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On Forming a Series-parallel Graph by Removing Nodes of a Planar Graph
Toshimasa Watanabe, Tadashi 2Ae and Akira Nakamura

Faculty of Engineering, Hiroshima University, .

3~8~=2 }Seﬁdamachi, Hiroshima, 730 Japan

1. Intrbduction;

Let PSPﬁR denote the problem of determining, for a»graph
G=(V,E) énd a nonnégative integer k,‘whether or not a series-
parallel.graph can be formed by removing k or fewer nodes ova;

_ wheré V and E aré the,seﬁs of nodes and of edges of G, respectively.

The authors have already proved in [15] that P is NP—complete;

SPNR
In this paper, we show that PSPNR remains NP-complete even when

the domain is restricted to planar graphs. From now on, let PPSPNQ

denote Pgp .. with the constraint that G is planar.

Technical terms and nofations not épgcified in fhis paper can
be identified in [2],[7},[8]§aﬁd‘[9]. |

In stead of a‘thérough description of the formal requirementé
of a pfoof of'NP—completeness, we describe the two steps (i) and
(ii) required in proving that a particular problem Px is NP-complete.

(i) Prove that Pxé){?, the class of problems that can .

. be solved in polynomial time by a nondeterministic
Turing machine.

(ii) Prove that some known NP-complete problem P can be

Xl

polynomially transformed into P, ( Pys ol Py for short },

X
in such a way that any polynomial-time algorithm for

solving Px could be used to solve P in polynomial time.

Py

We will omit verification of (i) from our proofs since there
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exists an algorithm that determines in polynomial time whether
or xiot a given graph is series-parallel ( For example, see [3]
‘or [12] ). Thus our proofs will focus on the transformation

required by (ii) .

2. Preliminaries., _
Let G= (V,E) and XC V. Let ‘uvs denote
E(X)={ (u,v) €E: {u,vi N x% ¢}

for x={vi peees Vs } ( 2= ]x] ). We call
' 1l 1y o : :

G-X=(V-X, E~E(X))

eeey vy (or removing X )

the graph formed by removing nodes vy
: . : 1 X

of G. iaet us denot;ev
S(G)=Max{$G(v): vev}$,
where SG (v)'déhotes the node degree of v in G. Let
P (u'v)=WP (u,v) rEp (u,v)) . : K
denote a péth of 1eng£h }EP (u,v)l 2 2, a subgraph of the graph
G in consideration, connecting £wo nodes u and v of G. ?(u,v) is
said to be a disjoint path if and only if it satisfies the
condit.ion' that no node in VP (u,v)" { u‘,v} is ( and shall be ) .
contained in any other path except P(u,v) ( That is, any node of
P(u,bv) except u and v is of node degree 2 in any graph in consid-
eration ). | |
For two nodes u and v, let

L(u,v)=(V ) /B

L(u,v)) _
denote the graph which consists of (o +1) disjoint paths of

L(u,v

length 2 each of which connects u and v, where

VL(u,v)={.bi(u'v): i=0,...,0(? U_{u,v}

and
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EL(u,v)= i (ulbi (u'V) ) ’ (V,bi (u'V) ) i=0' cesy d).

L(u,v) is said to be a band of width ™ connecting u and v.

Remark 1.

Let L(u,v) be a band of width ¥ connecting u‘and v. Then
there exists at least one disjoini path even if o or fewer
nodes of L(u,v) except u and v are :emoved. If we assume %2 2,
then L(ﬁ,v)— fu} (L(u,v)-{v} ) contains at least thieerblocks
( maximal nonseparablé'components ) each of which cdnsists_bf-a 
' single edge having v ( u ) as a cutpoint. | |
A thinniné is an operation that deletes one of two multiplé
edges e and e,- A shrinking is an.operatioh that ébnﬁracts one -
of two edges (u,v) and (v,w) satisfying that v is of nbde degree 
2. A reduction is to repeat a thinning and/or a shrinking a
number of timeé. A graph G is said to be series-parallel ( s-p
‘for short ) if and only if there exists a reduction that leads
G to é single edge. A well-known characterization of s-p graphs
has been éiven by R. J. Duffin in [3]. |

Theorem 1 [3].

