On Forming a Series-parallel Graph by Removing Nodes of a Planar Graph

Toshimasa Watanabe, Tadashi Ae and Akira Nakamura

Faculty of Engineering, Hiroshima University, 3-8-2 Sendamachi, Hiroshima, 730 Japan

1. Introduction.

Let $P_{\rm SPNR}$ denote the problem of determining, for a graph G=(V,E) and a nonnegative integer k, whether or not a seriesparallel graph can be formed by removing k or fewer nodes of G, where V and E are the sets of nodes and of edges of G, respectively. The authors have already proved in [15] that $P_{\rm SPNR}$ is NP-complete. In this paper, we show that $P_{\rm SPNR}$ remains NP-complete even when the domain is restricted to planar graphs. From now on, let $P_{\rm SPNR}$ denote $P_{\rm SPNR}$ with the constraint that G is planar.

Technical terms and notations not specified in this paper can be identified in [2],[7],[8] and [9].

In stead of a thorough description of the formal requirements of a proof of NP-completeness, we describe the two steps (i) and (ii) required in proving that a particular problem P_{χ} is NP-complete.

- (i) Prove that $P_X \in \mathcal{NP}$, the class of problems that can be solved in polynomial time by a nondeterministic Turing machine.
- (ii) Prove that some known NP-complete problem P_X , can be polynomially transformed into P_X ($P_{X^*} \propto P_X$ for short), in such a way that any polynomial-time algorithm for solving P_X could be used to solve P_{X^*} in polynomial time. We will omit verification of (i) from our proofs since there

exists an algorithm that determines in polynomial time whether or not a given graph is series-parallel (For example, see [3] or [12]). Thus our proofs will focus on the transformation required by (ii).

2. Preliminaries.

Let G=(V,E) and $X \subset V$. Let us denote $E(X) = \left\{ (u,v) \in E : \left\{ u,v \right\} \cap X \neq \emptyset \right\}$ for $X = \left\{ v_{i_1}, \ldots, v_{i_X} \right\} (x = |X|)$. We call

$$G-X=(V-X, E-E(X))$$

the graph formed by removing nodes v_1, \ldots, v_i (or removing X) of G. Let us denote

$$\delta(G) = \max \{ \delta_G(v) : v \in V \},$$

where $\delta_{G}(v)$ denotes the node degree of v in G. Let

$$P(u,v) = (V_{P(u,v)}, E_{P(u,v)})$$

denote a path of length $|E_{P(u,v)}| \ge 2$, a subgraph of the graph G in consideration, connecting two nodes u and v of G. P(u,v) is said to be a disjoint path if and only if it satisfies the condition that no node in $V_{P(u,v)} - \{u,v\}$ is (and shall be) contained in any other path except P(u,v) (That is, any node of P(u,v) except u and v is of node degree 2 in any graph in consideration).

For two nodes u and v, let

$$L(u,v) = (V_{L(u,v)}, E_{L(u,v)})$$

denote the graph which consists of $(\checkmark+1)$ disjoint paths of length 2 each of which connects u and v, where

$$V_{I,(u,v)} = \{b_i(u,v) : i=0,..., \forall\} \cup \{u,v\}$$

and

 $E_{L(u,v)} = \{(u,b_i(u,v)), (v,b_i(u,v)): i=0,..., \alpha\}.$ $L(u,v) \text{ is said to be a band of width } \alpha \text{ connecting } u \text{ and } v.$

Remark 1.

Let L(u,v) be a band of width \checkmark connecting u and v. Then there exists at least one disjoint path even if α or fewer nodes of L(u,v) except u and v are removed. If we assume $α \ge 2$, then $L(u,v) - \{u\}$ ($L(u,v) - \{v\}$) contains at least three blocks (maximal nonseparable components) each of which consists of a single edge having v (u) as a cutpoint.

A thinning is an operation that deletes one of two multiple edges e₁ and e₂. A shrinking is an operation that contracts one of two edges (u,v) and (v,w) satisfying that v is of node degree 2. A reduction is to repeat a thinning and/or a shrinking a number of times. A graph G is said to be series-parallel (s-p for short) if and only if there exists a reduction that leads G to a single edge. A well-known characterization of s-p graphs has been given by R. J. Duffin in [3].

Theorem 1 [3].

Let G be nonseparable. Then G is s-p if and only if G has no subgraph from which ${\rm K}_4$ can be formed by contracting and/or deleting a number of edges.

If G has such a subgraph as mentioned in Theorem 1 then we say that G has a subgraph reducible to ${\rm K}_4$ (G \supset ${\rm K}_4$ for short).

