goooboooogn
0 3810 19800 42-51

42

A FAST ALGORITHM FOR COMPUTING THE MAXIMUM NUMBER OF PRIME

IMPLICANTS OF SYMMETRIC BOOLEAN FUNCTIONS

Yoshihide Igarashi,
Department of Computer Science,

Gunma. University, Kiryu, 376 Japan

1. Introduction

Prime implicants play an important role in the‘simplification problem
of Boolean formulae or the minimization problem of switching circuits. IP
order to implement an algorithm for the minimization of Boolean formulae
on a computer, it is necessary or desirable to'evaluate the maximum number
of prime implicants for a given number of variables. This value is typi-‘
cally used to estimate the size of arrays to store some intermediate results
when implementing such an algorithm[7]. We therefore need a fast algorithm
for computing the maximum number of prime implicants from such a practical
viewpoint.)

Dunham and Fridshal [3] have given n!/(|n/3}! [(n+1)/3]! {n+2)/3]!) as
a lower bound, and Chandra and Markowsky [2] have given (l§2nil)/3j,)

2 U2n+l)/3j as an upper bound on the maximum number of prime implicants of
n-variable Boolean function. This lower bound is the number of prime
implicants of a formula that is the disjunction of all the cubes consisting
of |(n+2)/3] nonnegated variables and |(n+1)/3] negated vafiables. The
upper bound of Chandra and Markowsgy has been derived as a corollary of a
result on the maximal sized antichains in partial orders given by Kleitman .
et al [8]. Igarashi has obtained a marginal improvement on the previous

lower bound [5,6]. It is given as a recursive procedure, n!/(|n/3}!

L(n+1)/3) 1 [(n+2)/3]1) + Bln, L(n41)/3]-2) + B(n, |(n#2)/3] -2), where B(n,r)

-1 -

43

is defined as follows: g(n,r) =0 for r < O and g(n,r) = n!/(Lf/Qj!
(n-r)! [(r+1)/2] 1) + E(n, [(x+1)/2]-2) for O < r.

It is conjectured that for each n > 1 the maximum number of prime
implicants of n-variable Boolean function might bekequal to the maximum
number of prime implicants of n-variable symmetric Boolean functions [5,6].
It is also conjectured that for each n > 1 the new lower bound might be
optimal. We have not found any Boolean function which has ﬁore the number
of prime implicants than the new lower bound [5,6].

Under these circumstances it is interesting to find a fast algorithm
for computing the maximum number of prime implicants of symmetric Boolean
functions. It seems that no published literature explicitly describes a
polynomial time algorithm for computing the maximum number bf prime impli-
cants of symmetric Boolean functions. We introduce integer representation
in n+l bits to uniquely express each n-variable symmetric Boolean function.
It is closely related to the set of prime implicants of the symmetric
Boolean function. From this way of representation we devise a fast algo-
rithm for computing the maximum number of prime implicants of symmetfic
Boolean functions in which a dynamic programming technique is used. The
total logarithmic computing time cost and the total uniform computing time
)

cost of the algorithm are O(nh) and 0(n”), respectively.

2. Preliminary

In the main we employ definitions and notations used in standard texts
on switehing theory such as [4,9]. When discussing an n-variable Boolean
formula or Boolean function in this paper, we assume that the set of its

variables is {xl, ... ,xn}. For notational convenience the i-th vari-

ables X, (L <i<n) is occasionally denoted by xil. The complement of

Xi is denoted by E; or xio, and is occasionally called the negation of X, .

-2 -

44

v and A denote disjunction and conjunction, respectively. Conventio-
nally A may be omitted if there is no confusion. For example, (Xl/\zé)
\V} x3 may be written xl—zzzv x3. For convenience we often identify a Boolean

formula with the Boolean function expressed as the formula.

e e
x; = RN PY is called an r-cube or r-implicant over n variables,
1 n-r
where is # it if s # t, and for each j (1 < J <n-r) 1 < ij < n and
ej ;i if ej =0
Xij = J
Xij if ej = 1.

[a] is the floor of 4 (i.e., the greatest integer k such that k < d),

and [d1 is the ceiling of 4 (i.e., the least integer k such that k

Hv
oy

A function S(n) is said to be O0(T(n)) if there exists a constant ¢ such
that S(n) € ¢T(n) for all but some finite (possibiy empty) set of nonnega-
tive integers for n.

