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Series of Graphs Generated by Rational Machines
— A New Developmental System —

by H.Nishio, Department of Biophysics,
Faculty of Science, Kyoto University

Developmental process of a multi-cellular organism is
considered as a series of graphs, whose nodes correspond to
cells and edges to cellular interconnections. Thus far
several authors have devised their developmentalksystems or
graph generating systems. In this paper we introduce a new
machinary, called rational machine, for generating series of
finite directed labeled graphs. From the biological motivation
and approach we took, each node of a generated graph is labeled
with a string of symbols from a certain alphabet.

1. Definitions
" Graph [7 on alphabet 2l is a directed graph whose nodes

are labeled with strings on £ and edges are defined by finite
set of pairs of strings. That is, [ is a finite subset of
T*%*. The empty graph is the empty set of ZA5Y . series
of graphs [ is a possibly infinite series ﬂ?==f;,17,r;r..‘
of which [}S are possibly empty graphs on 37 .

A rational machine (RM) on X is defined as

M=(Q, 2, ¥ ,qy,F)

where Q is the finite state set,

27 is the finite set of symbols,
L is a subset of @xZexZex@ where 2 =2Ul¢€}
and € is the null string of ¥*,
q, is the initial state of Q, and
F is a subset of Q called the accepting state set.
Thus a rational machine is a finite state transition
system which can be nondeterministic and incomplete. Each

state transition is labeled with a pair of symbols.
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A path of length n from qq to 947 is defined as n con-
secutive transitions (ql,xl,yl,qz) (qz.xz,yz,q3) PN

(qn n'Yn n+l) where (q 1 X5 0¥y ,ql+l)elj (i=1,2,...,n).
The pair of strlngs o(—xlxz...x and P =Y1¥ye--Y, is said to
be defined by this path. « and g are called the domain and
the range, respectively. When a path starts at ‘the initial
state q and ends at an accepting state, then it is called an

accepted path. The string pair defined by an accepted path

is an accepted string pair.

Now denote by En the set of string pairs defined by all
accepted paths of length n. Let D and R be the set of
domains and one of ranges of strlng pairs of E , respectively.
Then Nn—DnU Rn is a subset of 2_, and E CZ’"Z’ is a binary relation
on Nn‘ In other words, E:=(Nn,En) ;s a finite directed graph
whose nodes are N and edges are E - T; is called the graph
at time n. ‘

In this way, a rational machine M generates, or defines
uniquely, a series of graphs ﬂ?—-fz,ﬁ,f;,.,.,ﬂa_.“  where

o —({E {¢/¢}) by definition.
A series of graphs I is called rational, if there is a

rational machine which generates it.
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Example 1.1

_ Rational machine M illustrated in Fig.l(a), where a tran-
sition is denoted astqzégq', generates a series of graphs
whose first four graphs are illustrated in Fig.l(b).
Remarks | .
(a) When we neglect the length of path in defining graphs
generated by a RM and consider the set R=vngn of string pairs,

we have a binary word relation R on Z?l We call R the relation

defined by M. From our definition of RM, it is seen that the
‘notiodﬁrational relation thus defined is equivalent to that
of "transduction" introduced by [Elgot and Mezei, 1965] and
therefore that of "rational relation" defined by [Eilenberg,
19747]. ‘ 4

(b) A natural generalization of our definition of RM is
to define the transition relation V as a finite subset of
QxZ**Z*"Q rather than that of @xZgxZgx@. This is nothing
other than NDA of [Elgot and Mezei, 1965] as a machinary for
defining word relations on Z* As a machinary for defining
series of graphs, this generalization might be significant,
but we believe that our present definition is sufficient for

studyving essential points of this kind of developmental system.

2. Growth Functions

Let [;=(Nn,En) be the graph at time n of a certain graph
series ['. Now let '

£(n)=#(N_) and h(n)##(En),

where #( ) is the number of elements of a set. f and h are

called node and edge growth functions, respectively. Moreover

we define the domain growth function fD(n)=#(Dn) and the range
growth function fR(n)=#(Rn).
Then we have the following elementary propositions.