We now turn our attention to the node cover problem. A node cover for G=(V,E) is a subset S of V such that any edge of G is incident upon some node of S. Given a graph G=(V,E) and a nonnegative integer k, let P_{NC} , called the node cover problem, denote the problem of determining whether or not G has a node cover

s of size $|S| \le k$ (We can assume that G is a simple graph). It is well-known that P_{NC} is NP-complete (For example, see [9]).

In this paper we state all lemmas without proofs which are given in [16].

Lemma 1.

 P_{C-QPNC} , the node cover problem for simple planar connected cubic graphs, is NP-complete.

Forming a series-parallel graph by removing nodes of a planar graph.

Throughout this section let k be nonnegative integer and G=(V,E) be a cubic planar connected graph, where

 $V=\left\{\,v_{\,1}^{},\ldots,\,v_{\,n}^{}\,\right\} \mbox{ (n=|V|) and E=}\left\{\,e_{\,1}^{},\ldots\,e_{\,m}^{}\,\right\} \mbox{ (m=|E|).}$ Represent G on a plane and fix this representation. Let

 $\mathbf{F_G} = \left\{ \, \mathbf{f_0}, \, \, \mathbf{f_1}, \ldots, \, \, \mathbf{f_{r-1}} \, \, \right\} \, \, (\, \, \mathbf{f_0} \, \, \text{is the infinite face of G} \,) \, \cdot \, \\ \\ \text{denote the set of all faces of G. We can assume that} \, .$

 $n \ge 4$, $m \ge 6$ and $r \ge 4$.

Beginning with the fixed representation of G we construct the planar graphs $G_i = (V_i, E_i)$ (i=1,2) and $G_1' = (V_1', E_1')$ by the following procedures (1), (2), (3) and (4).

(1) Construct the geometric dual $G^*=(V^*,E^*)$ of G, and then determine a spanning tree $T^*=(V_{T^*},E_{T^*})$ of G^* . There exists one to one correspondence between E and E*. We denote this correspondence by $e^* \in E^*$ for $e^* \in E$. Let

 $\mathbf{E_{T}} = \left\{ \mathbf{e} \in \mathbf{E} : \mathbf{e}^{\star} \in \mathbf{E_{T}}^{\star} \right\} \; .$ Then $\left\{ \mathbf{E_{T}} \right\} = \mathbf{r} - \mathbf{1}$.

(2) Let G_1 be the graph obtained by replacing each edge $e=(u,v)\in E_T$ with a disjoint path $P(u,v)=(V_{P(u,v)},E_{P(u,v)})$ of length 4. P(u,v) is called the T-path for e. Let us denote

$$V_{P(u,v)} = \{v_0 = u, v_1, v_2, v_3, v_4 = v\}$$
, and $E_{P(u,v)} = \{(v_i, v_{i+1}) : i = 0, ..., 3\}$

(hereafter $V_{p(u,v)}$ and $E_{p(u,v)}$ are used in this sense). Let

$$A_1 = \bigcup_{(u,v) \in E_T} V_{P_a(u,v)}$$

where $V_{P_{a}(u,v)} = V_{P(u,v)} - \{u,v\}$.

Then $V_1=V \oplus A_1$, where \oplus denotes the disjoint union. Let F_{G_1} denote the set of all faces of G_1 . Then there exists one to one correspondence between F_{G_1} and F_{G_1} , and we denote this correspondence by $f^{(1)} \in F_{G_1}$ for $f \in F_G$.

- (3) For each edge $e=(u,v) \in E$, execute the following procedures (i), (ii) and (iii). Let f_i and $f_j \in F_G$ be the two faces (not necessarily distinct) that e touches. If e is a bridge of G then e* is a loop of G*. Since e* $\not\in E_{T^*}$, we have e $\not\in E_T$. That is, if $e \in E_T$ then e is not a bridge of G.
 - (i) The case when $e \in E^-E_T$.
 - (i-a) If e is not a bridge of G (then $f_i
 mid f_j$), place two bands $L(u^i(e), v^i(e))$ and $L(u^j(e), v^j(e))$ of width (k+r+2) in $f_i^{(1)}$ and $f_j^{(1)}$, respectively.
 - (i-b) If e is a bridge of G (then $f_i = f_j$), place two bands $L(u_a^i(e), v_a^i(e))$ and $L(u_b^i(e), v_b^i(e))$ of width (k+r+2) in $f_i^{(1)}$, where we assume that one of them is located across e from the other.
 - (ii) The case when $e \in E_T$ (then $f_i = f_j$). Let $V_{P(u,v)}$ be as before. Then place four bands $L(v_t^i(e), v_{t+1}^i(e)) \text{ (} i=0,1,2,3 \text{) of width (k+r+2) in } f_i^{(1)},$ and similarly four bands $L(v_t^j(e), v_{t+1}^j(e)) \text{ (} j=0,1,2,3 \text{)}$

- of width (k+r+2) in $f_j^{(1)}$, where $v_0(e)=u^{\checkmark}(e)$ and $v_4(e)=v^{\checkmark}(e)$ for $\checkmark =i,j$.
- (iii) For each $u \in V$ and each pair of edges e=(u,v) and g=(u,w) ($e,g \in E$ and $v \nmid w$), both of which are incident upon u, connect u^i (e) and u^i (g) in terms of a band of width (k+r+2) if and only if both e and g touch a face $f_i^{(1)} \in F_{G_1}$. If e(g) is a bridge of G, then we assume that u^i (e) is set to either u^i_a (e) or u^i_b (e) (either u^i_a (g) or u^i_b (g)).

