),H,);[(P(Q)lﬁJ<a in U.(P)} , wherel i =

erabsolute value ! and ﬁ}(P):: {Q € X54(?,Q)< r}.

(We use the simialr notation for (&,Gk).) Also, for the formulation of
.

Prop.4.51,2, we fix a subset Y of X, and we form the following pafameter

spaces(cf.also (4.1)4):

*) cf.Def.1.4,.

jox
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(4.10) My:={(rsr)ETXR"; raFa@n ™}, A=Al xR

(i) Bdd estimationsep.g.estimations%). First taking an estimation

map ?f:(Ml ’MZ) &E ﬁ:ﬂx M(cf.n.1l, §4.1), we assume the following uniform
estimation for twK—}H on Y:

(4.10); i E(T (P),WGH) C @WH (W (2) K5 8y) o 5 with (wia)=fi(xsa), where
(P;r;a) is 1n/\ (CY)(R XR+) and i= 1nclu51on i /(P)C.;ﬁ' (P).

Note that (4.10)l is of similar form to the estimation in Lemma 4.81.

In Prop.4.5) soon below we give a cohomological version of (4.10)1, which
isns of similar form to the estimations in Lemma 1.2. In Prop.4.51 we fix
an estimation map _'T;_E_I,’::_R_+2X_I{,+2_—>_R7L2X_ﬂ_+2, which is detewfined by EG_E"I’_,
(For the explicit dependence of T on idl, see (4.10)7,(111) in the proof of

Prop.4.5q. )

Proposition 4. <5y (Bdd estimations—p.g.estimations)..For each element
(V3030 € 27 x B X BY?
(4.10), s*Cq(%(Y ) 58 857), Cwo Uag(v) ;8 g+ with (55 =3 ), where.

we have:

A(Y) g-p.g.covering of Y in Y of size o~(Def 1.6.

. 1 -

(4.10), cq(A (Y),H; Gﬂ)d}. {set of (g,ewﬁj)-a\—growth cochains w»th value.

_Lg_ﬁ,(cf.(l.B)G ). ‘
. - /\ I,

Moreover, s is the p._g.reilmﬁng,,,gg_ap:}_x&(Y)qgm(Y)(cf.Def.l.62).

We prove PJ:'op.4.51 in (iii). In n.2 we use Prop.4.5) for the proof of

Lemma 1,2. ‘

(ii) A.d.estimations—3D.p.estimations., Fig.I
m

We give here a key proposition,Prop.4.52, for OSk_.__E;.ok Sh--——-Qo
the implication: \KI‘% QJ,,.\H\/u)rﬁ
(4. lO)3 Lemma 4. 82,3 —Lemma 2.5,2.7 and Lemma 2.3.

*) The ‘estimations of the left and right sides in the tltle of (1), (11
concern respectively non cohomological and cohomological uniform estimation

(cf.Lemma 4.81,\,3 and Lemma 1.2,Lemma 2.5,2.75000.).

#3%) I LxT with the collection L of all el-maps(cf.n.5, §1.2),

EE

n
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For this we fix a sheaf 0 of ring over X, and we assume that (1) K H
v

are Q,—modules and (2) k H are homomorphic images of Ok ) (h,x >0):
ok “K

\/\/-.
. . / ' . . 7
series of homomorphlsms W —H, 9 B (n=1,2,.. .) satisfying @ =0.

H 7 H~0. loreover, we fix an abelian sheaf \}}J and

Furthermoge, we fix a subset f=(f.)jlef(X,Q‘(;g)p g(c::t‘.(l.S )’Z), and
we use the symbol F'(=m-th homomorphism for f): [} —)O also for its
vﬁ: and %’dlrect sums: ,Q,-—>9_]f, -—;o (cf n.2, 82,1, See also Fig.I.)
For an element (P;r; o ja) & X Xrxzh XR we set:
(4 10)3 I(U (P),f K) =Wy mF(U (p) OSk’aL(cf (4. 10)0 and Fig.I).
(we use the similar notatlon for H. ) Now taking a linear function Lo(t)—

coticg >0 and an a.d.map E E E, q(cf.n.1,§4.2), we assume the following
uniform estimations for the series {w } ,{(o }(mC BF

(4. 10) For each (m m) & z2'x2* satisfying ® >Lo(m) we have:

(4.10)5 " 1 (F(U ()., 071 (0)c w_ 1T,/ (0) £ Q) , with ()
=% r;M;a), where (P;r;a) is 1nA (C Y XR _,+xii )(cf,(4.1o)o ).
Note that (4. lO)3 is a similar inclusion to Lemma 4.4. In Prop.4.5, soon
below, taking a d.p.estimation map E G__d"p(cf.n.i—, §2.1) 2 we give a

cohomological version of (4.10)3 , which is samilar to Lemma 4.82:

Proposition 4.52.(Add estimation—> d.p. estimation)

For each (m, r'l) CZ X z' satisfying @ >L,(m) we have:

(4.10), s"(Cl(a, (1), _gg\nw“l(on@!c (A7), Ay K)ys 5 with (58 $29=

E(o;m;d), where (Y/5039) is in ZYx-a:TZxﬂzz » and

1
(4.10);L C%(_A,,\(Y ),_I;mwol :=left (f,g)-d.p.filtered set of cochains with
value in Ij/(cf.(2.3)3,5).