Proposition 2.1

max (£,(n), fo(n)) & £(n) £ f(n)+Ep (n)



Proof
Clear from Nn=DnLjRn. g
Proposition 2.2

0 £ £(n) £ A-Cn, where A and C are constants.
Proof
By taking C as the maximum number of state transitions
from every state, we have the upper bound. B
Proposition 2.3

2
(l/2)f_<_h£fDfo$ £

froof
This is a proposition which generally holds for a finite
directed graph and is trivial. R

Remarks ;

There are RM's, for which equations (1/2)f=h and f2=h
holds respectively. In fact, RM illustrated in Fig.2(a)
realizes the equation (1/2)f=h, with f(n)=2nt' The relation
f2=h, which means a complete graph, is realized by RM giveh
‘ in"Fig.i(b). Moreover it is seen that there exist RM's for

which equations En=an Rn and a fortiori h=fDx fR hold.

22;: :;Q%WA, A/A, 8/8

7?7.2(a) F27.2(b)

‘Proposition 2.4
There is an algorithm which determines the order of growth
of fD and fR for every rational machine. Especially it is

decidable if a RM generates a graph series which grows

indefinitely.

Owing to Propositions 2.1 and 2.4, we can estimate the

growth order of £.



In order to prove the proposition, we néed the definition
of a new automaton.

A nondeterministic 8—automatoh (£-32) is an ordinary
finite state nondeterministic incomplete automaton
A=(Q,Zf,/&,qO,F) which is allowed to have &£ —-transitions.

That is, M , the transition relation, is a subset of Qx2exQ.

As in the case ovaM, a path of léngth n from q, to‘qm_l is

. defined to be an n consecutive transitions (ql,xl;qz) (q2,x2,q3)
...(qn,xn,qn+1) where (qi,xi,qi+l)efk . The string X Xye e X
is an accepted string in n steps, when there is a path of "
length n from 9, to a state of F. Note that x, can be £ .

Let Fn be’tﬁi set of accepted strings in n steps. ’

Then J:iFn is clearly a regular set.

Now consider a E—A.AD=(Q,ZZ,}1,qO,F) associated with
a RM M=(Q, 2, u,qO,F) which is defined as follows:

(a,x,9') €M if and only if (q,x%,y,q9') €V . Ay is called

D

the domain &€ -automaton. The range ¢ —automaton Ap is defined

similarly. Clearly Dn and Rn are the sets of accepted strings

in n steps by Ap and Aps respectively. So, the domain D=UDn

and the range R=URn are regular sets.

Proof of Proposition 2.4

Since fD(n)=#(Dn) and fR(h)=#(Rn), it suffices to show an

algorithm for determining the growth order of #(F ) for a
& -automaton generally.

(i) If there is a state, which has at least two closed
loops of transitions having different label strings, is reached
from the initial state and can reach an accepted state, then
the growth order is exponential.

(ii) If condition (i) fails and there is a one way chain
of state transitions as illustrated in Fig.3, then the growth

is of polynomial order.
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(iii) If conditions (i) and (ii) fail, then the growth
is of constant order. §

Corollary 2.1

If sup £f(n)=® , then f£(n) > C,n+C

. 2 4
where Cl and C2 are constants.

1

This corollary means that if a graph series grows
indefinitely, then the growth rate is faster than or equal to
the linear order.

Remarks
(a) For ordinary.finite state automaton, so having no
€ -transition, it is known how to calculate the growth function
#(Fn) precisely. 1In our case, the & -transition causes the
difficulty of evaluation of the growth function. Precise
evaluation of #(Fn) is an open problem.‘

(b) For any k, the (k+l)-state €-automaton illustrated
in Fig.3 has the growth order of nk.

(c) As to £ and h, it is interesting to investigate beha-
viors of the ratio h/f. This can be a measure of complexity
of graphs. It has not been known if there is an algorithm for:
deciding whether sup(h/f)=0 or not.

(d) Besides growth functions f and h, growth rate of the
number of edges emerging from nodes is alSo interesting.
Define

dn(x)=#{y | (x,y)eEn} for x €N
and '

d(n)= d :
(n) ;nea;\cj.1 n(x)

d(n) is a function which indicates the maximum number of

outgoing edges from nodes in graphvfz. It might be significant
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to investigate the function d, especially sup d(n). There is

a series of graphs where sup d(n) is not bounded, that is,

the number of outgoing edges increases indefinitely.
Similarly we can think of the function e(n), which means

the number of incoming edges.