Let G_1 ' denote the resulting graph. Let V_{C_i} denote the set of nodes placed in $f_i^{(1)} \in F_{G_i}$ in (i), (ii) and (iii) of (2), and let $C_i = (V_{C_i}, E_{C_i})$ denote the subgraph of G_1 ' induced by V_{C_i} . C_i can be changed into a single circuit if we replace each band of C_i with a disjoint path of length 2. C_i is said to be the inner ring $IR(f_i)$ of f_i (or of $f_i^{(1)}$).

- (4) Construct a maximum matching M ⊂ E of G (It is well-known that there exists a polynomial-time algorithm to obtain a maximum matching of a planar graph G (see [4])). And execute the following procedures (i), (ii) and (iii) with respect to M.
 - (i) For each edge e=(u,v) ∈ E_T, let f_i and f_j (f_i†f_j) be two faces of G that e touches, where we can assume that one of them is a finite face. Then, for each v_t ∈ V_{P_a(u,v)} (t=1,2,3), connect two pairs of nodes {v_t,v_tⁱ(e)} and {v_t,v_t^j(e)} by edges (v_t,v_tⁱ(e)) and (v_t,v_t^j(e)), respectively. A path of length 2 defined by each pair of these edges is called the c-path. Then we

- say that $IR(f_i)$ and $IR(f_j)$ are T-connected. e is said to be the c-edge of these two inner rings, and then these two inner rings are said to be the c-supporters of e.
- (ii) For each edge $e=(u,v) \in M$, choose arbitrarily a face of G that e touches. Let, say, $f_i \in F_G$ denote this face. Let g=(u,x) and $h=(v,y) \in E-M$ ($\{x,y\} \cap \{u,v\} = \not > \}$) denote the two edges touching f_i . Then connect four pairs of nodes $\{u,u^i(e)\}$, $\{u,u^i(g)\}$, $\{v,v^i(e)\}$ and $\{v,v^i(h)\}$ by edges $(u,u^i(e))$, $(u,u^i(g))$ $(v,v^i(e))$ and $(v,v^i(h))$, respectively. e is said to be the beedge of $IR(f_i)$, and $IR(f_i)$ to be the supporter of e.
- (iii) For each $v \in V-M(V)$ ($M(V) = \{u, v \in V: (u, v) \in M\}$), choose arbitrarily an edge of E incident upon v and choose again arbitrarily a face of G that e touches. Let, say, $f_i \in F_G$ denote this face. Let g=(v,x) and $h=(v,y) \in E$ ($x \nmid y$) denote the two edges touching f_i , both of which are incident upon v. Then connect two pairs of nodes $\{v,v^i(g)\}$ and $\{v,v^i(h)\}$ by edges $(v,v^i(g))$ and $(v,v^i(h))$, respectively. v is said to be the b-node of $IR(f_i)$, and $IR(f_i)$ be the supporter of v.

Let G_2 denote the graph constructed by applying the procedure (4) to G_1 '. Since it is well-known that G^* , T^* and M can be obtained in polynomial time, G_2 can be constructed in polynomial time when G is given as input. Note that G_2 is a non-separable planar graph. Figure 1 shows an example of the graph transformation from G to G_2 .

Let v be the node mentioned in (iii) of (4). Each v ϵ V is connected to exactly one inner ring C_i in terms of a pair of edges (v,v') and (v,v") (v',v" ϵ V $_{C_i}$) both of which are intro-

duced in either (ii) or (iii) of (4). Hence $\delta_{G_2}(v)=5$. Let $\Delta(v)$ denote the subgraph of G_2 called the triangle of C_i (or of v), where it is defined by nodes v, v' and v'', edges (v,v') and (v,v''), and $E_{L(v',v'')}$. A pair of edges (v,v') and (v,v'') are called the Δ -edges of v. We say that v is connected to C_i in terms of $\Delta(v)$.