%) As in Prop.4.51, the map E eg’d.p is determined by iv”;ﬂﬂ.d

in a simple fashion(cf.(4.10)7),

[ 0F
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(i1i) Proof of Prop.4.5 (1) Letting the positive monomials

192

t *
M, ,M, be the first parts ) of the estimation maps M,E in (4.10)3, we firsf
- L
define el-maps LlfIlzR %av~59R+25°ﬂoy by the equation:

(4.10)é (0t) ™ =M ( 06)7h), (@) Th=m ((#6)7), where t is a variable.

Then taking an el-map L :R+23(c}l,dE)v-—éRibga(l%&lezJ&‘?), we define:

0

= P / = ° 'f
(4.10)5 L1 LOoL1 LO 5 Ll LO tl LO

Such el-maps will be the first components of the desired estimation maps

+2

L,E in Prop‘a.Sl,z(cf.(ﬂ.lO),i). Then, letting G‘E'.:Rl be as in Prop.4.5

_ 1°2
we set:

i i alt 2 i ~y ~ ~ & o~ —
(4.10). o~ =L (0~),0¢ =L (™) ande =L (o) (=L (o)), where (L,,L,)=(L
5 0 1 0 1 1

o § /
or (Ll,Ll).
1 t 14
Next taking an element A éENQ+1A5KY )(cf.Prop.M.Sl,g) and a point Q &I\A],

g+l

] ] ¥ \
we set:A=s(A )&E N An(Y ), where s=p.g.refining map:Aﬁ(Y ) G ALY )

1 '

(Def.l.62). Then we have the following from (14.10)5 and (4.10)0,(4.10)01

"y ~ t — 1 o/ —
(4.10); w2 T (@) 2 T_,(Q) D 1A |, where r={o’g(Q)} L' s5% ™t

" I ~ . ~ T
(Note that, by (M.l?)q, we have:r =Ml(r), with Ml—Ml or My (cf.(M.lO)1,3)
I

The relation (M.lo)5 will be a key fact for the proof of Prop.4.51,2.

(2) Now taking elements ‘?GCq(A‘r(Y?),H;G )g and ?}E'eCq(AO\(Y’),me)01

(cf.(4.10),,,), we write ¥ explicitly as¥ =wHFmTY, with!ké:cq(AGjY'),OSk)

(v
(cf.(u.10>2,4). Then from (11.10)O we have:

' , ~ d
(4.1_0)(; 18, (R (¥, (R < a:= afg(Q) in T_(0), whereé,=(f9~12 2,8,) with
&=(d1,d2)- _
We will apply (M.10)1,3 to QA’ YA in Ur<Q)' Then there are elements

~ ~ ~ ’
$EelT,, (@),5), and YeP(Ux(@),f"K),» satisfying
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Sl

'D ~ ~
(4,10)6 Y :‘U{fl , ‘:YA_—.“JmY , with (r’;é):ﬁ(r;a) and (’r;m,;a)zE'(r;ﬁlv;a),

A 1

where the estimation maps N €f and E/E B, 4 are as in (4. 10)1;\'3.
sy Y _,, oo

We write ‘?l as‘!fl_wKF 1*'1,

with ¥ €B(T 4 (Q),0%%) 1 (cf. Pig,I), We note
that (4.10); implies: '
t/) ] 1

(4,10)¢ Nl' < a and l‘l.kl] <a . |

" Then from that r = {gf’g(Q)}—l(cf.(4.1O)5) and (4,10),, together with the
pe ”

explicit forms of the estimation maps M,E: we easily see that (4.10)6 is

rewritten in the form:

1P, (R)I<a"g(R) 3 =1,( +o)
1 . 2
61. 14 )}’ Wl.th{ ” - 1
¥, (R)1<¥g(R 3 =exp l(m) - Ly +0)Y

where the el-maps LZ’Lé and the positive monomial M are determined by the

(4,10)

~
maps M,E in (4. lO)3 .
Finally, letting L:2"—> 2% be the a,d,part of E'(cf, (4.2)1), we define
a mpTle iﬂ:; xL and a d,p,c.map E & Eyq p by the following,
T:a*2 X R D (65 >3 KR (1) (0),D,(347))
(4‘10)7 +2, +2 + 42, 042, ot =yt /
EB:RTART Y 27D (r33:m)—> R xR %7 Q\Ll(cr),exp M(m)-Lz(aw-),L(m)