3. Generative Power of Rational Machines

In this section we discuss how RM's are powerful in
generating series of graphs.
Proposition 3.1

Every finite series of graphs on 7] C=1ie,[T, T2, ... rfg ,
such that each node of f; is labeled with a string shorter
than nt+l, can be generated by a RM.

Proof A

Consider rz,and an edge e=(v,w) in (E . Let V=X Koo e Xy
and W=Y Yy s - ¥p where X, and yj are elements of 24 and
0 £k,h £ i. Then construct a RM,Mi e which define an edge e

’
as illustrated in Fig.4.

SQAO- MO~ PO EQ  Fy g
|
/1

,L — L+] sTales

By constructing RM's Mi e for every i and e and "taking
t4

union™ of all Mi 's and considering all initial states as an

identical initiaiestate, we have a RM, which defines [’as was
wanted. As for "taking union", see Section 5. |

To minimize the number of" states of RM which generates
a finite graph series is an open problemn.

Proposition 3.2

Every series of graphs, which is "isomorphic" to that of
tree like structures generated by a bifurcating branching
PDOL system, can bevgenefated by a RM.

"Isomorphism” means here that two graphs are identical
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besides labeling of nodes.
Remarks

PDOL system is the abbreviation of propagating deterministic
interactionless Lindenmayer system. "Bifurcating" means
that a symbol is rewritten by at most two symbols and
"branching" does that the rewriting rule can have the type
a = b(c) where (c) means a production of branch. For L system
theory, see [Herman and Rozenberg, 1975] and [H.Nishio, 1978a].
Proof _
' Proof is described by showing an illustrative example.
Generalization will be straightforward.

Consider the following PDOL system G as an example.

G=({a,b,c,d,e} , P, a)
P: { a—>be, b—>b, c¢c—>bd, d->ed, e —>blc)}

- G generates a series of trees as illustrated in Fig.SQ

=0 aQ
t=1 b>c
t=2 brbrd
t=3 b>p—>e—>d
1=« b> b b-e—>d
< ¢

=% bﬁ>l>e»b—§mﬁifé4>d

: R

. . lol

;:,;_ S Trees Ffj,é ,S-Z\u'foma’toh ™M



In order to construct an equivalent RM, we use the alpha-
bet Zf={0,l,t,b} . From the rewriting rule P, we first const-

ruct the € -automaton M called an S-automaton, as illustrated

in Fig.6. S-automaton has been introduced with intention to
define the series of sets of nodes N, of graphs to be generated
by RM. In constructing !M, we consider that 0 corresponds to
the left symbol and 1 the right symbol of each rewriting rule
of the above P. For example, d is rewritten by ed. So the
transition from state D to E has the label 0 and one from D

to D the label 1 in Fig.6. e is rewritten by b and the branch
(c).So, a transition from E to B has the label t, which means
the "trunk" and one from E to (C) has the label b, which means
the "branch". General construction of S-automaton from a given

L system will be seen from this example.

From S-automaton M, we next construct a RM M‘=MC)M,‘which
defines the complefe cohnectign ambng all nodes defined by M.
Such a Ry M' is called a C-machine. The construction is done
by éhe éemi-direct product rmethod described in the proof of
Proposition 1 of [Nishio, 1979b]. The relevant‘portion of
C-machine M' for our example is illustrated in Fig.7.

I4

F;J/] C- machine M
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Now we consider a rational machine be which defines all

possible connections among cells such that the left and right
neighbors should be connected and the trunk-branch bifurcation
should also be connected. See Fig.8. Note that M is in-

bf
dependent from the example under consideration and is universal.

&£, o0 & S 15 1
9”/@439% £, 50, 1€, 1/o

91

é/é.l t/f,lyo

| "i
t, Yo, Yt
© t/E th, t/y Yt

Vo, i/t, ¢/¢
E/E t/E /o, t/e |
o, &/, 1/€, i/0, Ut - Figs My

Finally we take the "intersection" of series of graphs

generated by C-machine M' and be.
Section 5. Though intersection of two rational graph series

For "intersection", see

is not rational in general, intersection of a C-machine with
Msfwgivég always a rational series. This comes from the special
feature of be.

