<u>Various aspects of unipotent group</u> <u>actions in algebraic geometry</u>

Masayoshi Miyanishi (Osaka University)

§ 1. Unipotent group actions on complete varieties

1.1. Let k be an algebraically closed field of characteristic zero. Let G be a connected algebraic group defined over k.

Assume that G acts non-trivially on an algebraic variety V,

$$\sigma : G \times V \longrightarrow V$$
.

Then we have the canonical Lie algebra homomorphism

where $\bigoplus_{V} := (\Omega_{V/k}^1)^*$. If V is smooth over k, \bigoplus_{V} is a locally free O_V -Module associated with the tangent bundle T_V . For every element τ of \bigcap_{V} , $\sigma_*(\tau)$ is thus a holomorphic (tangent) vector field of V.

Now assume that V is a nonsingular projective variety defined over k. Let X be a holomorphic vector field on V such that $X \not\equiv 0$. A point P of V is said to be a zero of X if X(P) = 0; the set of all zeros of X is denoted by

Zero(X), which is a closed subvariety of X. Let P ϵ Zero(X). Then we can consider the Lie derivative $L_{\mathbf{y}}$;

$$L_X : T_{V,P} \longrightarrow T_{V,P} ; L_X(Y) = [X,Y]$$
.

X is said to be generic at P (or X has a simple zero at P if L_X is nondegenerate on $T_{V,P}$; X is said to be generic (or X has only simple zeros) if L_X is nondegenerate for every zero P of X. If X has a simple zero at P, we can consider the eigenvalues $\theta_1(P), \ldots, \theta_n(P)$ of L_X , where n = dim V. The existence of holomorphic vector fields (or actions of algebraic groups) on V imposes some restrictions on the topology and the numerical characters of V. We shall quote some of the known results.

1.2. Let V be a nonsingular projective variety defined over k and let X be a holomorphic vector field on V such that $X \not\equiv 0$. Let Z:= Zero(X). Define the contraction operator i_X as follows:

$$i_X\,:\,\Omega_X^p\longrightarrow\Omega_X^{p-1}$$

$$\mathbf{i}_{\mathbf{X}}(\mathbf{f}\mathbf{d}\mathbf{x}_{1}\wedge\ldots\wedge\mathbf{d}\mathbf{x}_{p}) \ = \ \mathbf{f}(\sum_{\mathbf{i}=1}^{p}(-1)^{\mathbf{i}-1}\mathbf{X}(\mathbf{x}_{\mathbf{i}})\mathbf{d}\mathbf{x}_{1}\wedge\ldots\wedge\mathbf{d}\mathbf{x}_{\mathbf{i}}\wedge\ldots\wedge\mathbf{d}\mathbf{x}_{p}) \ .$$

The definition is well-defined, and if ω^p is an element of $H^0(V,\Omega^p_V)$ then $i_X(\omega^p)$ ϵ $H^0(V,\Omega^{p-1}_V)$. Let

$$f_{V}^{1} := \{ X \in H^{\circ}(V, \Theta_{V}) \mid i_{X} : H^{\circ}(V, \Omega_{V}^{1}) \longrightarrow H^{\circ}(V, O_{V}) \}.$$
is the zero map

Then h^1 is a Lie subalgebra of $H^0(V, \Theta_V)$.

- 1.2.1. THEOREM. With the above notations, we have:
- (1) (Kobayashi [7]). If $0 \le \dim Z < n := \dim V$, then $P_m(V) = 0$ for every m > 0. Hence $\kappa(V) = -\infty$.
 - (2) (Carrell-Lieberman [1]). Assume that $Z \neq \phi$. Then $h^{p,q} = \dim_k H^q(V, \Omega_V^p) = 0 \quad \underline{\text{whenever}} \quad |p-q| > \dim_k Z.$
- (3) (Carrell-Lieberman [1]). Every element X of $\int_{V}^{1} has$ zeros. Hence, if $h^{1,0}(V) = \dim H^{0}(V,\Omega_{V}^{1}) = 0$ then every holomorphic vector field has zero. Hence, if V has a holomorphic vector field without zero, $h^{1,0}(V) > 0$.
- 1.2.2. COROLLARY. Assume that dim V = 2 and V has a holomorphic vector field X with dim Zero(X) = 0. Then V is rational.