Let G be nonseparable. Then G is s-p if and only if G has
no subgraph from which.K4Acan be formed by contracting and/or
deleting a number of edges. |

If G has such a subgraph as mentioned in Theorem 1 then
we say that G has.a.subgraph reducible to K4 (G:)K4 for shor£ ).

We now turn our attention to the node cover problem. A node
cover for G=(V,E) is a subset S of V such that any edge“of G is |
incident upon some node of S. Given a graph G=(V,E)rand a non-

negative integer k, let P._,, called the node cover problem,

NC
denote the problem of determining whether or not G has a node cover

3
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s of size | Sl € kx ( We can assume that G'is a simple graph ).

It is well-known that PNC is NP-complete ( For example, see [9] ).

In this paper we state all lemmas without proofs which
are given in [161.
Lemma 1.

PC-QPNC' the node cover problem for simple‘planar‘connectéd

cubic graphs, is NP-complete.

3. Forming a series-parallel graph by removing nodes
‘of a planar graph. ’

Throughout this section let k be nonnegative integer and
G=(V,E) be a cubic planar connected graph, where

V=§v1,...,_ vn} ( n=\Vv| )‘and E={el,,... emk (n=]E}).
Represent G on a plane:and fix this representation. Let

FG=={fo, fl,..., ff—l } ( f0 is the 1nf1n1t§ face of G ) -
denote the set of all faces of G. We can assume that

n>4, m>6and r 2 4.

Beginning with the fixed representation of G we construct

= 2 | ] v

the planar graphs Gi (Vi,Ei) ( i=1,2 ) and Gy (Vl ,Ei ) by the
following procedures (1), (2), (3) and (4).

(1) Construct the geometric dual G*=(V*,E*) of G, and then
determine a spanning tree T*=(VT*'ET*) of G*. There exists one
to one correspondence between E and E*. We denote this correspon-
dence by e* € E* for e € E. Let

E.={e€Eie* ¢ B, } .
Then | Ep | =r-1. |

(2) Let Gy be the graph obtained by replacing each edge

e=(u,v) € E,, with a disjoint path P{u,v)=(V

T P(u,v)'EP(u,v)) of

length 4. P(u,v) is ‘called the T—path for e. Let us denote

4
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Vp (u,v)= 1Vo=0r Vir Vor V3 VgV }, ana

EP(u.V)={ (Virvip)s 1=0,...,3 $

( hereafter VP(u,v) and EP(u,v) are used in this sense ). Let

A"

P17 (u,vIeE; P, (u,v)’

.where VPa(u,v)=VP(u,v)- juvi}.

Then V1=V® Ay wheie @® denotes ;che disjoint union. Let FGl ‘den'otez_‘
the set of all faces of Gl' Then there exists one to one correspon-.
dence between PG?and Fél, and we denote this correspondence by ‘
£ e r, for £e . "
1
(3) Por each edgé e=(u,v) € E, execute the followingvprocé-
dures (i), (ii) and (iii). Let fi ahd fj é,FG be the two faces‘
( not necessarily distinct ) that e touches. If e is a bridge |
of G then e* is a loop of G*. Since e* Q'ET*, we have e § ET. That .
is, if e € ET then e is not a bridge of G. :
(i) The case when e é.E-ET.
(i-a) If e is not a bridge of G (.then fi¥fj ), place
two bands L(ui(e),vi(e)) and L(uj(e),vj(e)) of
width (k+r+2) in f{l) and f;l), respectively.
(i-b) If e is a bridge of G ( then fi=fj ), place two

bands L(’ui(e) ,vi(e)) and L(ui(e) ,vlj;(e)) of width

(k+r+2) in fil), where we assume that one of them
is located across e from the other.