For our example, the resultant rational series is gene-
rated by the machine M" illustrated in Fig.9. .

It is seen from the above construction, that M" generates
the graph series which is isomorphic to the series of trees
generated by the L system G. Here "isomorphic" means that
both graph series are identical besides labeling of nodes.

In L system, nodes are labeled with symbols from {a,b,c,d,e},A
but in RM-~generated graphs, they are labeled with strings on
the alphabet {FO,l,t,b} . Fig.10 illustrates the graph rg

which is generated by M". §

. Besides tree like graphs, which are essentially one-dimen-
U . .

Qénal, RM's generally generate multi-dimenasional graphs.

Since there is no adequate way of describing infinite series

10~
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(C)(C)O( ‘9, Waﬂfed»macﬁl'he MI/

11060~ 1110610111061/
111110k
O 10 (10C 11100 >~1110C ——11///0L —=/1111/0 /717777

1111060 /1)
l1obp . v . /Ob/
S 110D10C >1t06/10 1106777
F/';.IO /; \\//aé/ob

of multi-dimensional graphs, we show here some geometrically
uniform examples in order to understand the generative capa-
bility of RM.

Example 3.1

r=0,n00...
I is a square grid with (n+l)x(n+l) nodes as illustrated

in Fig.l1l. So the growth functions f(n)=(n+1)2 and h(n)=
2n2+2n. Therefore sup(h/f)=2. Nodes are labeled with strings

L, .-

) ,
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on the alphabet {A,B,C,D} as in the figure. Edges are uni-
directional. The rational machine which generates it is given
in Fig.1l2. It is easy to alter the'machine so that it may
generate bidirectional graphs.

Id = ED

[ A8

R ¢

C—-D

A-?—Bﬂ—>~38

N3

- - -Vl

:'CAHDA-rDB
AR AR ¢

'ec9>¥DC->{DD

t

Ve s - -

-~ -

F;j ]/ :rgaane, j/‘l'o’.s‘

"Example 3.2

[ is also a square grid, but with 2%x 2™ nodes. f£(n)=
2n+1 and h(n)= 2n+1( -~1). This series is generated by the

machine of Fig.l13.

VA, 8/8,c/c.p

B/3,0/c

@@C/A,v/e Fig-13
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Example 3.3

Series of triangular graids as illustrated in Fig.l1l4 is
generated by the machine given in Fig.l15.

77 £R
%Ax
7 B—>C
. ,,"\)
/% /7}}}/*:1}\2 D™\

N .
/HVB’—}BCJ?Q- cE

- e . . N~ e

7:@2/¢f ﬁ%szuérqfrvﬁ? | Fzz,/s'

Alh, B/B, /¢, O/p

E/E BE Gfa.HH e, B/g
c/A ,O/B
G/E,fv%' .
' F;;./[ 3-dim. Cube
E, F/B
/e, Hip

‘Example 3.4

Three dimensional cube ﬁ with 2nx 2nx 2% nodes.

So f(n+l)=
8f (n).

We employ the alphabet ¥ ={A,B,C,D,E,F,G,H} which cor-
responds to 8 nodes which replace one node at each time.

This
series is generated by RM of Fig.16.
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Example 3.5

It will be easily seen that the same series of graphs
is generated by different RM's if labeling of nodes is different.
For example the square grids of Fig.l7 are generated by the

‘machine in Fig.18, which is different from one in Fig.12.

e EQ

i A->—B8
Yoy
c—>D

;-'—,'7_/7:- sguore 7w'<!; (Second) Ff-' /?

Looking at examples given above and considering blologlcal
facts, we have here special classes of series of graphs.
(i) Graph series of division type
A series of graphs =10, T1,I%2,...,[h,--- is called of
division type, if the following holds:

1f [{>w , thenTi,>w and [: é? wa (aeZl)
or [7, > u such that ua=w (agZ) and [[% u.

In a division type series, every node at a time is a concate-
nation of a node at the previous time with a symbol from 25

or a node at the preVious time itself. Motivation for defining
the division type comes from fhe fact in developmental biology
that every cell is an outcome of a cell division and each cell
can be represented by a string of symbols. See [Nishio, 1978b].

-14-
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A daughter cell of a cell u is represented by ua where ae?; .
It is seen that all above examples of multi-dimensional
graph series is of division type.