<u>Proof.</u> The assumption dim Zero(X) = 0 implies $h^{1,0}(V)$ = 0. Since $X \neq 0$, we have $P_m(V) = 0$ for every m > 0. Hence V is rational by Castelnuovo's criterion of rationality.

1.2.3. THEOREM. Let $k = \mathbb{C}$. Assume that V has a holomorphic vector field X possessing only simple zeros. For a point P of Zero(X), let $\theta_1(P)$, ..., $\theta_n(P)$ be the eigenvalues of L_X . Assume that $\text{Re}\theta_1(P) \neq 0$ for $1 \leq i \leq n$ and every point P \in Zero(X). Then the Betti numbers of V are given as follows:

 $\begin{array}{l} b_{2p}(V) \ = \ \#\{P \ \epsilon \ \text{Zero}(X) \ \big| \ \#\{j \ \big| \ \text{Re}\theta_{j}(P) \ > \ 0, \ 1 \le j \le n\} \ = \ p\} \\ \\ b_{2p+1}(V) \ = \ 0, \ (\text{cf. Carrell-Lieberman [l]}). \end{array}$

1.3. Examples.

(1) Let G be a semi-simple algebraic group, let P be

a parabolic subgroup of G, let T be a maximal torus with T C P and let V:= G/P. Let t be a regular element of infinite order in T such that there exists a one-dimensional subtorus S of T passing through t. Let S act on V via left translations of G. Let X be a holomorphic vector field on V defined by the canonical Lie algebra homomorphism

$$\sigma_{\star}$$
 : $\mathcal{S} := \text{Lie}(S) \longrightarrow H^{\circ}(V, \Theta_{V})$.

Then Zero(X) is a finite set and X has only simple zeros.

Proof. We claim that:

$$Y \pmod{p}$$
with $Y \in \mathcal{I}$
 \longrightarrow Ad $(g^{-1}tg)(Y) \mod p$.

Noting that g^{-1} tg ϵ P, we know that L_X is non-degenerate at (gP).

(2) Let $V = \mathbb{P}^n_k$ with homogeneous coordinates (x_0, x_1, \dots, x_n) . Let $\alpha_0, \dots, \alpha_n$ be pairwise prime integers such that $\alpha_0 + \dots + \alpha_n$

= 0. Let
$$G_{m}$$
 act on V via

$$t(x_0, x_1, ..., x_n) = (t^{\alpha_0} x_0, t^{\alpha_1} x_1, ..., t^{\alpha_n} x_n).$$

Then the fixed points of G_m on \mathbb{P}^n are O_i 's, where O_i = $(0,\ldots,0,1,0,\ldots,0). \text{ Let } u_j = x_j/x_i \text{ and } \xi_j = \frac{\partial}{\partial u_j} \text{ for } 0 \leq j$

 \leq n and j \neq i. Then we have

$$T_{\mathbb{P}^{n},O_{i}} = \sum_{\substack{j=0 \ j\neq i}}^{n} k\xi_{j} \text{ and } L_{X}(\xi_{j}) = (\alpha_{j}-\alpha_{i})\xi_{j}.$$

Instead, consider the following action of G_a on \mathbb{P}_k^n ,

$$G_{a} = \{ \exp(tA) \mid t \in k, A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \in M_{n+1}(k) \}$$

$$t \begin{pmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = \exp(tA) \begin{pmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{n} \end{pmatrix} .$$

Then $0:=(1,0,\ldots,0)$ is the unique fixed point of G_a . The holomorphic vector field X on \mathbb{P}^n defined by this action has the following Lie derivative L_X on $T_{\mathbb{P}^n}$;

$$u_{j} = x_{j}/x_{0}, \ \xi_{j} = \frac{\partial}{\partial u_{j}} \ (1 \le j \le n),$$

$$T_{p^{n},0} = \sum_{j=1}^{n} k\xi_{j},$$

$$L_{X}(\xi_{j}) = 0 \text{ if } j = 1; = -\xi_{j-1} \text{ if } j > 1.$$

Hence the zero of X at O is not simple.