~s

We take the estimation maps L and E %o be the dcoir

W
&N

ones in Propa4951’2

1

~
i) A N . e
¥ ot 4 sabisfy:

o
Then remarking that the restrictions ig',g) °f Vi,
~/
% / *0 ;
(4,10)8 s Yy=wYy and s ¥ =,y |,
we have (4.10)2,4 . g, e.d.
Prop‘4.52 will be used in the proof of Lemma 2.5, when the variety is

the local one XéAnla(cf‘n.3,§4,2), Here we give a slice modification of

Prop,4.52, which is used in the proof of the other lemmas in § 2,
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Remark 4,3.(i) First take a series {Eﬁ}g}zl of estimation maps Ex
SN d(cf_(4.2):}), which satisfies the similar factorization to Fig,III,

Lemma 4.6, and we make the following change of the estimation in (4, 10);:
] 1 ~
ja )=Ex(r;m;a)

1
Then, letting the el-map Lj:R*yR™

(4.10)g  (r3iiza)—>(x ;i
and the linear map L be as in (4»10')5:
we have the following inclusion, which is similar to (4.10)4, from the |
arguments in the proof of Prop 4.5,(cf.,in particular, (i;lo)swé):
(4.10)g 5™ (v, a0zt oNcwy layx’), e 1), o, with
(od;gl’)z(l,(or), [L(m)]).(For the p,g.subgroup as above, see (2,3)¢.)
We use the above remark in the proof of Lemma 2.5, when the variety is
X' & Aff .

(2) Next we assume that the homomorphisms wm’wnlx in Prop.4.52 are
independent of m ert: w=ai=472= y e co and w’:vi:t{iéa .sce « Also take an

element m &€ Z*. Then, assuming the similar inclusion to (4,10); for each*)

~

m Z m, we obviously have the similar inclusion to (4,10)4 for such m& 7t
We use this fact for the proof of Lemma 2,7{given to X & Anla);Finally,
we assume that the similar inclusion to (4.10)3 holds for each mz 1, by
changing the estimation in (4..10)3 to (4,10)9 . Then we have the similar

~_
inclusion to (4610)9 for each m Z m, We use this for the pirizf nf

Lemma 2,7(given to X' 6‘77_71\ff)0 (We also use a slice modification of

Prop,4,52 in the proof of ILemma 2,3 , Such a modification is given in

the proof of Lemma 2,3 inn3, § 4.2.)
%) Precisely, we replace the inequality:?n—‘ > Lo(m) in (4.]_0)3 by

I~ —
m m

N

106
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2 , Proof of Lemma 1,2, Here we derive Lemma 1.2 from Lemma 4.1,
Lemma 4,81, by using Prop 4.51:
(4'11)1 non cohomological estimation in Lemma 4,1, Lemma 4.8y

Prop 4.5 > cohomologcal estimation in Lemma 1,2,

‘Tor this we set:
*

o~ 1 :
(a) {'X :=X € Ang, XeAnla or X € Aff(cf.Lemma 1;2)',
*x .= coh' (¥ " £.(1 1.18)-
oo™ () g = 0o (D), 0oB" (), g ox o (K (0. (1A)g (1.20);

‘ %, % . *)
Also we denote by EX* the map:Coh (X )p_g 9H—->,I»_I9MH as in Lemma 4,1

or Lemma44.81(according as g%:Z'or X,Xﬁ), Moreover, we set:
(b) z%:=CnXUi( C_')‘(’), Ulﬁ X(C X) or X'_(For the open set U{CCn ,UlCCn

see (4,1)4 and (4.7)2°)

Then one can apply,to each H & Coh*(X*) and Q E&SE*, the estimation

in the left side of (4, ll) (cf, also the expllclt formulations in Lemma 4,1

Lemma 4 8 ) Now let the manlfold _1 _X (P) X (P) or Z_, the p,g.covering
Ae(Y") and the sets of the cochains Cq(Ar(Y ) HQ) , ¢3(a (¥ H-}p’) ve

as in Lemma 1.2, Then, by applying Prop 4. 51 to g%e non cohomological

estimation mentioned soon above, we get the desired inclusion of the

cohomological form in Lemma 1.2(cf,§1.3):

* 3 A * ;
(c) s Cq(ArﬂY*),H;T%<: Cq(A&(Y ),Hi@)ax, where (J;AS=LH(¢;a), with the

v
element Ty & L(=LxL) determined by HH(cf.(a) ) in the manner in (4.10)7‘

%) Vhen we apply Lemma 4.1 to X =X€Anj, , we understand that X=Xo-X
in Lemma 4,1 is of the form:X=X,-D, where the divisor D of Xy is as in