The universal upper bound and universal lower bound of the Boolean
algebra are denoted by I and @, respectively. These are Boolean constants.
Relations < and < on n-variable Boolean formuiae are defined as follows:
P < I. For a pair of a and b in {¢, I}, a ¢ b means a < b or a = b. For
a pair of n-variable Boolean formulae P and Q, P < Q means that for all
(ay, - -« 58)€{d, I} Plaj, . . .,a) €Ql

8, ,an), where S(al,

,an) is the evaluation of Boolean formula S when for each i (1 <1

1’

< n) Xi is set to be a.i. P < Q means that P ¢ Q and for at least one

(ay, - - - ,a) €1d, " Plag, - - - »a)<ala, . .. ,a).

A cube P is said to be a prime implicant of an n-variable Boolean
function E if and only if P <€ E and there does not exists a cube Q such
that P < Q < E. NPI(E) denotes the number of prime implicants of E. g(n)
is defined as max {NPI(E) | E is an n-variable Boolean function }. en is
a function from n-variable Boolean formulae to sets of n-tuples of 0’s

i i

. . 1 n .
2 1 0 = . . 4 .
and 1’s defined as n(E) {(11, P) l xl x & E} Wn is

45

Hamming weight function. That is, for each (a;, . . . ,a_) € {0, 11

19

kwﬁ<al’ ... ,an) is the number of 1’s of (al,

A €{o, 13" Wn(A) = {wn(a

.. ,an), and for each
1 . ,an) | (a . . .,,an)GA}._

'An n-variable Boolean formula E is said to be (n,m,r)-regular if and
only if E is the disjunction of all (n-m)-cubes consisting of r nonnegated
variables and m-r negated variables. When n is understéod, an (n,m,r)-
regular formula is said to be (m,r)-regular for short. . If E is {(m,r)-
regular for some (m,r), then E is said to be regular. IT E is a disjunc-
tion of regular formulae, then E is said to be semi-regular. A Boolean
function is said to be symmetric if and only if it can be expressed as a
semi-regular fqrmula. In general; a semi-regular formula for a symmetric
Boolean function is not unique. T(n) is defined as max{NPI(E) | E is an
n-variable symmetric Boolean anction}. It is an open problem whether
g(n) is equal to I'(n) for all n. It is conjectured that g(n)‘might'be
equal to T(n) for all n {5,61. -

In order to estimate the efficiency of‘algorithms we shall consider
two cost criteria of computing time of a random access machine. One'is
fhe logarithmic cost criterion,and the other is the uniform cost criterion.

The definitions of these criteria can be found in [1].

3. A Canonical Representation of a Symmetric Boolean Function

A binary representation of a symmetric Boolean function is introduced.
The representation is closely re;ated to the set of prime implicants of
the Boolean function that is expressed as it.

Suppose that E is an ﬁ—variable symmetric Boolean function. If for
a. a

n 1 n
an (al, e ,an) €{0, 1} coe e X ‘§’E, then for any (cl, e e,
c
c)€ n = 1
n) {0, 1} such that Wn(al, v oe . ,an) Wn(cl, ... ,an) L.
c ,
Xnn < E. Therefore, there is a one-one correspondence Cn between the

T

46

set of binary sequences of length n+l and the set of n-variable symmetric

Boolean functions as follows: Let bo . .. bn be a binary sequence of

length n+l. Then Cn(bo e . bn) is an n-variable symmetric Boolean
a. a X

function E such that x.1 . . . xn $¢E if and only if b =1,
1 n wh(al, . ,an)

A block, denoted by b(i,j), of a binary sequence is defined as follows:

b(i,j) is a block of a binary sequence b . bn if and only if for each

0 °

k(i <kgJ)b=1,b, ,=0 when i # 0, and by, O when # n. BLOCK(

kK i-1 +1
by .- bn) is defined as {b(i,Jj) | b(i,j) is a block of by« .o bn}.
gb(n) is a one-one correspondence between the set of blocks of binary
sequences of length n+l and the set of regular fomulae over n variables

defined as & (b(i,3)) = (n,n-j+i,i)-regular formula. gB(n) is a one-

b(n)
one mapping from the set of binary sequences of length n+l to the set of

semi-regular formulae over n variables defined as §)(bO e bn) =

B{n

(n,n-j+i,i)-regular formula. From the defini-~
b(i,j)e.BLOCK(bO ... bn)

tions of Eb(n) and EB(n) for each symmetric Boolean function E over n
variables gB(n)(En_l(E)) is uniquely defined. This representation is
called the canonical semi-regular formula of E.

Theorem 1. Let E be the canonical semi-regular formula of an n-vari-
able symmetric Boolean function. Then P is a prime implicant of E if
and only if P appears in E as its cube.