1.4. Now, we shall be mainly interested in the unipotent group actions on complete algebraic varieties. A main problem is the Carrell conjecture, which we shall state below.

Let G be a unipotent algebraic group defined over k. We shall summarize some of the known results on unipotent group actions.

- 1.4.1. THEOREM. (1) [Borel fixed point theorem] (cf. Fogarty [2], Horrocks [6]). If a connected solvable affine algebraic group G acts on a complete algebraic variety V then the fixed point locus V is nonempty. If G is unipotent, V is connected if and only if V is connected.
- (2) Let G be a connected affine algebraic group. Then

 G is unipotent if and only if, for any connected complete

 variety V on which G acts, V is connected (cf. Fogarty [2]).
- (3) Let G and V be the same as in (2) above. Then the canonical inclusion $\iota: V^G \longrightarrow V$ induces an equivalence between the categories of etale coverings $\operatorname{Et}(V)$ and $\operatorname{Et}(V^G)$.

 In particular, the inclusion ι yields an isomorphism of algebraic fundamental groups,

$$\iota_* : \pi_1(V^G)_{alg} \xrightarrow{\sim} \pi_1(V)_{alg}$$

(cf. Horrocks [6]).

1.4.2. We also recall the following result:

THEOREM (Matsumura [8]). Assume that V is a nonsingular complete variety. Then the group of all birational automorphisms of V, Bir(V), contains an affine algebraic group of positive dimension if and only if V is birationally equivalent to $\mathbb{P}^1 \times \mathbb{W} \quad (\mathbb{V} \sim \mathbb{P}^1 \times \mathbb{W} \quad \text{as notation}), \quad \text{where} \quad \mathbb{W} \quad \text{is a complete variety}.$ Thus, if the Kodaira dimension $\kappa(\mathbb{V}) \geq 0$, Bir(V) cannot contain any affine algebraic group.

1.4.3. Now, we consider the following:

CARRELL CONJECTURE. Assume that a connected unipotent group G acts on a nonsingular projective variety V in such a way that the fixed point locus V consists of a single point. Then V is rational.

1.4.4. A partial solution of the above conjecture is this:

THEOREM. Let G and V be the same as in the Carrell conjecture. Then we have:

- (1) If dim V ≤ 2, the Carrell conjecture is affirmative.
- (2) If $\dim V = 3$, V is one of the following:
 - (i) V is rational,
- (ii) $V \sim \mathbf{P}^1 \times W$, where W is a nonsingular projective surface with $\kappa(W) \geq 1$ and $p_g = q = 0$. Moreover, W is simply connected.

<u>Proof.</u> Without loss of generality, we may assume that the action of G is effective, i.e., the canonical homomorphism $G \longrightarrow Aut$ (V) is injective.

theorem. Suppose that dim V = 1 is obvious by virtue of Matsumura's theorem. Suppose that dim V = 2. If dim G = 1, the action of G on V gives rise to a holomorphic vector field X on V such that Zero(X) = V^G, which consists of a single point. Then, by virtue of Corollary 1.2.2, V is rational. Assume that dim G = 2. Then G is commutative, i.e., $G \supseteq G_1 \times G_2$ with $G_1 \supseteq G_2 \supseteq G_a$. By virtue of Matsumura's theorem, V \(\nabla \) $\mathbf{P}^1 \times \mathbf{C}$, where C is a complete nonsingular model of $\mathbf{k}(\mathbf{V}^G)$. Then G_2 acts on C effectively. Hence $\mathbf{C} \supseteq \mathbf{P}^1$, and $\mathbf{V} \wedge \mathbf{P}^1 \times \mathbf{P}^1$.

Namely, V is rational.