%) By Remark l.4(cf . the end of §1,3 '), the proof of Lemma 1,2 Eg;;—~
such a sheaf H suffices for that of Lemma 1,2 in its original form as in

2,§13

I**ﬂ X2 )= Sxu_(P) and X (P) =X 0U_(P), with the discs U (P) ,U.(P)

. n
in ¢",¢" of center P P and radius r(cf, Lemma 1,2), Also note that Y C:Y
- (cf.Lemma 1.2), and one can apply Lemma 1 2 to

o

s—‘l:
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Next, recall that, in Lemma 1,2, we imposed the factorization on the
correspondence:Coh*(X*)p'gEB}Lf?frE?i%{(cf.Fig.III,Lemma 1.2). This
follows from the corresponding factorization in Lemma 4.1,4.8,, and we
finish the proof of Lemma 1,2. ¢g.e.d.

3, Proof of Lemma 2.5,2.7. The proof of these lemmas is similar to
Temma 1,2, We summarize the key point of the proof:first letting the
Koszul homomorphism F%:O§3L4>O§p§1)03§1»<s) be as in Lemma 2.5,Lemma 4.4,
we note that (1) the ;on cohomological estimation(given to Fg) is of the
form in (4.10)3 and (2) Prop.4.5, is given to (4.10)3; applying Prop.4.5,
to the estimation in Lemma 4.4, we get the following implication:

(4.11)2 Lemma 4.4 (which concerns the open map property of Fg) __~E£32;i§£

—— > Temma 2,5(given to F?):cohomological version of Lemma 4.4
Also recall that Lemma 4.81 concerns the non cohomological estimation on

s
the Koszul homomorphisms F;m:0§§z——> O§p+1) and is of the form (4.10)g.
Thus the using the implication:(4.10)8—~>(4.10)9(=cohomologica1 version

of (4.10)g){cf.(ii),Remark 4,3), we have the similar implication to (4.77) :

(4.11)5 Lemma 4.8l-—{>lemma 2.5(given to F;m)=cohomologica1 version of
Lemma 4.81.

k k-
Next, for the homomorphisms KO:OX1~> H, Ké:OX%~>-H’ as in Lemma 2.7, we
have the following implications:

(4.11)3 Lemma 4.5 —> Lemma 2,7(given to KO), Lemma 4.83-+>-Lemma 2.7

(given to Ké).
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Actually remark that the estimations in the left sides are of the form
in (4’10)3’8’ while those in the right sides are of the form in (4.10)4,9.
Thus, using the implication:(4.10)3-—?(4.10)4(which is insured by Prop.4,2
and the one:(4.lO)8-“'>(4.lO)9 (as in Remark 4,3), we have (4.11)3 in the
parallel manner to (4.11)2,(4.11)£ .

4, Proof of Lemma 2.3. Finally, letting the homomorphism Kyop®

k. +sk Xk k., +sk

1 . . r 1
Oy" —> 0Oy and its imahe Hj=K,, (Oy

. 1
we note that the estimations in Lemma 4.6, Lemma 2.3 are of the form in

) be as in Lemma 4.6, Lemma 2.3

(4.10)8,9. Thus, applying the implication:(4.10)8-—€>(4.10)9 to Lemma 4.6,
we have-the following implication parallely to (4.11)3:

(4.11)4 Lemma 4.6 —> Lemma 2.3'(given to X €4Any ).

Recalling that Lemma 2.3' insures Lemma 2.3%(cf. §2.2), we have Lemma 2.3
(given to XGEAnla) from (4.11)4..Néxt, for the sheaf Hé:Ké,m(O§}+Sk), whi c]
was given to X'EE Aff in Lemma 2,3 ,Lemma 4.81, we get the following
implicafion in the parallel manner to (4.11)4:

(4.11)& Lemma 4.8, —> Lemma 2.3'(goven to X'GE ATT).

3
Thus we have Lemma 2.3, and we also finsh the proof of all the uniform

estimations in §l, 8 2, which concern oi_;bﬁZQQEWB;PhEﬁéééipﬁiéms. The
A
remaining uniform estimationms in §1,2,2, Lemma 1.3 and Lemma 1.4, will

be checked in n.5,n.6 soon below, by using Prop.4.4.. . -

#) Note that the a.d.exponent m&z* of the sheaf meX,.. in Lemma 2,7
and the index m€2z* of the sheaf H ,.. in Lemma 2.3 satisfies the
inequality of the form:m > T with a suitable nEz (instead of the
inequality of the form in (4'10)3’8)' Thus, in applying Prop.4.5, and
the implication:(4.10)g—X4.10)g to (4.11)5,, and (4.11)1;, we should

use the remarks in (i),(ii),Remark 4.3.
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4. Proof of Prop.4.2. Here, using the implications (4.11)2~4, we
prove Prop.4.2. First we prove (4.5)3(cf.Prop.4.2), which is a key fact
for the proof of Lemma 4.4(cf.& 5.2). For this letting the element h &
f(X s0y ) and the divisor D of h be as in (4.5)3, we have the following
from 4.11 :