(ii) The case when e € E_, ( then fi=fj ).

T

Let V be as before. Then place four bands

P(u,v)
Livice),vi . (e)) ( i=0,1,2,3 ) of width (k+r+2) in £(1)

t Vil TR R i o’
and similarly four bands L(v%(e),v%+l(e)) ( j=0,1,2,3 )

5
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of width (k+r+2) in f;l), where vo(e)= d(e) and v4(e)=
v¥(e) ‘for of =i,3. 7
(iii) For each u € V and each pair of edges e=(u,v) and g=
(u,w) (e, g €E and.v¥w ), both of which are incident
upon u, connect ui(e) and ui(g) in terms of a band of
width (k+r+2) if and only if both e and g touch a face

fj(_l) € Fg . If e (g) is a bri,dge'of G, then we assume

1 . A
that ul(e) is set to either u;(e) or ué(e) ( either u;(g)
or ué(g) ).

Let Gl' denote the resulting graph; Let V. denote the set

Cl
of nodes placed in £{}) € F_ in (i), (i1) and (iii) of (2), and
- 1 : . ‘ .
let Ci=(vC"Eci) denote the subgraph of Gl' induced by Vcif Ci can

- be changed into,a single circuit if we replace each band 6f Ci
with a disjoint path of length 2. Ci is said to be thé inner riﬁg
IR(f;) of £, ( or of £{1) ). |
(4) Construct a maximum matéhing MCE of G ( It is well-'
known that there exists a polynomial-time algorithm to 6btain a
maximum matching of a planar‘graph G ( see [4] ) ). And execute
the following procedures (i), (ii) and (iii)'withirespect to M.
(i) For eéch edge e=(u,v) € E,, let £, and fj ( fi¥fj ) be .
two faces of G that e touches, where we can assume that
one of them ié a finite face. Then, for eéch v, €

t

V. " ( t=1,2,3 ), connect two pairs of nodes

Pa(u,v)
. : s i

| {vt,v;j_(e)} and {vt,vg(e) } by edges (v _,vi(e)) and

(vﬁ,vg(e)), respectively. A path of length 2 defined by

each pair of these edges is called the c-path. Then we
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say that IR(f;) and IR(fj) are T-connected. e is said
to be the c-edge of these two inner rings, and then these
two inner rings are said to be the c-supporters of e.
(ii) For each edge e=(u,v) € M, choose arbitrarily a face
of G that e touches. Let, say, fi € FG denote this face.
Let g=(u,x) and h=(v,y) € E-M ( {x,y3N{u,v} =';5 )
denote the two edges touching fi' Then connect four
pairsvof nodes 3 u,ui(e)} ’ {'u,ui(g)} , 1 V:Vi(e)}
and §{ v,vi(h)} by edges (u,ul(e)), (w,ui(g)) (v,vite))
and (v,vi(h)), respectively. e is said to be the b-
edge of IR(fi), and IR(fi) to Se the supporter of e.
(iii) For each v € V-M(V) ( M(V)= {u,v € v: (u,v) € Dﬁ} ),.
choose-arbitrarily an édge of E incident upon v and
choose again arbitrarily a face of G that e touches.
Let, say, £, € F denote this face. Let g=(v,x) and
h=(v,y) € E ( x%v ) denote the two edges touching fi[
both of which are incident upon v. Then connect two
pairs of nodes { v,vi(g) } and -{v,vi(h)} by edges'
(v,vi(g)) and (v,vi(h)), respectivelf. v is said to be
the b-node of IR(fi), and IR(fi) be the supporter of v.
Let G2 denote the graph constructed by applying the pro-
cedure (4) to Gl'. Since it is well-known that G*, T* and M can
be obtained in polynomial time, G, can be constructed in poly-
nomial time when G is given as input. Note that G, is a rion-
separable planar graph. Figure 1 shows an example of the graph
transformation from G to G2'
Let v be the node mentioned in (iii) of (4). Each v €V is
connected to exactly one inner ring Ci in terms of a pair of

edges (v,v') and (v,v") ( v',v" € V., :) both of which are intro-.