(2) Assume that $\dim V = 3$. Consider first the case where $\dim G = 3$. Then G has a central series of subgroups

$$G \supset G_1 \supset G_2 \supset (1)$$
,

such that $G/G_1 \cong G_1/G_2 \cong G_2 \cong G_a$. By Matsumura's theorem, $V \sim \mathbb{P}^1 \times W$, where W is a nonsingular projective surface such that W is a complete nonsingular model of $k\left(V\right)^{G_2}$ and the unipotent group G/G_2 acts effectively on W. By virtue of the above case where $\dim V = \dim G = 2$, we conclude that W \mathbf{p}^1 × \mathbf{p}^1 ; note that we did not use in the proof the assumption $V^{G} = \{\text{single point}\}.$ Hence $V \sim \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}.$ Suppose next that $\dim G = 2$. By a similar reasoning as above, we know that $V \sim \mathbb{P}^1 \times \mathbb{P}^1 \times C$, where C is a nonsingular complete curve. Since V^G consists of a single point, we know that $\pi_1(V)_{alg} =$ (0) (cf. Theorem 1.4.1, (3)). Since $\pi_1(V)_{alg} \cong \pi_1(\mathbb{P}^1 \times \mathbb{P}^1 \times C)_{alg}$ we know that $\pi_1(C)_{alg} = (0)$, i.e., C is simply connected. This implies that $C \cong \mathbb{P}^1$. Hence V is rational. Suppose finally that dim G = 1. By virtue of Matsumura's theorem, $V \sim \mathbb{P}^1 \times W$, where W is a complete nonsingular model of $k(V^G)$. We may assume that W is relatively minimal. Let p_1 and p_2 be the canonical projections from $\mathbb{P}^1 \times \mathbb{W}$ to \mathbb{P}^1 and \mathbb{W} , respectively. Then we have,

$$\Omega_{\mathbb{P}}^{1} 1_{\times W} \stackrel{\sim}{=} P_{1}^{\star} \Omega_{\mathbb{P}}^{1} 1 + P_{2}^{\star} \Omega_{W}^{1}$$

$$\Omega_{\mathbb{P}}^{2} 1_{\times W} \stackrel{\sim}{=} P_{1}^{\star} \Omega_{\mathbb{P}}^{1} 1 \wedge P_{2}^{\star} \Omega_{W}^{1} + P_{2}^{\star} \Omega_{W}^{2}.$$

By virtue of Theorem 1.2.1, (1), we have $h^{i,0}(V) = 0$ for

i = 1, 2, because the action of G yields a holomorphic vector field X on V with Zero(X) = V^G = {single point}. Since $h^{1,0}(V)$ is a birational invariant (cf. Griffiths-Harris [16; p.494]), we know that $h^{1,0}(W) = h^{2,0}(W) = 0$. Hence $p_g = q = 0$ for W. Moreover, since $\pi_1(V)_{alg} = (0)$, we know that $\pi_1(W)_{alg} = (0)$. Namely, W is simply connected. If W is rational, V is rational. Suppose that W is not rational. If $\kappa(W) = 0$ then $p_g = q = 0$ implies that W is an Enriques surface, which is, however, not simply connected. Hence $\kappa(W) \ge 1$.

1.5. We shall give the following result on the existence of a $\mathbf{G}_{\mathbf{a}}\text{-action.}$

LEMMA (cf. [9; p. 35]). Let W be a variety defined over k and let $\pi: V \longrightarrow W$ be a \mathbf{P}^1 -bundle over W. If there exists a nontrivial G_a -action on V whose orbits are contained in fibers of the projection π , then the fixed point locus V^G contains a cross-section S of π . Then there exists a locally free C_W -Module E of rank 2 such that E is an extension of O_W by an invertible sheaf L on W, $V \supseteq \mathbf{P}(E)$, and S is the cross-section corresponding to L. Moreover, we have $H^O(W,L^{-1}) \neq 0$. Conversely, if $H^O(W,L^{-1}) \neq 0$, there exists a G_a -action on V along fibers of π .