(e, ) ’
(a) "Lemma 4.4 for (XO,D;f) —> Yemma 2,5 for (Xg,D5£) .
Noxv,f.;_etting the parameters (P;r)éﬂh(c (D":’{O’sing
elements (m,m) € z*X z* ve as in (4. 5)3, we define:
(b)) &:=(a,1) € R}?, Fi=r/2 and o:=(2/r,1) € 2.
Then, for the set of the holomorphic functlons as in (4. 5)3, we easily ha

(b).2 f(U (p), me 3 C 7 (A (X~(P)) f 0 ?))a,where the p.g.covering A (X~(:.

YXRY), aéR{ and the

and the set 7 (~~ ) in the right side are as in Lemma 2.5(cf. § 2.3).

Applying Lemma 2.5 to the right side(cf.(a)), we have:

(), o (220, He(®)), 0P 0 (#(0)) € P 20n g, (2)) 27 0{P1))
3 S o VA 104N Ly p-1 ot 3

with (r’;méﬁf;&'):E(r; cr;ﬁ;a), where the d.p.map E is as in Lemma 2.5.

*%)
On the otherhand, applyingamil}h 2. 24 to the right side, we have:

v oy~ ”

“M Jﬁugfum)ﬁ 0y), € FZ(%MH@DOﬂp,mm(rva

.__c,(‘rr:r ma), where the d. pmapLELd pls as in Th.Z2. o’l,’

Prom (b)7,4, we have:

(b)5 (left side of (b) Yy C F 1(1‘ ZO(A\é\;ﬂXfy)(P)),O)((p's'l)s)félg', with

wtt i M

~. i w
(T;05m;9)= L(‘)’: o33 d), where the d.p.map E is determined by E,

e e e et

g s BT

e
*)**) Recall that Lemma 2,5 implies Th.2 .2, and the inclusion of the

form (b)3(0f Remark &,2 at the end of §Q).
%%%) For the homomorphism = Fm _1» see n.2, §2,1 and §2.3

1ic
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4. Proof of Lemma 1.4. (i) ‘fTake an open set U of a euclidean space

. . . ot
¢?{z) and a subset X of U, Also taking a p.g function g:U—=>1:, and an
element FEERIZ we assume(cf.also (4,10)0):

. ‘ S r
(4.12), 2(0)/2 < g(P) < 2g(Q) for each P&l and Q&UL(P;8)1T,
~ N1
where U.(P;g):= {oef‘n a(?,q) < {me(®)¥ 7}
~ _' .
For an open subset U' of U we say that U is a (g,09-d-envelop of U ,if
, v
(4- 12)0 U (Q- Yy C U for each Q €T
We fix such an open set U in the remainder of n¢4,1§ow take an el-map
: +2 - N -
Ly of the form Ly: 1+ > (44 %) —7 4 9(4&l o;)(u.u,.i).. .
Then setting
(4.12); U (X58):=Up oy U(258)
we easily have:
(4,12), Uu(Q;8)0%= $ for each Q€T —Ja&A,b) , where & NJO( ~ ).
(This follows also if U is a (g,o—)~d—envelop of U,u%ererréﬁzzsatisfies:J;é
(ii) Extension of cochains,. Here we give a key proposition for Temma 1/
for this we assume that X is an analytic variety in U and that there
are open sets ﬁ,go in ¢" and varieties ¥ EO in T ﬁé satisfying

(a) a’,UO are (g,%)-d-envelop of U,ﬁr , and A=xon

Also taking: a positive monomial ii(cf.n.5,81.1), we assume the following

T, 1=%nT.

uniform estimation(cf, Prop.4.4):Tor each 0e¥ and r&r’ satisfying
T <ﬁ;g(Q)}~1 , there is an analytic map
T /
(4.12)3 Q):Ur,(P)L>{%ﬁlﬂ , which is the identity on U .1 (?), Here r=li(r),
t "{n 7 -~ ) + ) ~r
and we set U (P):= {o€d™a(e,Q)<r}, ur(y)ﬂ;r(g) n"“*o .