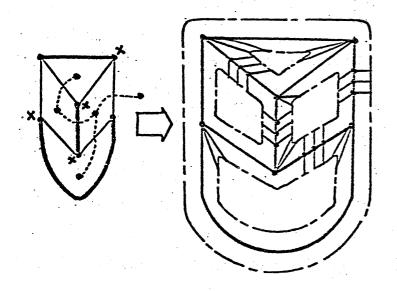


Figure 1. An example of the graph transformation from G to G₂ (In the figure and ______, respectively, denote an element of M and an inner ring, and both _____ and _____.

Lemma 2.

G has a node cover of size less than or equal to k if and only if there exists a subset $X \subset V_2$ with $|X| \leq k+r-1$ such that G_2-X is an s-p graph.

Proof. Let N \subset V be a node cover for G with | N| \leq k. Define $X_e \subset V_1$ for each e=(u,v) \in E as follows:

$$X_{e} = \begin{cases} \phi & \text{when } e \notin E_{T}, \\ \{w\} & \text{when } e \in E_{T} \text{ and } |\{u,v\} \cap N| = 1, \\ \{v_{2}\} & \text{when } e \in E_{T} \text{ and } \{u,v\} \subset N, \end{cases}$$

where if $\{u,v\} \cap N= \{u\}$ ($\{v\}$), then $w=v_3$ ($w=v_1$) for $v_{P(u,v)}=\{v_0=u, v_1, v_2, v_3, v_4=v\}$. Let

$$x_1 = \bigcup_{e \in E} x_e \quad (= \bigcup_{e \in E_T} x_e)$$

and

$X=N \cup X_1$.

Note that N \cap X₁= \oint . Then we have $|X| \leq k+r-1$, since $|E_T| = r-1$. It is easy to see that G_2-X is an s-p graph (see Figure 2).

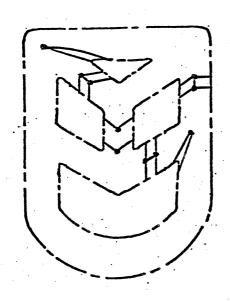


Figure 2. G_2 -X for G_2 of Figure 1 (The node cover N that determines X consists of those nodes marked x in Figure 1).

Conversely, assume that an s-p graph can be formed by removing (k+r-l) or fewer nodes of G_2 . Let X \subset V_2 be a minimal set satisfying that G_2 -X is s-p and which maximizes, among all such sets, the number of nodes contained in V. By the construction of G_2 (in which any band of each inner ring is of width (k+r+2)), by Remark 1 and by the minimality of X, we can assume that

$$x \subset v_1$$
.

Let

 $N=X \cap V$

and let P(u,v) be the T-path for arbitrary edge e=(u,v) \in E_{\pi}. Then

$$| x \cap \{v_1, v_2, v_3\} | \ge 1$$

for $V_{P_a(u,v)} = \{v_1, v_2, v_3\} \subset V_{P(u,v)}$, since otherwise $G_2 - X \supset K_4$. Therefore, since we have $|E_T| = r - 1$,

$$|N| \leq k$$
.

Let $G_3 = (V_3, E_3)$ denote $G_2 - X$ for simplicity.

Lemma 10.

 G_3 satisfies the following (1) and (2).

- (1) $\delta_{G_3}(v)=2$ for $\forall v \in v \cap v_3$.
- (2) C_i and C_j are connected only in terms of exactly two c-paths (including the case when there exists an edge connecting these two c-paths) for any pair of distinct inner rings C_i and C_j that are T-connected in G_2 .

By Lemma 10, we can prove that N is a node cover for G. Q.E.D.

Lemma 2 and the fact that G₂ can be constructed in time polynomial in the size of input establish the main theorem.

Theorem 2.

P_{PSPNR} is NP-complete.

We will prove Lemma 10 by way of Lemma 3 through Lemma 9 in the rest of this section.

We have $\delta_{G_3}(v) \ge 2$ for $\forall v \in V_3$. And if $v \in V \cap V_3$ then there exist $\Delta(v)$ and the inner ring to which v is connected in terms of $\Delta(v)$.

By the construction of G_2 , any two distinct inner rings C_i and C_j have no node in common. Thus G_3 has a path of length not less than 2 connecting C_i and C_j since $X \subset V_1$ and since G_3 is connected. Two blocks B and B' having a cutpoint u in common are said to be adjacent to each other at u.

Lemma 3.

Any block B of ${\bf G}_3$ has at most two other blocks each of which is adjacent to B.