<u>Proof.</u> Let V_1^G be the union of irreducible components of V_1^G of codimension 1, and consider V_1^G as a reduced effective divisor on V. Since G_a acts on V along fibers of π , each general fiber contains one and only one fixed point. Hence

 $(V_1^G \cdot \ell) = 1$, where ℓ is a general fiber of π . This implies that V^G contains only one irreducible component S, which is a cross-section of π . Let $L = O_S(S)$ and let $E = \pi_* O_V(S)$. Then we have an exact sequence,

$$0 \longrightarrow O_W \longrightarrow E \longrightarrow L \longrightarrow 0 \ .$$

By construction, S is the cross-section corresponding to L.

The remaining part is proved in [9; p. 35].

Q.E.D.

§ 2. Unipotent group actions on affine varieties

- 2.1. Let k be an algebraically closed field of characteristicO. Recall the following very well-known results:
- 2.1.1. THEOREM (Nagata [13], Haboush [5]). Let R be a finitely generated k-algebra and let G be a connected reductive algebraic group. Assume that G acts on R as k-automorphisms of R in such a way that:

For every f ϵ R, a k-submodule Σ f^gk of R is a finite g ϵ G k-module; then we say that G acts rationally on R.

Let R^G be the subring consisting of G-invariant elements in R. Then R^G is finitely generated over k.

2.1.2. THEOREM (Nagata [14]). There exists a unipotent algebraic group G acting rationally on a polynomial ring R:= $k[x_1, ..., x_n]$ such that R^G is not finitely generated over k.

The writer believes that there should exist a rational action of the additive group G_a on a polynomial ring $R=k[x_1,\ldots,x_n]$ such that R is not finitely generated over k. If there is

such an action, we must have $n \ge 4$ by virtue of Zariski's theorem (cf. Nagata [14]), and the action is not linear by virtue of the following result of Weitzenböck:

- 2.1.3. THEOREM (cf. Seshadri [15]). Let there be given a linear action of G_a on a polynomial ring $R = k[x_1, ..., x_n]$, where char(k) = 0. Then R^a is finitely generated over k.
- 2.2. For the sake of simplicity, we assume that char(k) = 0.

THEOREM. Assume that G_a acts non-trivially on a polynomial ring $R = k[x_1, ..., x_n]$, where $n \le 3$. Let A be the G_a -invariant subring of R. Then we have:

- (1) A <u>is a finitely generated over k, and A is a unique</u> factorization domain.
- (2) If either $n \le 2$ or A is regular then A is a polynomial ring over k.

<u>Proof.</u> For the proof of the assertion (1) and the case $n \le 2$ in the assertion (2), see Miyanishi [9;§§ 1, 3 of Chap.I]. We shall prove the assertion (2) in the case where n = 3 and A is regular.

(i) By virtue of Zariski's theorem [14; p. 52], A is finitely generated over k. Moreover, A is a UFD and the set A^* of all invertible elements of A is $k^* := k - (0)$. Let $Y := \operatorname{Spec}(R)$, let $X := \operatorname{Spec}(A)$ and let $\pi : Y \longrightarrow X$ be the dominant morphism induced by the injection $A \longrightarrow R$. We shall prove that the logarithmic Kodaira dimension of X has value $\overline{k}(X) = -\infty$. Then we can apply the following characterization of the affine plane (cf. Miyanishi-Sugie [12] and Fujita [3] as well as the

papers of Iitaka's given in the references of these papers):

Let X = Spec(A) be a nonsingular affine surface. Then $X \, \underline{\sim} \, \, \boldsymbol{A}_k^2 \quad \text{if and only if A is a UFD, A}^* = k^* \quad \text{and} \quad \overline{\kappa}(X) = -\infty \, .$

(ii) We claim that $\pi: Y \longrightarrow X$ is a faithfully flat, equi-dimensional morphism of dimension 1.