C.
i
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duced in either (ii) or (iii) of (4). Hence SG (v)=5. Let A(v)
2 ;

denote the subgraph of G2 called the triangle of Ci (or of v),

where it is defined by nodes v, v' and v", edges (v,v') and (v,v"),

and E v mye+ A pair of edges (v,v') and (v,v") are called the
L(v',v") )

A —-edges of v. We say that v is connected to c; in terms of A (v) .-

Figure 1. An example of the
graph transformation from

G to G, ( In the figure

Coommmeng ANA e

¥

respectively, denote an

element of M and an inner

ring, and both o——= and

o——~~-e edges ).

Lemma 2.

G has a node cover of size less than'or equal to k if andl
only if thei:e exists a subset X C.V2 with |} Xi' < k+r-1l such
that G,=X is an s-p graph. |
Proof. Let N € V be a node cover for G with | Nl £ k. Define
Xe C Vl for each e= (u_,v) € E as follows:
¢ when e éEET,
X = fw} when e € E_, and | fu,v} N n|=1,

T

{v,} when e € E, and {ﬁ,'v} C wN,

where if §u,v¥(\ N=3u} ( {v} ), then w=vy ( w=v, ) for
VP(U,V)= {V0=u, Vl, v.2' V3, V4=V } . Let

- U = U
Xl~ eéExe (= e €E, xe)

and
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X=NUJ Xl.
Note that N f\Xlé=f . Then we have |X] £ 'k+r-1, since \ETI = r-1,

It is easy to see that Gz-x is an s-p graph ( see Figure 2 ).

Figure 2. G,~X for 62 of Figuré 1

( The node cover N that determines

i fS\\\\\’/ 0 : X consists_of those nodes marked x
4 L\\ ‘ /J. } in Figureri ).
\ TS
v\ :
\\\s P

Conversely, assume that an s-p graph can be formed by
removing (k+r-1l) or fewer nodes of G, Let X:C'.V2 be a minimal
set satisfying that G24X is s-p and which maXimizes, among all
such sets, the number of nodes contained in V. By the-constrﬁctioh
of G2 { in which any band of each inner ring is of width (k+r+2) ),
by Remark 1 and by the minimality of X, we can assume that
- X C Vy-
Let

N=X MV
and letrP(u,v) be ﬁhe T-path for arbitfary edge e=(u,v) & E Then
I XN {vl, Vor V3";l 21

for VPa(u,v)= {vl,vvzf vsl} C Vf(u,v)’ since otherwise Gz—x D) 347

e

Therefore, since we have |E

[Nl < k.

T’ =r-1,

Let G3=(V3,E3) denote G2—X for simplicity.
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Lemma 10.
G3 ‘satisfies the following (1) and (2).
1) 8§, (n=2for YvevNiv,.

G3

(2) C; and Cj are connected only in terms of exactly two
c-paths ( including the case when there exists an edge conneci_:ing
these two c-paths ) for any pair of distinct inner rings Ci and
c. that are T-connected in Gz.
J , _ .

By Lemma '10 , we can prove that N is a node cover for G.

Q.E.D.
Lemma 2° and the fac_t‘ that G, can be constructed.in time |
polynomial in the size of input establisﬁ ii‘:he rﬁain‘ theorem.
Theofem 2. | |

PP SPNR 1S NP-complete.

We will prove Lemma 10 by way of Lemma 3 through Lemma 9

in the rest of this section. .

(v) 2 2 for vv 6V3
3

there exist A (v) and the inner ring to which v is connected

We have S c

. And if v‘é v V3 then
in terms of 4 (v).