(ii) Graph series of conservation type

A series is called of conservation type, if W'GIE implies

wa € [{) with a eZ,’E_ . In a conservation type series, every
descendant of a node continues to exist in graphs. The above

examples are also of conservation type.

4. Decision Problems

There are many interesﬁing decision problems as to rational
machines. We discuss some of them in this section.
Proposition 4.1

It is undecidable whether or not a pair of RM's generate

the same series of graphs,

We employ the following lemmas.
Lemma 4.1 [Griffiths, 1968]

It is undecidable if a pair of £ -free nondeterministic

gsm's define the same word relation.
Lemma 4.2 '

In the case of rational machines, such that the state
transition Y is range- € -free Zi.e' yvc QXZ?E xZ xQ) or domain-
E-free ( vc @xZ xZsxQ ), suppose that M and M generaté
=00t --- and IT=0G,FT,.-.. ., respectively.
Then [7% = [?' (i=0,1,...) if and only if \J = UnR .

"So t20 !

o~

" Proof

"Only if" part trivially holds for general rational
machines. Since RM's are range-& -free, relations U][; and
UT; are partitioned into 7 and r?'according to the length
of range. So, "if" part holds. R

Proof of Proposition 4.1

Given a pair of § -free nondeterministic gsm's Ml and M2,

-15-
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construct rational machines Ml' and Mz', respectively, as. )
follows: If Mi (i=1,2) contains a state transition %.ZZQQ£L1$9?’
then define in M ' the sequence of tran51tlons

g Dup iy Sty S g
Then obv1ously such M1 s are range- &-free. So, from Lemma 4.2
if it is decidable whether M,' and M2' generate the same

1

series, it would also decidable thether Ml and M2 define the

same relation. From Lemma 4.1 we have the proposition. I

Next we investigate the decision problem on the property

of series: ' Is it decidable if a given RM generates a series

" of division type (or conservation type) ?

Though we have not reached the conclusion, some considera-
tions are given here. ‘ ,

Let a giveanM be M=(Q,Zf,1),q0,F). Denote its domain-
and range- £ —automata by AD=(Q,Z r M ,qo,F) and Ap= (Q, %, F’”qO'F) ’
respectively.

Here we need some definitions:
'E3~equ1valence- Let A and A' be & -automata with the same input

alphabet. g' in A' is called = -equivalent to g in A if and
only if there are a string s and a time t such that there is

a path from 9y to g with label s and length t in A and there
is a path from qo' to g' with the same label and length in A'.
V-equivalence: gq' is called to be VY -equivalent to g if and

only if for every string s and t such that g defines s in t
steps g' also defines s in t steps. Here that g defines s in 2
t steps means that there is a path of length t from dq to g

with label s.

Proposition 4.2

M generates a series of division type if and only if
the following conditions hold:
(i) If IpeF in AD (or in AR) and g€ F such that
(4,x,P)EM , xe¥ (or (q,y,p)Ep’, uel2; ), then every F-equi-
valent state g to g in AD EEQ.AR has not a transition enter-

-16-
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ing an accepting state with label E , i.e. (g,éi;g)&rA with
pEF. ‘

(ii) If Fp€F in AD_(or AR) and 2 gé€&€F such that
(q,E_,p)é+4 (or p'), then for every = -equivalent state q in
Ay and Ag, (c_;[_,x,p_)éy where x €%, and p€F.

(iii) If Ip€F in Ay (or Ay) and aqe\;F such that
(a,x,p)ep (or P")' X €77, then there is a V-equivalent’ state’
g to g in F of Ay or Ap and there is not a state in F which
is "delayed V—equivalent" to p.

’ q' is "delayed V -equivalent" to q if for evéry string
s and time t such that q defines s in t steps, q' defines s in
t+l steps. ‘

(iv) If I p€F in Ay (or Ap) and Iq&F such that
{(q, €, p)GfA (or rU ), then there is a V’-equivalent state

g to g in F of A_ or AR.

D
Proof

Obvious from the definition of division type. §

Thus our decision problem has been reduced to those of
d-equivalence, V-equivalence and delayed- ¥ -equivalence.
For example, 3'—équiva1ence problem: Given a pair of & -
automata having the same form of state transition, and a pair
of states g and g', is it decidable if g' is = -equivalent

to g? This problem has not been solved.