Let

$$K_{\beta} = (V_{K_{\beta}}, E_{K_{\beta}})$$

denote the graph shown in Figure 3, where

$$V_{K_{\beta}} = \{u, v, w_1, w_2\}, \text{ and}$$

$$E_{K_{\beta}} = \{(u, w_1), (v, w_1): i=1, 2\} \cup \{(w_1, w_2)\}.$$

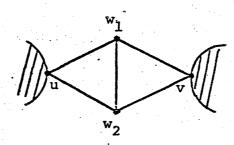


Figure 3. Kg

Observe that a graph H is not s-p if K is a subgraph of H having both u and v as cutpoints of H (any reduction can not be applied to K ince all of u, v, w and w are of node degree \geq 3). Let $\widetilde{K}_{\beta} = (V_{\widetilde{K}_{\alpha}}, E_{\widetilde{K}_{\beta}})$

denote the graph obtained by replacing each edge $(w,w') \in E_{K_{\beta}}$ with a disjoint path of length not less than 1 (that is, \widetilde{K}_{β} is a graph homeomorphic to K_{β}). We say that a graph H has a pair of K_{β} -cutpoints if and only if H has a subgraph isomorphic to \widetilde{K}_{β} having both u and v as cutpoints of H.

Lemma 4.

 G_3 has no block which contains a pair of $K_{\mbox{$\beta$}}$ -cutpoints. Lemma 5.

Assume that G_3 has a triangle \triangle (u) (u \in V). If δ_{G_3} (u) \geq 3 then u is a cutpoint of G_3 .

Lemma 6.

Assume that G_3 has a triangle $\Delta(u)$ ($u \in V$). Let C_i be the inner ring to which u is connected in terms of $\Delta(u)$, $\mathcal{E}_{G_3}(u)$ \mathbb{Z} 3 and $B(C_i)$ be the block of G_3 containing C_i . Then $B(C_i)$ has no other cutpoint of G_3 except u.

Let $G_{A_1}=(V_{A_1},E_{A_1})$ ($V_{A_1}=A_1$) denote the subgraph of G_1 induced by A_1 , and let $E_1=E_1-E_{A_1}$. Then let

$$IR(G_2) = (V_{IR(G_2)}, E_{IR(G_2)}),$$

called the inner ring tree, denote the subgraph of G_2 formed by deleting E_1 from G_2 , where $E_{IR}(G_2) = E_2 - E_1$. Let C and C' be a pair of inner rings that are T-connected in G_2 . We say that C and C' are \mathcal{T} -connected, $C\mathcal{T}C'$ for short, if and only if they are connected only in terms of exactly two C-paths (including the case when there exists an edge connecting these two C-paths). For any two distinct inner rings C and C' of a block, a sequence of distinct inner rings $C_1 = C$, C_1 , ..., $C_1 = C'$ ($t \ge 1$) of this block is called the \mathcal{T} -connected sequence of C and C' if and only if C_1 , C_1 for C_2 , ..., C_2 .

Let D denote the set of all cutpoints of G_3 . Then, by the construction of G_2 and by the definition of X, we have

$$D \subset V_1 = V \oplus A_1$$
.

Let us denote

$$D=D_V \oplus D_{A_1}$$

where D_V=D \cap V and D_{A₁}=D \cap A₁. Then, by Lemmas 3, 5 and 6, $|D_V| \leq 2.$

Let

$$X^{(1)}=X \cup D_V$$
 and $G_3^{(1)}=G_2-X^{(1)} (=G_3-D_V)$.

Note that $G_3^{(1)}$ is not always connected. Let B_1 , B_2 ,... denote the blocks of $G_3^{(1)}$, and let

$$\mathfrak{B}^{(1)} = \{ B_1, B_2, \dots \}$$
.

Hereafter, let us denote

$$G_3^{(i)} = (V_3^{(i)}, E_3^{(i)})$$
 for i=1,2 and 3.

Lemma 7

 $G_3^{(1)}$ satisfies the following (1), (2) and (3).

(1)
$$\delta_{G_3}(1)(y)=2 \text{ for } \forall v \in V \cap V_3^{(1)}$$
.

- (2) $D_{A_1} \subset D^{(1)} \subset A_1$, where $D^{(1)}$ is the set of all cutpoints of $G_2^{(1)}$.
- (3) $S_{G_3}^{(1)}(u) \ge 2$ for $\forall u \in V_3^{(1)}$.

Lemma 8 .

For any pair of distinct inner rings C and C' of any block $B_i \in \mathcal{B}^{(1)}$, there exists the \mathcal{T} -connected sequence of C and C'.

Let

$$D^{(1)} = \{ a_1, \ldots, a_{\theta} \} (\theta = |D^{(1)}|),$$

where the order of elements of $D^{(1)}$, denoted by the subscript, can arbitrarily fixed. Let P(u,v) denote the T-path containing $a_1 \in D^{(1)}$. Then, clearly,

 $a_1 \in V_{P_a(u,v)} = \left\{ v_1, v_2, v_3 \right\} \subset V_{P(u,v)} = \left\{ u = v_0, v_1, v_2, v_3, v = v_4 \right\}.$ We define $X_{a_1} \subset V_1$ for the following two cases. Note that, for each $a_i \in D^{(1)}$, there exists exactly one T-path containing a_i and that if $a_i \nmid a_j$ (a_i , $a_j \in D^{(1)}$) then they are contained in distinct T-paths.