By the conStru;tion of G,, any two distinct inner rings
Ci and Cj have no node in common. Thus G3 has a path of length
‘not less than 2 ébnnectimj C; and Cj since X CQV:'L and ~f,ince Gy is
connected. Two blocks B and B' having a cutpoint u in common are
said to be adjacent to each other at u.

Lemma 3.

Any block B of G3 has at most two other blocks each of which
is adjacent to B...

10
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Let
denote the graph shown in Figure 3, where
VK‘S = iu, Vi Wy Wy } r and

By " Pw), vowe i=1,2% U fwyw,) 3.

~ Figure 3. Kg .

Observe that é .gx_:aph H is not s-p if KP is a subgraph of H having
both u and v as cutpoints of H ( any reduction can not be appli-ed
td KF sincé all of u, vV, oWy and w, are of node degree23 ). Let
?p =(V§; ,Egp ) |

denote the g;aph obtained by replacing each edge (w,w') & EKP
with a disjoint path of length not less than 1 ( that is, ’Eﬁ is
a graph homeomorphic to K'ﬁ ). We say that a graph H has a pair
of XK 8 -cutpoints if and only if H has a subgrgph isomorphic to

?(Jﬁ having both u and v as cutpoints of H.

Lemma 4.

Gj

Lemma 5.

has no block which contains a pair of Kp-—cutpoints.

Assume that G, has a triangle Af{u) (uée& V). If SG3 (u)

Z 3 then u is a cutpoint of G.

11
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Lemma 6.

Assume that G3 has a triangle A(u) (u &€V ). Let Ci be

the inner ring to which u is connect’ed in terms of A (u), SG (u)
3

Z 3 and B(Ci) be the block of G3 containing Ci‘ The; B(Ci) has

no other cutpoint of G3 except u.

.Let GA =(Vh 28 ) | VA =Ry ) denote the subgraph ofaG1
1 1 1 1 : ,
induced by Al, and 1et-Ei=El~EAl. Then let

IR(GZ)z(VIR(Gz)'EIR(GZ))’

called the jinner ring tree, denote the subgraph of G, formed by

deleting El from G2, where EIR(GZ)

=E2;§1; Let C and C' be a pair
of inner rings that are T-connected in G,. We say that C and C°*
are 7C -connected, C7C' for short, if and only if they are
connected only in terms of exactly two c-paths ( including the
case when there exists an edge connecting these two c-paths ). -

For any two distinct inner rings C and C' of a block, a seguence

of distinct inner rings C, =C, C, ,..., C. =C' { £t 21 ) of this
: 1o 1 ¢

block is called the 7T —connected sequence of C and C' if and

only if C, TC Ci for j=0,..., t~1l.
13 j+1

Let D denote the set of all cutpoints of G Then, by the

3

construction of G, and by the definition of X, we have
D C Vl=\7® Ay

Let us denote

p=D_ @ D. ,
v 1

where D=D N V and D, =D M A,. Then, by Lemmas 3, 5 and 6,
1
o | <
|DV| < 2.

12
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Let ,
(1)_ (1) _» _«(1) = -
x'*'=x U b, and G3 '=G,-X ( =G3-Dy ).

(1)
3

Note that G is not always connected. Let By, BZ"" denote the

blocks of Ggl), and let
-£(1)=£Bl': By, ee- } .
Hereafter, let us denote
6=, 5D for i=1,2 ana 3.
Lemma 7. } _
Gél) satisfies the following (1), (2) and (3).
(1) Scél) (v)=2 for Yvevn vél)."

(2) Dy el p(l) C Ay, where D(l) is the set of all cutpoints
1

(1)
3.

(3) SGB(:U (w) 22 for Va evgl).

of G

Lemma 8 .

For any pair of distinct inner rings C and C' of any.block
Bi_é 58(1), there exists the /U -connected sequence of C and C°'.