1/
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2 we set:

For an element & it{
A
A _(X) . X e 5 of S
(4 12) T ,}::g—-p g -covering of { ,} in {Gn}OF size o (Del‘l‘61)"
4 3 (U) ° U

e v +2 42
Next we define an el-map T, :i7—3

from II in the manner in (4.10)5,

~ 1 1
and we set L :=L, 6L o

0 Ly, where Ly is as in (4.12)7 , Also denoting by
LC') the el—map:}f’ga r—?ﬁ+2 3 LO(2-9’), we set:
o
(4912)5 L= LO ely

* . - 0

Then, denoting by 0.,0 and «_ . respectively the structure sheaf of X,C
£ £

and the natural homomorphism:O-—-;'OX , we have:

Proposition 4 6,(Extension of cochains), For any €& R'ﬁ and 9~=(d1,32)

61{'1'"2’ we have a map:
R . N 4 / &2 / N
(4,12) e :Zq(z’lo,(i) Oy )y @Uq(Bof(m ’O>d’ , whered =(4dq2 “,&,), o~=L(o ),

which satisfiesw.  §e 0 and
Lh

1]

(4“12); S.::—:qg;e%i" with the p, g refining map S:A&(X)c;)Aav(}I) o

. . .
(vhe similar facts to the above holds by changing (U ,0—') to (U',o-'),

- ) ) 1 1 _ i N ~ 4D ] i ) Py
with an open subset U .of U and an element &~ satisfying 00 70

oo~

.3
Proof, (1) first we extend cochains on ¥ to its small P, g.neighborhood.
for this setting Bm(K):sg—p g ~covering of X in C" of size 6 (Def,1,6-),
we sjow ’the existence of a map:
1 ! e
(4.22), e ":2%(a (1),0p), &5 cU(Bu(X),0)g¢ , satisfying @ §e =0 and
s—.&ie , with the p, g, refining map S:Ao{,(X) A (X)),

where the element cj’ei‘({Z is defined as follows:

oAt < =~y # o~
(4.12); & =Lo(F), 0=L (), and 0'=Ly (3 (=1 (o)),

' t a.
Take an element B - *’Bﬁ?ﬁ EN¥5 (%) satistying (B'InX 5§, and

. T . . . 7 e
#) Note that this implies that U is a (g,®)-d-envelop of U
i ?
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—~
1

' \ . - . '
we set A = {A R e e =B£ N%, and A=s(a') @ N9*1A_(X) then, taking

J7i=1 |

point 0 €A’ , we have:

-

. ~y / ~H — 1 -
(a); 1415T.(Q), UL, (Q)2IB] , with r={5(Q)} L'z v (=)

(cf, (4.12)5 and (4:10)g) . o
/
By (4.12)5 take an analytic mapfd:U,, (Q)<;U,.(Q), which is the identity

on gr' (Q);NOW, for an element LPGZ\Q(AT(X)’QX% , we set ‘f{ji-‘-“’kA/éf( - 0.
Then we have: ‘

(a), wy¥p=Yy . andl¥yQ)l<a’s(a) ,

’.‘Ie,‘then define an element ‘P’==e’{i\p by

(a)3 ‘f);'ﬁ——- CU.,'*‘F’M or =0, according an [:31(\ f{’ﬁﬂp o = ¢ .

Then it is easy to see that (a)2 insures \4-_0.2),7 .

07
~

(2) Nex*t setting ¥ =2.0and 0~'=LO( K )(:T_,c(o'i)) , we set 3';: {tyoi(g;
QET (\ supp B...,(A)}- (cf.(4.12) 7) “hen we have a refining map
! - . /
(b)1 6B G J)oi,(k) so that t(u@\,(Q;g) =u0£,("};g)) if QEX U,
Also we note that (4. 12)2 insures:

(b:"z l( c:o)n A—¢9 if Qeu -Supp : QI(-‘\-) )

S o
e — R
- i

*Mhen we set:
e R 1 . .
(b).), L\?‘l,}? .(U'):Nq'l’a U " , where B = {Lﬁnej}{qulBe\,(U'); where one of
elements Uq\,(Q;g) & D}L satisfies: Qé;—_ supp :7}
Note that (b)2 implies:
1 i
i) i =
(b>4 l..Al(\ ,¢ if 13 CB
Now letting cf’: ({? be as in (a)3, we define an element®= ¢ 'PC q(?,(ﬂ)
by the following:

DR 4 . t
(e) \l{:t"(‘) on NquB' , and =0 on B .

By (b),_, and (a)3 we easily have (4.12)., g.e.d.

. . o L e . _
) (o)2 holds for the pair (U , o~') as in the remark soon below

Prop, 4,5, and also the remark itself holds .

