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Simplest Dynamics of Dioecious Populations
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1. Discrete Model

Consider the system

{ nl(t+1) = Alm(nl(t),nz(t)) (1.1)

n2(t+1) A2M(n1(t),n2(t))
where nl(t) and n2(t) are the adult numbers of females and males, reépe-
ctively, in generation t(t being nonnegative integer); Al,k2 the constant
products of birth number per mating times survival rate from birth to
adult for the two sexes; and M(nl(t),nZ(t)) is the mating function of the
population, i.e. the total number of matings in the population.

We shall define the sex ratio in adults by z£n2/nl. Egs. (1) immeadi=~
ately yield

z(t+l) = Ag/xl.v (1.2)

Thus, even if the sex ratio of adults is deviated from Az/kl, it will
always come back to A2/A1 in the next generation and will continue to be,
in a globally stable equilibrium. This situation is similar to the Hardy-
Weinberg equilibrium in population genetics. From this result we may
assume in the following discussion that the sex ratio in adults is aiways

given by (1.2).

To obtain a strong result we shall further make another assumption

that M(nl,n2) is a homogeneous function of first degree 1in n, and no.
Then we can easily obtain
1 = V] }\ )\
{ nl(t+l) M ( 1> 2)nl(t) (1.3)
n2(t+l) = M(Kl,l2)n2(tl

Clearly this is geometric growth. Depending on M(xl,x2)>l, <1, or =1,
the population will increase, decrease, or be in an equilibrium, respec-

tively.
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2, Continuous Model
This section deals with a dynamical system of the special form:
| n, = )=
t ng clnan/(nl+kn2) dlnl .
i . (2.1)
—_ / " -
n, = c2n1n2/(n1+ku2) dony,
where n, and n, are the individual numbers of females and males, respec-—
tively; k the polygamic coefficient; cy,cy the mating-birth coefficlents;
and dl’dZ are the death coefficients. These parameters are assumed to be
all positive constants. When n,=n,=0 we define ny=n,=0.

Dynamics of the Sex Ratio

For convenience, we shall begin by analysing the sex ratio dynamics.

If we define the sex ratio in survivors by z=n2/n1, we have from (2.1)
z = (B-Az)z/(kz+l), (2.2)

where A=cl+k(d2—dl) and B=c2-(d2-dl). Table 1 summarizes the stability

properties of (2.2) fof all possible cases.

Table 1. Stability properties of (2.2)
Case stability of equilibrium

Casel-1: B»0 | z=0 unstable, z=B/A g.a.s.
CaselI:

CaseT-I: B=0 z=0 g.a.s.
A>O

Case]-T: B<O z=0 g.a.s. {(B/AKO)
Casel: - | Case]~-]1: B>O - z=0 unstable (B/A<O)
A<O Case-J: B=0 z=0 unstable

Casell: A=0 z=0 unstable
g.a.s. = globally asymptotically stable

Graphical Analysis

Egs.(2.2) may be written as

"

'{ ﬁl = [—dlnl+(cl—kdl)n2]nl/(n1+kn2)
oo
so that the behavior of the solutions to (2.1) will be governed by the

[(cz—dg)nl—kdgnz]ng/(nl+kn2) (2.3)

determinant:

-d c_-kd .
1 1 1
D = = ¢c,ds+c (kdq-c,). (2.4
¢ -d ~kd, 172 el )
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The nullclines in the (nl;n2) plane are composed of nl=O, n2=O,

= - 2.
n, (c2 d2)nl/kd2,i ( 15)
and
= : - 2.6
We find also that a ray exists and that it 1s given by
= —(d.- - (2.7)
ny [02 (d2 dl)]nl/[cl+k(d2 dl)]. }

When b=0 the straight lines (2.5), (2.6), and (2.7) coincide with
one anqther and there exist on them an infinite number of neutrally stable
equilibrium points. When D<O, on the other hand, slope of (2.5)>slope of
(2.7)>slope of (2.6) and the population will ultimately increase., When D>0O .
the population will ultimately decrease.

Asymptotic Behavior

From (2.1) we can have the asymptotic equations:

ny = [eqyz(=)/(kz(®)+1)-d;In;

-l (2.8)
ny, = [ey/(kz(®)+1)-dpIn,,
where z(w)=limt+wz(t)=0, B/A, or +=,
In the case of z(«)=B/A, Eqs.(2.8) become
% (2.9)

i = rni ‘<i=l’2)s

where r=—D/(cl+k02). Evidently this is exponential grthh.

Sex Ratio Distortion and the Fold Catastrophe

When A>0 and B>0, i.e. when Case I~] holds, consider the perturbed
dynamics of the sex ratio:
7 = (B-Az)z/(kz+1l)-g, (2.10)
where g designates some external force and is assumed to be a nonnegative
constant. The behavior manifold is given by Mz={§[A§2+(kg—B)2+g=O}, where

z is an equilibrium point of z. It is then clear that the fold catastrophe

will arise at the point of (g,z)=(gs,z.), where
( &y = [2A+kB-2/E(AFKB) J/k°
{ Ze [V1+kB/A-11/k.

Eg. (2,10) corresponds, for instance, to the system:

I

(2.11)

A
>
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N c.n.n./(n,+kn,)-d,n
1 2 1
{ 1 1717 1 (2.12)

n., = 02n1n2/(n1+kn2)—d2n2—gn1.
This type of fold catastrophe may be applied to pest management and other
technologies.

Effect of the Sex Ratio at Birth on Population Growth

As shown in (2.9), the ultimate exponential growth rate is r=[02(c1

‘kd1>‘01d2]/(01+kcg)' The sex ratio at birth maximizing the r value subject

to cl+02$C(const.) is then given by

cy/cq=[1+(d,-d,)/C1/[1-(dp-d;)/C] (2.13)
if k=1, and by

02/c1=(—1+/E)/(k—/E), (2.14)

where E=k[l+(k—1)(d2—dl)/c], if k#1l.

In most human populations, k=1 and d,>d; so that the "optimum" sex
ratio at birth in the sense of maximizing r is to be somewhat greater
than ﬁnity. At least qualitatively and apparently this is in good agree-
ment with actual data, although our present discussion has no genetic
basis. ﬁ

Finally, in relation to the problem of sex control of babies, We
have to poinﬁ out that such control should bring about great deviations

of the normal sex ratio and hence 1s very dangerous.