(i) The case when $a_1=v_1$ (respectively when $a_1=v_3$). By the definition of $G_3^{(1)}$,

$$\{v_0, v_2, v_3\} \subset x^{(1)} \ (\{v_1, v_2, v_4\} \subset x^{(1)}).$$

Then let

$$x_{a_1} = x^{(1)} - \{v_2\}$$
.

(ii) The case when $a_1=v_2$. By the definition of $G_3^{(1)}$, $\{v_1,v_3\}\subset x^{(1)}$.

Note that if $v_0 \notin X^{(1)}$ (if $v_4 \notin X^{(1)}$) then $\mathcal{S}_{G_3}^{(1)}(v_0)=2$ ($\mathcal{S}_{G_3}^{(1)}(v_4)=2$) (that is, v_0 (v_4) is connected to some inner ring only in terms of Δ (v_0) (Δ (v_4)).

Then let

$$\mathbf{x}_{a_{1}} = \left\{ \begin{array}{l} \mathbf{x}^{(1)} - \left\{ \mathbf{v}_{1} \right\} & \text{when } \mathbf{v}_{0} \in \mathbf{x}^{(1)} \text{ and } \mathbf{v}_{4} \notin \mathbf{x}^{(1)}, \\ \\ \mathbf{x}^{(1)} - \left\{ \mathbf{v}_{3} \right\} & \text{when } \mathbf{v}_{0} \notin \mathbf{x}^{(1)} \text{ and } \mathbf{v}_{4} \in \mathbf{x}^{(1)}, \\ \\ (\mathbf{x}^{(1)} - \left\{ \mathbf{v}_{1} \right\}) \; \bigcup \; \left\{ \mathbf{v}_{0} \right\} & \text{when } \; \left\{ \mathbf{v}_{0}, \mathbf{v}_{4} \right\} \; \cap \; \mathbf{x}^{(1)} = \emptyset, \\ \\ \mathbf{x}^{(1)} - \; \left\{ \mathbf{v}_{1} \right\} & \text{when } \; \left\{ \mathbf{v}_{0}, \mathbf{v}_{4} \right\} \; \subset \; \mathbf{x}^{(1)}. \end{array} \right.$$

Set

$$x_{a_0} = x^{(1)}$$

and, for each j=2,..., θ , define recursively

$$x_{a_i} \subset v_1$$

similarily to the definition of X_a , by replacing X_a and X_{aj-2} with X_a and X_a , respectively. Clearly, for each j=1,..., θ , we have either

$$|x_{a_{i-1}}| > |x_{a_{i}}|$$

or

$$|x_{a_{j-1}} \cap v| < |x_{a_{j}} \cap v| \text{ with } |x_{a_{j-1}}| = |x_{a_{j}}|.$$

Set

 $x^{(2)} = x_{a_{\Theta}}$ and $G_3^{(2)} = G_2 - X^{(2)}$.

Then by the definition of $X^{(2)}$ and by Lemma 8 we have the next lemma.

Lemma 9.

- $G_3^{(2)}$ satisfies the following (1), (2) and (3).
- (1) Any maximal connected component of $G_3^{(2)}$ is a block of $G_3^{(2)}$.
- (2) For any pair of distinct inner rings C and C' of any block of $G_3^{(2)}$, there exists the $\mathcal T$ -connected sequence of C and C'.
- (3) $S_{G_3}^{(2)}(v)=2 \text{ for } \forall v \in v \cap v_3^{(2)}$.

Lemma 9 shows that ${\sf G}_3^{(2)}$ is a subgraph of the inner ring tree IR(${\sf G}_2$).

For $w \in D_V$, let B(w) denote the block of G_3 containing $\Delta(w)$, B be a block distinct from B(w) and adjacent to B(w) having w as a cutpoint. Let $(w,w^{(i_1)})$ and $(w,w^{(i_2)})$ be the two Δ -edges. Then we can show that any edge incident upon w and distinct from these two Δ -edges is contained in B. Therefore, $G_3^{(1)}$ consists of $|D_V|$ maximal connected components $B^{(1)}(w)=B(w)-\{w\}$ for $w \in D_V$ and another one C_Z which is determined by contracting B(w) to w for $\forall w \in D_V$ in G_3 . Hence, by Lemma 9 , $G_3^{(2)}$ consists of $(|D_V|+1)$ blocks (or equivalently the same number of maximal connected components). That is, each $B^{(1)}(w)$ of $G_3^{(1)}$ is itself a block $B^{(2)}(w)$ of $G_3^{(2)}$ by Lemmas 6 , 7 and 8 , and C_Z of $G_3^{(1)}$ is changed into another block $B^{(2)}$ of $G_3^{(2)}$ in the process constructing $G_3^{(2)}$.