"5, Operations on Series of Graphs

We discuss here the closure property of the class of
“rational series (CR) under some operations defined below.
' /7 ’ 4 .
Let j[':ﬂ)}ﬁ) E)_“,T;’___ and U'=[3,I;,[3,.-- be two series
of graphs.
> » ’n 3
(i) Union of [Cand [" is the series

LU =[N GUR, ... Ta UL, e
/ '
where [, V[ = Un ', E UE ).

-17-
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/ 4
(ii) Intersection of [' and [I is EF\EI= T;’On" Rﬂﬁ:;f_v’mrr'\

i/ :
where [nnly =(Nnr\Nn" E NE").
(iii) k-slow d%yn ofiﬂwis the series

T ——

= > v
l&).— lo,n’--\"’;,ﬁ’n,,~.,"'_...’m'n’.-..llw’...
(iv) k-speed up of Il is ’

(&) —
j[' —.—_'T;, r;(‘,ng,-..,lf_k'....

Proposition 5.1

CR is closed under union of series.
Proof .
By simply joining two RM's so that both initial states
are identified, we obtain the RM which generates K?K}ﬂ?'.

Proposition 5.2

CR is not closed under intersection.

Proof
A counter example is given in Fig.1l9(a) and (b).

. A/A AE | "V B @’ A/B

O O

A/8
Fig. 17 (a) Ir Fig.1906) [
From the figures we have
_ n ,i_j S ' .
r "-}i{éf(A,AB)S (i>0 and 2 0)
W= 1@, alsd)] (120 and 21)
n=2w) )
Therefore
Mo R'= 1@, alsh| =3, 121
and  [. N T;'"'= g (m#31)
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so,Aif there is a RM M which defines Eﬁ)ﬂ?l then the rangé

of the relation defined by M is equal to rangekﬁL(I@nfaﬁu

But range \J( [ Ta')= U range( T%/qTL’ﬁ=}§gi(AiBi)} . This is
obviously not a regular set. From the comment in Section 2,
page 5, we conclude that there is no such M.

Proposition 5.3

CR is closed under k-slow down.
proof

Suppose that M=(Q,Zf,1/,q0,F)Agenerates E7', M(k)=
(Q',ij,yﬂ,qo',F') which generates_ﬂk)is constructed as follows.
If there is a transition in M qug;p and g is not an accep-

ting state, then assume in M the chain of transitions

c . :(/(k)

£
q%ql&qzy e ——qu_l—ip Where qlqquzr---qu_l are
not accepting states. If g is an accepting state, then they
are also so.

Proposition 5.4

CR is closed under k-speed up. Moreover if [I' is generated
by an n State RM, then E#k)is so by a RM having not more than
n states, o
Proof

/ (k)
Let 77 be the alphabet of m (K which generates [ and

’ /‘_k\ . Lo
Z =Z’£= 27 X2 x-.--xZ . Next we define the product of label

pairs: Suppose in M a k consecutive sequence of transitions

v X .
qolﬁgqh_ L..?%Q&qk where x., yiéZ;. -Then the product is
— >/ .
X X, .xk/ylyz. .Yy = ol/p where oand(3€ 2" . Now in M,
follow k step transitions from 9q to find that the path is

(k)

qo,ql,...,qk. Then assume in M a single transition

q(o) q(k) where d/p is the k-product of label pairs of
this path.  When qy is an accepting state, define q(k) to be
so. Do this procedure for all paths of length k in M. Next
follow another k step path from Qe to 9oy and define a new
state and a transition as in the first procedure. Note that

in this second trial, d,) can coincide with dy Or - In this

-19~
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case, identify q(Zk)'with 90y °F 9x)’ respectively. By

continuing this procedure, which surely terminate in finite
(k)

steps, we obtain M The latter half of the proposition is

clear from this construction.

6. Concluding Remarks

As to the newly introduced notion of generation of graph
‘series by means of rational machines, there are many other
interesting topics to be discussed. For example, we can define

the notion of limit of graph series, especially in the case

of conservation type. Generally the graph obtained as the
limit of infinite series is an infinite graph. So, it might
be interesting to investigate properties of such infinite
~graphs.
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