113

~
<

2
3)

<
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1 . ' g ' . ~ -
we set A = {Aalng“ , with A5 =Bj NX, and A=s(A ) & N¢ *‘1AQ(X) Then, taking ,
point Q €A} , we have:

DI T ~l H - .
(a)y iAlD’ﬁr(Q), ,(Q)Dl’ﬂl , with r={Fg(Q)r7L, = =5B(Q)Y L=1(z))

(cf, (4,12)5 and (4e10)5) o o

/

|3 ~

By (4.12)3 take an analytic mapid :UI,,(Q)Q.-?UI.(Q), which is the identity
o~ . o [} ; / .

on U, (Q), Now, for an element LP(_;_Z\q(A,T(X),O‘ )d , we Set,‘fg:=‘%§[‘( [B[,0),

Then we have:

3 apf / . /
(a), w., 5°B,= boA, , andlB’B.(R)ka’g(Q) A 8]
We then define an element ‘?'::e'%\P by ;

/ Kl . ~
(a)3 (?B ‘= (bX ‘FB. or =0, according an Bfﬂ% xpor =@ .
Then it is easy to see that (a), insures (4.12)7 .

(2) Next setting 3’ =20’and 0~~LO( =) (= L(w),, we set B':= {U (Qs38);
Q€U
1

(b); t:B3 ¢ B .,(K) so that t(U:(Q,g)) =U,(2:8),1f eexnv’

ey

(\ supp L_., A.)} (cf.(4,12) ) . hen we have a refining map

[
*x)

Also we note that \4.12)2 insures:

’ 1
(b)), u,(x,umksb, if QE&U -supp Bg(X) ,

*Men we set:
{(b) Lﬂ 2] (u )= Nq 13" U B where B":= {‘Rneﬁq“le. (U' s where one of
Y3 ’ h ol ’
ilements Ua\,(Q;g,) 6':. _:a}L SableleS:Q¢ SUpPp ;;\ .
Note that (b)2 implies:
(v, ]'3;;1(\ T o= 515 if 13" =)
Now letting lP e (? be as in (a)B, we define an elementy- e‘PéCq('},(U) q
by the mllourlng
(c) Y:t‘P on Nq""lBr , and =0 on B .

By (b)1~4 and (a)3 we easily have (4‘12>6’ qtecd.

(b)2 holds for the pair ({Jo,’(;') as in the remark soon below

Prop. 4,56, and also the remark itself holds .
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(1ii) Proof of Lemma 1.4, Now Lemma 1.4 follows from Prop.4.6
almost directly as follows. First let the local variety XéEAnla be as
in Lemma 1.4. Then letting the parameter space MX(<:X1XR+) and the

positive monomial M, be as in Prop.4.4, we assume the estimation (4.9)

X
+2 +2 . .
in Prop.ﬁ.&ﬁi%e siiiii LX denotes the el-map:R “® R °, which is formed
from M, in the WEAReT Tn Prop.l.6. Next let the manifolds Y (P)=U (P)—DO,

X (P) =Y (PMWX and their p.g. coverings A (Y (P)),A (X (P)) in C X be
as in Lemma 1.4. Then choosing suitable neighborhoods v U of the

origin P, of X(cf.(1.8)0) in ¢" , and an element ngRl , We have:

0
1. n L a? § "
(a) U —DO(resp.U —DO) is a (gx,m)—d—envelop of U —Do(resp.Yr(P))

1
Thirdly, let EX

/ |
Then setting (fgv)=EX(r;r) we have the following from the explicit form

"be the first part of the p.g.c.map EX as in Lemma 1.4,

of the map E)'((cf‘.n.5,§ 1.1).

(b) Yf(P) is a (gx,ol)—d-envelop of Yr’(P)’ and o > LX(O’).

By (a),(b), one can apply Prop.U.6 to (A (Y, (P)),A (X (P))) and the
structure sheaves OX,O of X Cn:wgriting the p.g.resolution HX of OX

over UO—DO in the form: —» O ———?I?—?O where HX coincides with OX

as the coherent sheaf over'Uu—Do, we have a map e from (M.l2)6 in
Prop.4.6: X .
' % / % #
.a . aq . PRI P
(c) e :7 (Am(xr(P))’OX)&'-? 7 (AdCﬂ;ﬂP)),HXbﬁ which satisfies:s &Xe.

(Here s=p.g.refining map:AN(Xr,(P))L—> A$(XP(P)), and we use the symbol

#) When we apply Prop.Ll.l4 to X, we assume that the pair (XO’Xé)
. ‘ ]
in Prop.l4.l4 is of the form-(XO,XO)=(XO,'[)‘g)J with the divisor D. of

X, as 1n Lemma 1.4, (hDOOX with the divisor Dq of U ).

r¥y u.(P):={aec™;a(r,@) < r } (ef. (L. 17)"

*f*)"From the explicit form of the paparmeter space‘ux, one can
take U ,U independg§t1y from the manifold Yr(P) in Lemma 1.4,