Now let us assume that $|D_V| \ge 1$ (In the case when $D_V = \emptyset$, we omit the procedure to construct $X^{(3)}$ described in the following, and set $X^{(3)} = X^{(2)}$ and $G_3^{(3)} = G_3^{(2)}$). Let

$$\mathcal{B}^{(2)} = \{ \mathbf{B}^{(2)}(\mathbf{w}) : \mathbf{w} \in \mathbf{D}_{\mathbf{V}} \} \cup \{ \mathbf{B}^{(2)} \} = \{ \mathbf{B}_{1}, \dots, \mathbf{B}_{|\mathbf{D}_{\mathbf{V}}| + 1} \}.$$

Let $B_i \in \mathcal{B}^{(2)}$ be arbitrarily chosen. By the definition of T^* or of $IR(G_2)$, there exist some $B_j \in \mathcal{B}^{(2)} - \{B_i\}$, some inner ring C_i of B_i and some inner ring C_j of B_j such that C_i and C_j are T-connected in G_3 . Then we say that B_j is a T-connected block of B_i and vice versa. Let $e=(u,v) \in E_T$ be the c-edge of C_i and C_j , and P(u,v) be the corresponding T-path for e. Then

$$v_{P_3(u,v)} = \{v_1, v_2, v_3\} \subset x^{(2)},$$

where we set $u=v_0$ and $v=v_4$. Note that the following discussion does not depend on whether or not $D_V \cap \{u,v\}$ is empty. Define $X_{ij} \subset V_1$ as follows:

$$x_{ij} = \begin{cases} (x^{(2)} - \{v_1, v_2\}) \cup \{u\} & \text{when } \{u, v\} \cap x^{(2)} = \emptyset, \\ x^{(2)} - \{v_1, v_2\} & \text{when } \{u, v\} \cap x^{(2)} = \{u\}, \\ x^{(2)} - \{v_2, v_3\} & \text{when } \{u, v\} \cap x^{(2)} = \{v\}, \text{ and } \\ x^{(2)} - \{v_1, v_2\} & \text{when } \{u, v\} \subset x^{(2)}. \end{cases}$$

In the case when $|D_V|$ =1 define X_{ij} for $w \in D_V$ by setting $B_i = B^{(2)}$ (w). In the case when $|D_V|$ =2, first define X_{ij} for $w \in D_V$ by setting $B_i = B^{(2)}$ (w). Set $B_s = B^{(2)}$ (w') for $w' \in D_V - \{w\}$ and let $B_t \in \mathcal{B}^{(2)}$ be a T-connected block of B_s . Then define X_{st} , similarly to the definition of X_{ij} , by replacing X_{ij} and $X^{(2)}$ with X_{st} and X_{ij} , respectively. Now we set

$$x^{(3)} = \begin{cases} x_{ij} & \text{when } |D_V| = 1, \text{ and} \\ \\ x_{st} & \text{when } |D_V| = 2, \end{cases}$$

and clarify the relation between X and $X^{(3)}$. First,

$$|x_{ij}| \le |x^{(2)}| - 1$$
 and $|x_{st}| \le |x_{ij}| - 1$,

so that

$$|x^{(3)}| \le |x^{(2)}| - |D_V|$$

where $|D_{V}| \leq 2$. Secondly,

$$|x| = |x^{(1)}| - |D_{V}|$$
 and $|x^{(1)}| \ge |x^{(2)}|$,

so that

$$|x| \ge |x^{(3)}|$$
.

We have

$$|x| = |x^{(3)}|$$

only if we have the following (i) and (ii):

(i)
$$|x^{(1)}| = |x^{(2)}|$$
.

(ii) $\{u,v\} \cap x^{(2)} = \emptyset$ and $\{u,v\} \cap x_{ij} = \emptyset$, respectively, for the c-edges e=(u,v) in the definition of x_{ij} and of x_{s+} .

If

$$|x^{(1)}| = |x^{(2)}|$$

then

$$|x^{(1)} \cap v| < |x^{(2)} \cap v|$$

as mentioned earlier. And (ii) implies that we have

$$|x_{ij} \cap v| = |x^{(2)} \cap v| + 1$$
 and $|x_{st} \cap v| = |x_{ij} \cap v| + 1$,

so that

$$|x^{(3)} \cap v| = |x^{(2)} \cap v| + |D_v|$$
.

By the definition of $X^{(1)}$, we have

$$| x^{(1)} \cap v | = | x \cap v | + | D_{V} |$$
.

