goooboooogn

0 3810 19800 100-115

100

A Derivation of Cook's Simulation_Algorithm

by Program Transformation

Osamu Watanabe

Department of Information Science
Tokyo Institute of Technology

Abstract We derive Cook's 0(n) tiﬁe simulation algorithm

for 2DPDA frbm obvious but inefficient one by program
transformation. The basic idea of transformation strategy is
that of Bird's and.uses»two transformation techniques, that is,
(1) stack elimination by recursion introduction (a genelarization

of Bird's one) and (2) recursion elimination by tabulation.

1. Introduction

Recently several authors have proposed methods for
transforming algorithmsimechanically to improve their efficiency
(L2131, 51, ...). As one of these methods, Bird proposed a
recursion introduction technique and demonstrated its usefulness
by deriving Knuth-Morris-Pratt's algorithm (an algorithm for
searching an occurence of a given word in a given text) from an
obvious and inefficient algorithm ([3]). ' His method consists of
the following steps.
(Step 1) Construct an obvious algorithm that uses a stack.
(Step 2) Transform it into an algorithm that has recursive calls
but does not use a stack (stack elimination).

(Step 3) Using the tabulation method, eliminate recursive calls

101

from the algorithm.

It is well-known that Knuth-Morris-Pratt's algorithm is a
special case of Cook's algorithm for simulating 2-way
deterministic pushdown automata (2DPDA, for short) in O(n) time
([1]1). In the present paper we show that Bird's method works
also for Cook's algorithm. Thus we can derive Cook's algorithm
by mechanical transformations starting with an obvious and

inefficient algorithm.

2. Recursion Introduction

The algorithm with which we start has more complicated use
of stack than the one with which Bird started. Hence Bird's
technique for stack elimination does not work directly for our
case. We use the stack elimination method proposed by BroWn,
Gries and Szymanski ([4]).

The basic idea of their method is to use a recursive
function f which is almost the same as the whole program, has a
call by value parameter and in which all variables other than
the parameter are global. Instead of executing 'push u to stack
S' or 'pop v from stack S', we just call f(u) or perform
'v := p and return'. The only problem is the next statement to
be executed after the call or the return. But using an another
parameter x (in the case of call), and using the value returned
by f (in the case of return), we can specify the next statement
to be executed.

The algorithm with which we start has the following form.

102

Here A, B and C do not contain any stack instruction (i.e., we
consider a stack algorithm that has only one push and one pop),
and stack S is initially empty.

The method of Brown, Gries and Szymanski transforms this

form into the following form.

<g-2>
begin function f(p);

begin goto Ll;

A
if £(u) = 0 then goto L,
' else goto L,;
le B;
v := p; return 1;
L2: Cs
L3: return 0;
end;
A;
if f(u) = 0 then goto L3
else goto L,;
: Ll B;
L2: C;
L3: end

The parameter x mentioned above 1s not used because push instruction

appears only once in S-1, and consequently execution always begins

103

‘at Lg whenever f is called. Intuitively, a call of f(u) in S-2
performs what S-1 would perform when S-1 starts at Ll.with u on

the top of the stack, until either (1) S-1 arrives at L, with the

2
value u popped up, or (2) S-1 arrives at L3 without popping u up.
The value of f(u) is 1 or 0 according as the case (1) or the

case (2) occures.

3. 2DPDA

We give a forﬁal definition of 2DPDA and introduce some
notations. These are almost the same as those used in [1].

A 2DPDA is a 7-tuple P = (S, I, T, ¢, 50> ZO, sf), where
(1) S is the set of states of the finite control.

(2) I is the input alphabet (excluding # and $).

(3) T is the pushdown list alphabet (excluding ZO).

(4) § is the next move function defined on a subset of (S - {sf})

x (T U {ZO}) and the value of &8(s, a, A), if defined, is of one
of the forms (s', d, push B), (s', d, pop), and (s', d) where

s' €S, d € {-1, 0, 1}, and B € T. The symbols # and $ are used
as the left and the right endmarkers of the input tape
respectively. So the second component of &§(s, #, A) is not -1
and the second component of §(s, $, A) is not 1 for any s and A.
Similarly ZO is used as the bottom marker of the pushdown list,
and hence §8(s, a, ZO) is not of the form (s', d, pop).

(5) s, 1s the initial state of the finite control.

(6) Z, is the bottom marker of the pushdown list.

(7) se is the final state.

An instantaneous description (ID) of P on an input w = a

1

104

8yee. Ay is a triple (s, i, a), where
(1) s is a state in S.
(2) 1 is an integer, 0 <1 < n + 1, indicating the position of
the input head.
(3) a is a word representing the contents of the pushdown list
with the leftmost symbol of a on top.