Let |

pM=fa, ..., ag $ (6 =101},
(1)

where the order of elements of D , denoted by the subscrigt, can
arbitrarily fixed. Let P(u,v) denote the T-path containing ale'D(l),

Then, clearly,
21€V2_(u,v)" 1¥1rvarv3 Y € Yoy, {“=V0'V1'V2'V3"’,,="4} .

We define Xa C Vl for the following two cases. Note that, for

1

each aiéiSUJ, there exists exactly one T-path containing a; and
that if ai%aj ( ass aj & D(l) ) then they are contained in distinct
T-paths.

13
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(i) The case when a,=vy ( respectively when a,=vy ).

By the definition of G3(1) ’
' (1) ' ' (1 v
{ vO'VZ'VB} Cx (. {vl,vz,v4§ c x1) ).
Then let
oy = (1)
x, =x'"*-{v,}.
1
"~ (ii) The case when a;=v,.
By the definition of Gél) ’
: (1)
{vl,v3 } Ccx .
Note that if vo&x) (s v4§x‘1) ) then SG3(1) (vg)=2
( 5G3(1) (vy)=2 ) ( that is, v, (v, ) is connected to

some inner ring only in terms of A (vo) (4 (vy) ).

Then let
X(l)-—{vl} when voé XO‘) and v4§ X(l),
1 (1 (1) .
A x (1) {vy} when voé x) ana v, €X',
Xa,” (1) ) AxMo g
1 x*-3vy ) U {vo} when {vo,v4} x'U'=9 ,
(1) (1)
X't - {vl} v-vhenA {vo,v4} C x" .
Set ' ‘
X =x 1)
0
and, for each j=2,..., 6 , define recursively
xa. C Vl'
3 .
similarily to the definition of X v by replacing X, and X,
- 1 j-2 j~1
with Xé and Xa , respectively. Clearly, for each j=1,..., 6,
j-1 J

we have either

X > |Ix

2, > x|
or '

b %,

Nvl<lIx Nnvl wien {x, | ={x, {.
J-1 3 ,

14
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Set
x (2 =x and 6{¥=c_-x‘?
a 2

3
Then by the definition of x(?)

and by Lemma 8 we have the next
lemma.
Lemma 9. .
Géz) satisfies the following (1), (2) and (3).
(1) Aﬁy maximal connected component of ng) is a block of G(z)
(2) For any pair of distinct inner rings C and C' of any
block of Géz) , there exists the TU -~connected seguence
of C and C'.

(3) § o(2) (=2 for Vi e an3(2)_,.
3

Lemma 9 shows that G§2) is a subgraph of the inner ring tree
IR(GZ) . |

For w € DV’ let B(w) denote the block of G3 containing 4 (w),
" B be a block distinct from B(w) and adjacent to B(w) having w as

~a cutpoint. Let (w,w(:L

1)) ana (w,w(lz)) be the two A -edges. Then
we can show that any edge incident upon w and distinct from

these two A -edges is contained in B. Therefore, Gél) consists

of | DV‘ maximal connected components g (1) (w)=B(w)- 4w} for wé€&

D and another one C, which is determined by contracting B(w) to

\ z
(2)

w for VWGDV in G3. Hence, by Lemma 9 r G consists of ( ‘DV‘

+1) blocks ( or equivalently the same number of maximal connected

(1)

components ). That is, each B(l) (w) of G3 is itself a block

B(z) (w) of Géz) by Lemmas 6, 7 and 8, and CZ of Gél) is changed

(2) of Géz) in the process constructing G(Z)

into another block B
Now let us assume that | Dvl' 21 ( In the case when DV= ﬁf,
we omit the procedure to construct X(3) described in the following,

and set X(3)=X(2) and G:§3)=G§2) ). Let

B8P wen,} U {8 =45, ..o 13-

\Y

15
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Let Bi € 3(2) be arbitrarily chosen. By the definition of T*

or qf IR(GZ) , there exist some Bj & 3(2)- {Bi} , some inner ring
c; of By and some inner ring Cj of Bj such th;t c, and ¢, are
r-connected in Gj- Then we say 1:,han‘.:’Bj is' a T-connected block qf
B; and vicé versa. Let e=(u,v) € E;, be the c-edge of C; and Cj'
b'and P(u,v) be the corresponding T-path for e. Then