REER) gX( =|hX| , where hxg;f(Uo,OU )) 1s the p.g.function for
X(ef. §1). 0
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w;é:o—-?HX also for the obvious homomorphism:Hy-> Oy, We note that the

map L:J; in Lemma 1.4 was used in the latter sense.) |

It is clear that (c) insures the desired inclusion in Lemma 1.4:

(6) 57284, (X(2)),04) & WgaH (A (T (B)) Ey )y s

and we have Lemma 1,4 for the local variety X € Anq . . For the affine
variety X'E Aff, we note that the ambient space ¢ is (gx,o‘“)-d—envelop of
" itself for any & R{Z . Using this remark and Prop 4.4 for X', the |
proof of Lemma 1, 4 for X' € Aff is given similarly (and more easily) to

the case of X & Ang o, and we finish the proof of Lemma 1.4 »

6 . Proof of Lemma 1.3, Let the diwisor S&X:=C(w)xUg( € C(w)X ¢"(z))
be as in Temma lo3{cf.also (1.16)0) . Then' for points Ve 5,Q€X=Uy-D and
G-ER]“_LZ, we set(cf, Lemma 1,3):

(5 gs)}_ { R €S; d(Q,R) < (TgS(Q)) w:.’ch{ }:2 M-\-l

(423351 5 Tr@se, X1 R €X; d(Q,R)< (ayg(@)
(Here h, 6_[‘(UO,O ) and its divisor D :Ln Uy are as in Lemma 1. p(cf also

(1.15)4,) DExt take a suitable open subse’c Uy of Uy, an element o= O'XG;IZ

+2

and an el-map L.:R ———>“+2(cf.n,5, $1.1). Then, from a simple observation,

¥
we have the following comparison of the p,g properties of S and X:
Proposition 4.7;. (1) g;(Q)/2 & gg(Q) < 2g4(q) .
(2) By (T (@) €T, (0) and T(T(D)) D T(@) , with o'=Ly(T) .
Here (Q;6) is in (UX—D))(R'.F2 , and Q=I§1(Q) . Moreover, Ty is the natural
projection:s-——'?X:UO—D(cf.n.ll, §1.3).Als0 we write Uo.(@:;gs) as Up(D), ...
Letting the point P & D ahd the element réR"’,O‘éR{z be as in .

Lemma 1.3, we set:
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(a)l sr(P)::san’r(P), with *Z’I(P) =CXU_(P), and ' (P —Jr(P)—DO(cf.(lcl6)2),

A.(5,(7) LIS | SED! 5
(a)2 A,,(gr(P)) = gs\ -p. g, covering of i’r(i) of size o~ 1n{ ' }
S . n .
A (X (R))T ey X.(P) c
Then from Prop.4.71 we easily have:

Propos:Ltlon 4, 7 o There are (natural) reflnlng maps sS and Sy
(5 ()3 BB 77 (0 (2) >R, (rLXm)))} _
. ¢
with a=L,(0o
(4.13), Sx‘ A (X () DU L(Q)—>Ty Ao_(Sr(P))BIX(U,,.(TuK IR x(o).
Thirdly let the estimation:(r;e;d)—> (rhe; J’):EX(I';'P;S), where (r;»;3 )
e IZYRIZ and By & By g s be as in Lemma 1.3 . Then from the explicit
form of.EX(cf. Def.1,5), we easily have:
(b) Xr(l)) is a (gX,&)—,d—envelop of Xr,(P)(cf.(i), n,5, §4.2),

»

By this we apply Prop./4.6 to (A&(Sr(}?)),Av(}?r(P)))(cf,also Prop,4.4), and
we have:

Proposition 4,72 . (Bxtension of cochains), There is a map:
(4 13)5 € 1% _(5,.(2)),04), —> 23(A (X,e(2)),Hg) o/, with (r}e’3d)=
EX(r;v;a), which satisfies: s = QJ*Se*
Heré the homomorphism @qoiHa0g is as in Lemma 1.3 and s:=p g, refining map:

.(S 1(P))<s A (S, (®)) .
(ho L,e that Jrop.4.73

1nsures, in the similar manner to n,5, the following

- inclusion:
= ¥ ~ N X N ( .
(4.1))4 wsgq(Ao!(Xf(P)) ’hS)a':') S Zq(Adg_{l, (»)) ’OS)B , where the correspondenc.
(r;?;d)-—%(r{;v’;aﬁ is as in (4.15)5 )
.Now, it is easy to get the compariosn of the sets of the cochaiﬁs
Zq(AQ‘(Xr(P)),HS)& and Zq(A,r(Xr(P)),OX)a in Lemma 1.3, which are defined
respectively for C xC" and Up~D, from Prop.4.7,,, and (4.13), , Thus we
have TLemma 1.3, and we also finish the proof of all the lemmas in Chap,I,
which is postponed in $§ 4

*) U(P):= {R & c;alz,P) <t} (cfun,4, §1.3) .