A move of P is a change from an ID to another defined as
follows.
(1) A change from (s, i, Aa) to (s', 1 + d, BAa), if &(s, ay, A)
= (s8', d, push B).
(2) A change from (s, i, Aa) to (s', i + d, a), if §(s, ai; A) =
(s', d, pop).

change from (s, i, Aa) to (s', 1 , Aa), 1 s, a
(3) A ¢ch f (i, Aa) to (s', i + 4, Aa), if &(A)

i
= (s', 4d).

The initial ID of P is (so, 1, ZO). A terminal IDvof P is
an ID on which § is not defined (the word 'terminal' is used in
a different way in [1]). We may assume that a terminal ID is
always of the form (s, 1, ZO) for some s and i, that is, P always
terminates with the pushdown list containing only the bottom
marker ZO. The execution of P is a sequence of moves starting
with the initial ID and ending with a terminal ID. The 2DPDA P
is said to accept the input w = aj85... a if this terminal ID‘

n
is of the form (sf, i, ZO) for some 1i.

4, Derivation of Cook's algorithm
4,1 An obvious simulation algorithm
First,_we construct an obvious and inefficient algorithm to

simulate a 2DPDA. This algorithm uses a stack.

- 5 -

105

To simulate a 2DPDA P = (S, I, T, 8, Sy Zgs Sg) glven an

input w = aiaeg.. an, the following variables are used.

tape

Pd

A one dimentional array of elements from I U {#, $}.

The subscript ranges from 0 to n + 1. This array represents
the content of the input tape of P. Its initial value is
tape[0] = #, tapel[l] = Bys eer s tape[n] = a s tapeln + 1]
= 3.

A pair of the form (s, i) with s € S and 0 <i<n+ 1.
This pair is the first two components of ID of P.

An element of T U'{ZO}. This is the top symbol of the
pushdown list.

A stack of elements from T U {ZO}. This stack represents
the content of the pushdown list of P except the top
symbol. Initially it is empty.

The simulation algorithm is as follows.

<Al-1>
begin c = (so, 1); 2z := ZO;
L: if push then begin c := (s', c.i + d);
Pd <« z;
Ll: Zz := B; goto L
end
else if npp then begin c¢ := (s', c.i + d);
‘goto L
end
else if pop then begin ¢ := (s', c.i + d);
z < Pd;
L2: goto L
end;
if c.s = s, then 'YES' else 'NO';
L3: end

106

In this algorithm, push is a Boolean function whose value
is true if and only if 6(c, z) (or more precisely, §(s, 1, z)
where s, i are values such that ¢ = (s, 1)) i1s of the form
(s', d, push B). Similarly, npp (abbreviation for 'neither push
nor pop') and pop are Boolean functions corresponding to the
cases g(c, z) = (s', d) and §(c, z) = (s', d, pop) respectively.
Three letters s', d, B are functions whose values satisfy s(c, z)
= (s', d, push B), §(c, z2) = (s', d), or §(c, z) = (s', &, pop)
according as push is true, npp is true, or pop is true. Note
that values of push, npp, pop, s', d, B depend on the values of
¢ and z. The algorithm essentially uses the fact that P terminates
if and only if none of push, npp, pop holds true.

The expressions c.s and c.i in the algorithm denote the
first component (the 'state' component) and the second component

(the 'position' component) of the pair c respectively.

4,2 Stack elimination
We can apply the transformation rule S-1 = S-2 described
in Section 2 to Al-1l. The algorithm corresponding to S-2 is the

following.

<Al-2>
begin function f(p);

begin goto L

'
c := (so, 1); z := Zys
L: if push then begin c := (s', c.i + d);

if f£(z) = 0 then goto L
else goto L2;
Ll: z := B; goto L

107

else if npp then begin c¢ := (s', c.i + d);
goto L
end
else 1f pop then begin ¢ := (s', c.1 + d);
z = p; return 1;
Ly: goto L |
end;

(¥) if c.s = s, then 'YES' else 'NO';
L3: return O

end;
c := (so, 1); =z := ZO;
L: if push then begin ¢ := (s', c.i + d);
bbgg f(z) = 0 then goto L3
else goto L2;
Ll: z = B; goto L
end
else if npp then begin ¢ := (s', c.1 + d);
goto L |
end |
(¥#%) else if pop then begin ¢ := (s', c.i + d);
L,: goto L
end;
if c.s = s, then 'YES' else 'NO';
L3: end ’
In this algorithm the statement (¥) corresponds to the case

where P terminates with its pushdown list containing at least one
symbol besides the bottom marker ZO' But this does not occur.
Hence the statement (¥) and the following return statement are
never executed. This also implies that thebvalue of f(p), if
defined, is always 1. Hence we can replace the function f(p) by
a procedure R(p). The statement (¥¥*) corresponds to the case
where P tries to pop up the bottom marker. This does not occur.