Proof. Let P be a cube that appears in E. If P=1I, then E=1T
and the theorem holds obviously. We suppose P # I. Let P be a conjunc-
tion of t nonnegated variables and s negated variables. Then b(%t,n-s)
is in BLOCK(Cn_l(E)).

Case 1: t =0or s = 0.

We first assume t = O, Since we suppose P # I, s # O. Suppose
that P is not a prime implicant of E. Then there exists an (n-s+l)-cube
Q such that P<€ Q< E. Since t = 0, Q is a conjunction of s-1 negated

variables. Therefore, there exists an (al, e ,an)e {0, 1} such that

-5 ~

47

a,
xal .. .x"<¢Eandw(a,...,a)=n-s+tl. Then the (n-s+l)-th
1 n n n
-1

component of Z, (E) should be 1. This is contrary to the fact that
b(t,n-s) is in BLOCK(;n'l(E)).

The proof in the case where s = 0 i1s analogous to the above proof.

Case 2: t # 0 and s # 0.

Suppose that P is not a prime implicant of E. Then there exists

an (n-t-s+l)-cube Q such that P < Q < E. Q is a conjunction of t non-

negated variables and s-1 negated variables, or a conjunction of t-1 non-

negated variables and s negated variables. Therefore; there exists an
n al an
(Bys o o ,an)e {0, 1} such that X" .. .x <&Eand wn(a.l, .,an)

= t-1 or n-s+l. This is contréry to the fact that b(t,n-s) is in BLOCK(

cn'l(E)). O

From the above theorem the canonical semi-regular formula E is the
disjunction of all the prime ‘implicants of E. The corresponding binary
sequence (i.e., cn-l(E)) is a compact representation of the symmetric
Boolean function.

The next lemma is immediate from the definition of a regular formula
and Theorem 1.

Lemma 1. Let E be an (n,m,r)-regular formula. Then NPI(E)=(:1>(I§> .

Theorem 2. Let E be an n-variable symmetric Boolean function. Then

NPI(E) = 1 (?1) <n’§+l>).
b(i,3) € BLOCK(z " (E)) Y
Proof. &b(n)(b(i,j)) is an (n,n-j+i,i)-regular formula. From
.. n n-J+i '
Lemma 1 NPI('c;b(n)(b(l,J))) = (j—i) (i) Therefore, from Theorem 1
NPI(E) = g (1) (n J+1) i O
b(i,j) €BLOCK(z J-
Theorem 3. T(n) = max{ (i) (n J+l) |
b(i, ,J)(BLOCK(k J-
0<kcs P 0Y = maxd E (j_i)<n iﬂ |
) b(i,j)e€ BLOCK(k(n+l))
0 <k <2 -1}, where k(n+l) is the binary expansion of k in n+l bits.

-6 -

48

Proof. The first equality is from Theorem 1 and Theorem 2,and the

(c)

second equality is from the following fact: Let E be the conjugate

glc)

of E (i.e., is obtained from E by replacing x; by §£ and Eg by x, for

all i (1 <i<n)). Then NPI(E) = wer(e(c)),]

4, A Fast Algorithm for Computing T (n)

A polynomial time algorithm for computing I'(n) is devised. = The
algdrithm is based on Theorem 2, and a tabular method called dynamic pro-
gramming is used in it. We define rn(i,j) as max{NPI(E) | E is a semi-

regular formula over n variables such that wn(en(E)) C{i, i+1, . . .,3}}.

For technical convenience we define rn(i,j) = 0 when i is greater than j.

n

k) , and I'(n) = rn(O,n).

Then for each k (0 <k <n) rn(k,k) = (

Lemma 2. For each O < i <

A

n r (i,j) =’rn(n—j,n—i).

Proof. Let E be an n-variable Boolean formula, and let wn(en(E))gi

{i, i+1, . . . ,j}. Then Wh(en(E(C))) ¢ {n-j, . . . ,n-i}. - Since NPI(E)

= NPI(E(C)), the lemma therefore holds. N
Theorem 4. For each 0 < i < J<n r (i,3j) = max{ (.n.> (n—q+1) ,
—_— =" =°9= n j-i i

max{r (i,k-1) + r (k#1,3) | i £k g 3}}.

Proof. Let E be a semi-regular formula over n variables, and let

;n'l(E) =by ... b. w(0(E) C{i, itl, . . . ,j} if and only if E

satisfies one of the following two conditions:

(i) For each t such that t < iort >3 b 0, and for each k (i <

t

(ii) For each t such that t < i or t > }J b, = 0, and there exists k

such that 1 < k < j and bk = 0.
i
If E satisfies (i) above, from Lemma 1 NPI(E) = (j?i)(lj i *) .