VPa(u,v)=§vl'?2’v3} - X(Z)’

where we set u=v, and v=v,. Note that the following discxissicn
does not depend on whether'cr not Dy N { u,v} is .empty. Défine -
xij C Vl as follows: ) |

x (2. {vl,v2§ yU{ul when{u,v3SN X(2)=7(,
x(2)_ {vl,vz} when '{u,v} N x(2)=-{u} .

i3 x(z)- {vz,v3 g when {u,vk ﬂ‘ X(2)= {v} , and

X(z)-‘{vl,vzk when {u,vy C x{2),

In the case when | D] =1 define X;4 for we€Dy by setting Bi=B 2) ().

vl

In the case when lDVl =2, first define Xij for wéDV by setting
2 2 ' ' 2

Bi=B( )(w). Set Bs=B( )(w ) for w! EDV— {wk and let By € ,93( )

be a T-connected block of Bs' Then define Xst’ similarly to the

definition of Xij' by replacing’xij and X(z) with Xst and xij,
respectively. Now we set | |
Xij when ]DV} =1, and
N
X . When !DV] =2,
and clarify the relation between X and X(B) . First,
g 2y ;
151 £ 1% | -1 ana | xe] £ ;xij] -1,

so that
(3) 2
lx ’ é ‘X( )] - IDVI ’

where | DV] £ 2. secondly,

16
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Iz |=1x) - o

v| and \ X(l)l > | x2]

so that

[x1z 1xB3) .
We have .
| 1x1=1x3

only if we have the following (i) and (ii):

(1) ‘X(l)' =lx(2)l .

(ii) {u,vf }ﬂ X(2)= ?S anci {u,v‘]’ N Xij=}{,, respectively,
for the c-edges e=(u,v) in the definition of xij_and
of Xst.
If
|xD] =12
then
[xPAv] < 1x2A v |
as mentioned earlier. And (ii) implies that ﬁe have
| 255NV = 152" v]+1 and |x_ Nv]={x,N v+,
so that

3 2
[x3)N v =1xPn v]+{in,|.
(1)

- By the definition of X

| x N vl=]xnvl+|nvl .

, we have

Therefore, if

\ x| = \X(B)I
then

lxnvl< 1x®A v,
Let _

G3(3)=G2—X(3). |
Then, clearly, we have the following statements (a) and (b).

(a) G§3)'is a nonseparable subgraph of the inner ring tree

IR(GZ) and satisfies the following (i) and (ii):
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(i) SG§3)(v)=2 for YveviPv.

(ii) For any pair of distinct inner rings C and C' of
GZ’ there exists the TU —-connected sequence of C

and C' in G§3).

m | x| = lX(3)l . where if\x\=\x(3)l then |xNvVv]<
[ x3A v,

G§3) -X constructed in the

is essentially the same form as the Gz

first half of the proof of Lemma 2, and it is easy to see that

G§3) is s-p. Now the discussion so far is summarized as follows.
The proof of Lemma 10. Assume that either (1) or (2)‘of

the lemma is false. Then we can define X(3)C: v, which is distinct

-from X and which satisfies the above statements (a) and (b),

contradicting our choice of X. 0.E.D.

4. Concluding remark.

The problems PPSPNR and PSPNR»discussed in this paper and
in [15], respectively, are not included in the class of problems
with properties that are hereditary on induced subgraphs, while
a large number of node-deletion NP-complete problems with
hereditéry properties have been presented by M. S. Krishnamoorthy.

and N. Deo [11l], and by M. Yannakakis [17, 18].
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