Hence we may delete the statement 'goto L' in the statement (¥¥).

-8 -

108

These consideration and other obvious simplification lead

to the following algorithm.

<A1-3> |
begin procedure R(p);
begin Z := Bj; v
(L: if push then begin c := (s'y, c.i + 4d);
R(z); goto L
| end
(¥) { else if npp then begin c := (s', c.i + d);
goto L
end
| else if pop then c := (s', c.i + d);
Z :=Pp
end;

c = (SO’ 1); Z = ZO;
L: if push then begin ¢ := (s', c.1 + 4d);
R(z); 'goto L

end
else if npp then begin ¢ := (s', c.i + a);
goto L |
end
else if pop then ¢ := (s', c.i + d);
if c.s = s, then 'YES' else 'NO!
end

If we define a procedure T corresponding to (¥), the

definition of R becomes

procedure R(p);
begin z :=B; T; =z :=p end

Replacing procedure calls R(z) in Al-3 by the definition above,

we have an algorithm in which the procedure R does not appear.

109

<Al-4>
begin procedure T;

begin L: if push then begin ¢ := (s', c.i + d);
p := z;
z = By T; 2 := p;
goto L
end
else if npp then begin ¢ := (s', c.i + d);
goto L
end
else if pop then c := (s', c.i + d)

end;

c := (so, 1); =z := ZO;
L: if push then begin ¢ := (s', c.i + d);
b =z
z :=B; T; 2z := p;
(*) 3 goto L

end

else if npp then begin c (s', c.i + 4d);

goto L
end
lelse if pop then ¢ := (s', c.i + d);

if ¢c.s = s

if ¢ then 'YES' else 'NO!

end

(where p is a local variable)

We can go one stage further i1f we discover that (¥) is the
same as a call of T and use the fact that the last jump in the
procedure body to the first instruction of the procedure body
can be replaced.by a recursive call of the procedure (this is an
inverse use of the principle of recursion elimination showed in

[61). A simpler version of the algorithm is thus obtained.

<Al-5H>

- 10 -

110

begin procedure T;

begin - if pop then c := (s', c.i + 4d)
else if npp then begin ¢ := (s', c.1 + d);
T
end
else if push then begin c¢ := (s', c.i + d);
p = 23
z =By T; 2z := p;
T
end
end;
¢ = (so, 1); =z := ZO; T;

if c.s = s, then 'YES' else 'NO'
end

Note that the effect of a call of T i1s simply to change the
values of ¢, z and that the new values of ¢, z are completely
determined by the values of ¢, z at the time of the call. Hence‘
we may replace each call of T by anvassignment statement
(c, z2) := r(c, 2) for an appropriate function r.

From now on it is convenient to use variables that have
values of the form (s, 1, z) with s € 5, 0 £ 1 < n+ 1 and

z €T U {ZO}. We call a value of this form a value of type CO

(abbreviation for configuration), and call a variable that has

values of type CO a variable of tYpe CO., If x is a variable of

type CO, then by x.s, Xx.i, x.z we denote the first, the second,
and the third components of the value of x respectively.

The pair of ¢ and z is essentially a variable of type CO.
Hence we may regard the function r as a function r(x) whose
parameter x is a variabie of type CO and whose value r(x) is
also of type CO. Replacing the procedure T of A1—5‘by this

function r(x), we obtain the following algorithm.

- 11 -

111

<Al-6>

begin function r(x);

begin if pop then return (s', x.i + d, x.z);

if npp then return r((s', x.i + d, x.z));

if push then begin co := r((s', x.1 + d, B));
return r((co.s, co.i, x.z))
end;
return x

end;

co := (sO, 1, ZO); co := r(co);
if co.s = s, then 'YES' else 'NO'
end

In this algorithm co is a local wvariable of type CO. In
the previous algorithms, functions push, npp, pop, s', d, B were

functions of ¢, z. In Al-6, these functions are functions of x.

4.3 Tabulation

In this section we apply the tabulation method to the
recursive function r. The basic idea of this method 1s to compute
the value of r(x) just once for each x and store the value in
the position F[x] of a table F.

If we apply this method directly to the recursive definition
of r(x), we have to ask whether F[x] is defined or not for each
recursive call of r(x). 1Instead of this top-down approach, we
adopt the bottom-up approach, that is, we repeatedly search for
X such that the value of F[x] is immediately determined from
already defined values of F.