If E satisfies (ii) above and k is such an integer, then from Theorem 2

NPI(E) = rn(i,k—l) + rn(k+l,j). Thus the theorem holds. O

- T -

49

From the above theorem a dynamic programming technique can be used
to compute T'(n).

Algorithm 1. A fast algorithm for computing T'(n).

procedure FAST(n);

comment In the following statements for each (i,j) such that
n < i+j rn(i,j) should be read rn(n—j,n—i) (Notice that
| rn(i,j) = rn(n—j,n—i) by Lemma 2); |
begin for £:=0 until n do |
for 1:=0 wntil |(n-t)/2] do
begin J:=i+t;
rn(i,i-l):= rn(j+1;j):= 03
r (1,3):= max{ (J?i) (n—g+i), max{r (i,k-1) +
rn(k+l,j) | icxz< ith;
end
FAST:= rn(O,n)
end ,

Theorem 5. The total logarithmic computing time cost and the total
uniform compubting time cost of Algorithm 1 by a random access machine are
O(nh) and O(ns), respectively.

Proof. Let F(n,r) = ﬁ(n—l) .« . (n-r+1), and let T(n,r) be the
logarithmic computing time cost of F(n,r). We suppose that the following
procedure is used to evaluate F(n,r):

procedure F(n,r);

begin if r = 1 then F:= n else F:= F(n,Lr/BJ) F(n—[;/QJ,L(r+l)/2J)
end
Then T(n,r) < log2 n ifr =1 and
T(n,r) < r log2 n + T(n, |r/2]) + T(n-|r/2], Kr+l)/2j) if r > 2.

Solving this recurrence we have T(n,r) = O(r log, r log, n). Therefore

50

, o
the logarithmic computing time cost of (j?i) (n g 1) is O(n (:log2 n)2).

Since an upper bound on g(n) is O(3n/n1/2

1/2

) [2], for each O <igdsn
. n . .

rn(l,j) < 0(37/n7"7). When the values of each rn(l,k—l) and each rn(k+l,

Jj) L gkg j) are available in a table, the logarithmic computing time

cost of max{ rn(i,k—l) + rn(k+l,j) | i<x < 3} is 0((3-1) log2(3n/nl/2)).

Hence the logarithmic computing time cost at the inside of the innermost

loopbof the algorithm is O(n2

). Thus the total logarithmic computing
time cost of the algorithm is O(nh).

The uniform computing time cost at the inside of the innermost loop
is 0(n). Therefore the total uniform computing time cost of the algorithm
is 0(n). : n

A Fortran version of Algorithm 1 was tested on FACOM 230/38 System at
Gunma University. The CPU times for 10 variables and for 20 variables
were 0.10 seconds and 0.5T7 seconds, respectively. | Algorithm 1 does not
enumerate symmetric Boolean functions nor their prime implicants. This
is the reason why the algorithm is very efficient.

For each j (0 < j < n) all rn(i,i+j) (0c1icg n-j) can be evaluated

in parallel when for each O < b < j-1 and each 0

A

a £ n-b the value
rn(a,b) is available. We therefore have the next theorem.

Theorem 6. The total logarithmic computing time cost and the total
uniform computing time cost of Algorithm 1 by a parallel computer with

0(n) processors are O(ns) and O(ng), respectively.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of
Computef Algorithms (Addison-Wesley, Reading, MA; 197h).

[2] A.K. Chandra and G. Markowsky, On the number of prime implicants,

Discrete Math. 24 (1978) pp. 7-11.

o) |

{3] B. Dunham and R. Fridshal, The problem of simplifying logic expressions,
J. Symbolic Logic 24 (1959) pp.17-19.

[4] M.A. Harrison, Introduction to Switching and Automata Theory (McGraw-
Hill, New York, 1965).

[5] Y. Igarashi, Analysis of Dunham and Fridshal’s formulas consisting of
large numbers of prime implicants, Tech. Report No. 98, Centre for
Computer Studies, University of Leeds, 1977.

[6] Y. Igarashi, An improved lower bound on the maximum number of prime
implicants, Trans. IECE of Japan, E62 (1979) pp.389-39k.

[7] Y. Igarashi, The size of arrays for a prime implicant generating
algorithm, to appear in The Computer Journal, 23 (1980).

[8] D.J. Kleitman, M. Edelberg and D. Lubell, Maximum sized antichains
in partial orders, Discrete Math. 1 (1971) pp.4T7-53.

[9] R.E. Miller, Switching Theory: Vol. 1 (John Wiley, New York, 1965).

- 10 -