Therefore, if

$$|x| = |x^{(3)}|$$

then

$$|x \cap y| < |x^{(3)} \cap y|$$

Let

$$G_3^{(3)} = G_2 - X^{(3)}$$
.

Then, clearly, we have the following statements (a) and (b).

(a) $G_3^{(3)}$ is a nonseparable subgraph of the inner ring tree IR(G_2) and satisfies the following (i) and (ii):

- (i) $\mathcal{S}_{G_3}^{(3)}(v)=2 \text{ for } \forall v \in V_3^{(3)} \cap V$.
- (ii) For any pair of distinct inner rings C and C' of G_2 , there exists the $\mathcal T$ -connected sequence of C and C' in $G_3^{(3)}$.
- (b) $|x| \ge |x^{(3)}|$, where if $|x| = |x^{(3)}|$ then $|x \cap v| < |x^{(3)} \cap v|$.
- $G_3^{(3)}$ is essentially the same form as the G_2 -X constructed in the first half of the proof of Lemma 2 , and it is easy to see that $G_3^{(3)}$ is s-p. Now the discussion so far is summarized as follows.

The proof of Lemma 10. Assume that either (1) or (2) of the lemma is false. Then we can define $X^{(3)} \subset V_1$ which is distinct from X and which satisfies the above statements (a) and (b), contradicting our choice of X. Q.E.D.

4. Concluding remark.

The problems P_{PSPNR} and P_{SPNR} discussed in this paper and in [15], respectively, are not included in the class of problems with properties that are hereditary on induced subgraphs, while a large number of node-deletion NP-complete problems with hereditary properties have been presented by M. S. Krishnamoorthy and N. Deo [11], and by M. Yannakakis [17, 18].

Acknowledgement.

The first author was supported by the Grant in Aid for Scientific Research of the Ministry of Education, Science and Culture of Japan under Grant: Encouraged Research (A) 475284.

References.

- [1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.
- [2] C. Berge, Graphs and Hypergraphs, North-Holland, London, G. B., 1973.
- [3] R. J. Duffin, Topology of series parallel networks, J. Math. and Appl., 10, 1965, 303-318.
- [4] J. Edmonds, Paths, trees and flowers, Canad. J. Math., 17, 1965, 449-467.
- [5] M. R. Garey, D. S. Johnson and L. J. Stockmeyer, Some simplified NP-complete graph problems, Theoret. Comput. Sci., 1, 1976, 237-267.
- [6] M. R. Garey and D. S. Johnson, The rectilinear steiner tree problem is NP-complete, SIAM J. Appl. Math., 32, 4, 1977, 826-834.
- [7] ______, Computers and Intractability: A Guide to the Theory of NP-completeness, H. Freeman and Sons., San Francisco, 1978.
- [8] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
- [9] R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, 85-104.
- [10] ————, On the computational complexity of combinatorial problems, Networks, 5, 1975, 45-68.
- [11] M. S. Krishnamoorthy and N. Deo, Node-deletion NP-complete

- problems, SIAM J. Comput., 8, 4, 1979, 619-625.
- [12] T. Nishizeki, K. Takamizawa and N. Saito, Algorithms for series-parallel graphs and D-charts, IECE of Japan Trans., J59-A, 3, 1976, 259-260 (in Japanese).
- [13] T. Watanabe, T. Ae and A. Nakamura, On the node cover problem of planar graphs, Proc. of 1979 IEEE Int. Symp. on Circuits and Systems, Tokyo, Japan, 1979, 78-81.
- [14] ______, On the contraction of nonplanar edges of a graph, Tech. Rep. No. C-1, Appl. Math. Dept., Faculty of Eng., Hiroshima Univ., Hiroshima, Japan, July 1979 (or Tech. Rep. IECE of Japan, AL79-34, July 1979 (in Japanese)).
- [15] ______, On forming a series-parallel graph by edge-contraction, edge-deletion or node-removal, Tech. Rep. No. C-4, Appl. Math. Dept., Faculty of Eng., Hiroshima Univ., Hiroshima, Japan, September 1979 (or Tech. Rep. IECE of Japan, AL79-42, September 1979 (in Japanese)).
- [16] ______, On forming a series-parallel graph by removing nodes of a planar graph, Tech. Rep. No. C-7, Appl. Math. Dept., Faculty of Eng., Hiroshima Univ., Hiroshima, Japan, February 1980 (or Tech. Rep. IECE of Japan, AL79-63, November 1979 (in Japanese)).
- [17] M. Yannakakis, Node- and edge-deletion NP-complete problems, Proc. 10th Ann. ACM Symp. on Theory of Computing, 1978, 253-264.
- [18] ______, The effect of a connectivity requirement on the complexity of maximum subgraph problems, J. Assoc. Comput.

 Mach., 26, 4, 1979, 618-630.