The recursive definition of r(x) gives the foilowing
computation rules for this bottom-up approach.

(Rule 1) If pop holds true, then F[x] = (s', x.i + 4, x.z).

- 12 -

112

(Rule 2) If T1pop A 1npp A 1push holds true, then F[x] = x.
(Rule 3) Suppose that F[y] is defined and that x becomes y in
one move of type 'npp' or 'push'.
(Rule 3.1) If npp holds true for x (hence y = (s', x.1i +
d, x.z)), then F[x] = F[y].

(Rule 3.2) If push holds true for x (hence y = (s', x.1i

+ d, x.2)), then we may set F[x] = F[z] as
soon as Flz] is defined, where z = (Flyl.s,
Flyl.i, x.z).

Once we have the table F, we answer 'YES' if F[(so, 1, ZO)] is

defined and F[(so, 1, ZO)].s = Sp, and 'NO' otherwise.
The algorithm uses the following variables.

NEW : A set of values of type CO. This is the set of y such
that F[y] has been defined but Rule 3 has not been applied
to this F[y]J. Initially NEW = 4.

PRED : A one-dimensional array of sets of values of type CO.

The subscript ranges over all values of type CO. The
element PRED[z] is the set of x such that we may set
F[x] = Flz] as soon as F[z] is defined (Rule 3.2).
Initially Flz] = ¢ for all =z.

F : A one-dimentional array of values of type CO or an
indicator 'undefined'. The subscript ranges over all
values of type CO. Initially F[x] = 'undefined' for all x.

TEMP : A set of values of type CO. This is a work variable in
procedure UPDATE.

The algorithm is

<A1-T>

- 13 -

begin for all x of type CO do (Rule 1, Rule 2)

113

if pop then begin F[x] := (s', x.1 + d, x.z);

NEW := NEW U {x}
end
else if T npp A1 push then
begin F[x] := x;
NEW := NEW U {x}

end;
while NEW # 4 do
begin select y from NEW;
NEW := NEW - {y};

for all x which becomes y in one move do

if npp then begin F[x] := FlyJ;

UPDATE (x)
end (Rule 3.1)
else i1f push then

begin z := (F[lyl.s, Flyl.i, x.2);

if F[z] = 'undef' then

PRED[z] := PRED[z] VU {x}

else
begin Flx] := Flz];
UPDATE (x)
end

end;

1£_F[(so, 1, ZO)] # 'undef' , F[(so, 1, ZO)].S = s

then 'YES'
- else 'NO!
end
(where,

procedure UPDATE(x);
begin NEW := NEW U {x};
TEMP := PRED[x];
while TEMP # 4 do
begin select z from TEMP;
TEMP := TEMP - {z};

- 14 -

f

114

TEMP TEMP - {z};
Flz] Flx];

NEW := NEW U {z};

TEMP := TEMP U PRED[z]

I

end;)

5. Conclusion

We derived Cook's simulation algorithm for 2DPDA by program
manipulation without taking properties of 2DPDA into consideration.
Analyzing the manipulation a little, we note that at Al-7 for
the first time we could improve efficiency. What was done in
the transformations from Al-1 to Al-6 ? At Al-1 we hardly had
an idea of the final Al-7. But using recursion introduction and
other manipulation, we could derive the algorithm Al-6 from
which the idea of Al-7 occured to us naturally. It is very
similar to the derivation of mathematical formulas, and the
author thinks that this type of manipulation 1s important not
only in improving efficiency but also in the theoretical study

of programs.

Acknowledgements
I would like to express deep appreciation to Prof. Kojiro
Kobayashi for his careful reading of the first drafts and to

Mr. Takehiro Tokuda for suggesting the problem.

References
[1] A. V. Aho, J. E. Hopecroft, J. D. Ullman, The design and

analysis of computer algorithms, Addison Wesley, Reading

- 15 -

115

Mass. (1974).

[2] J. J. Arsac, Syntactic source to source transforms and
program manipulation, Comm. ACM 22, 1 (Jan. 1979), 43-54.

[3] R. S. Bird, Improving programs by the introduction of
recursion, Comm. ACM 20, 11 (Nov. 1977), 856-863.

ru] S. Brown, D. Gries, T. Szymanski, Program scheme with
pushdown stores, SIAM J. Comput. 1, 3 (Sep. 1972), 242-268.

[5] R. M. Burstall, J. Darlington, A transformation system for
developing recursive programs, J. ACM 24, 1 (Jan. 1977),
Uh-67.

[6] D. E. Knuth, Structured programming with gbto statements,

Computing Surveys 6, 4 (Dec. 1974), 261-302.

- 16 -