We shall first show that π is surjective. Suppose π is not surjective. Then there exists a maximal ideal \underline{m} of A such that $\underline{m}R = R$. Let $(\underline{O}, \underline{tO})$ be a discrete valuation ring of the quotient field K of A such that \underline{O} dominates $\underline{A}_{\underline{m}}$. Let $R' := R \otimes \underline{O}$, which is identified with a subring of the A field L:= $k(x_1, x_2, x_3)$. Let Δ be a locally nilpotent derivation on R associated with the given G_a -action on Y (cf. [9;§ 1, Chap. I]). Then Δ extends naturally to a locally nilpotent \underline{O} -derivation in R', and \underline{O} is the ring of Δ -invariants in R', i.e., $\underline{O} = \{r \in R'; \Delta(r) = 0\}$. By assumption, we have tR' = R', where t is a uniformisant of \underline{O} . Hence tR' = 1 for some element tR' = 1. Then tL(r) = 0, whence tR' = 1 for a contradiction. Thus tR' = 1 is surjective.

Secondly, we shall show that every irreducible component of a fiber of π has dimension 1. Note that general fibers of π are isomorphic to \mathbf{A}_k^1 (cf. [9;§ 1, Chap. I]). Hence each irreducible component of a fiber has dimension \geq 1. Suppose that an irreducible component \mathbf{T} of a fiber $\pi^*(P)$ (with P ϵ X) has dimension 2. Since R is a UFD, there exists an irreducible element a ϵ R such that $\mathbf{T} = \operatorname{Spec}(R/aR)$. Since \mathbf{T} is \mathbf{G}_a -stable, a is \mathbf{G}_a -invariant, i.e., a ϵ A. Let $\mathbf{C} :=$

Spec (A/aA). Since A is a UFD, C is an irreducible curve on X and $\pi^{-1}(C) = T \subset \pi^{-1}(P)$. This is a contradiction because π is surjective. Thus π is an equi-dimensional morphism of dimension 1.

Finally, we shall show that R is flat over A. Let \underline{q} be a prime ideal of R and let $\underline{p} = \underline{q} \cap A$. Then $R_{\underline{q}}$ dominates $A_{\underline{p}}$. Since $A_{\underline{p}}$ is regular and $R_{\underline{q}}$ is Cohen-Macaulay, $R_{\underline{q}}$ is flat over $A_{\underline{p}}$ (cf. EGA [4; IV,15.4.2]). Hence π is faithfully flat.

(iii) Let $U:=\{P\in X; \pi^*(P) \text{ is irreducible and reduced}\}$. Then, by virtue of [9; Th.4.1.1, p.46], $W:=\pi^{-1}(U)$ is an \mathbb{A}^1 -bundle over U. We claim that $\overline{\kappa}(X)=-\infty$.

Let H be a hyperplane in $Y = \mathbf{A}_k^3$ such that $H \cap W \neq \emptyset$. Suppose $\overline{\kappa}(X) \geq 0$. Let C be an irreducible curve on H. Consider a morphism:

$$\varphi: C \times \mathbb{A}_k^1 \longrightarrow H \times \mathbb{A}_k^1 = Y \xrightarrow{\pi} X,$$

and assume that φ is a dominant morphism. Since $\dim(C \times \mathbf{A}_k^1)$ = $\dim V = 2$, we have

$$-\infty = \overline{\kappa} (C \times \mathbf{A}_{\mathbf{k}}^{1}) \ge \overline{\kappa} (X) \ge 0,$$

which is a contradiction. Hence φ is not a dominant morphism. Let D be the closure of $\varphi(\mathsf{C} \times \mathbf{A}_k^1)$ in X. Then $\mathsf{C} \times \mathbf{A}_k^1 \subset \pi^{-1}(\mathsf{D})$. Suppose $\mathsf{C} \cap \mathsf{W} \neq \emptyset$. Then the general fibers of π : $\pi^{-1}(\mathsf{D}) \longrightarrow \mathsf{D} \quad \text{are isomorphic to} \quad \mathbf{A}_k^1. \quad \text{This implies that} \quad \pi^{-1}(\mathsf{D})$ is irreducible and reduced. Since $\dim(\mathsf{C} \times \mathbf{A}_k^1) = \dim \pi^{-1}(\mathsf{D}) = 2$, we have $\mathsf{C} \times \mathbf{A}_k^1 = \pi^{-1}(\mathsf{D})$.

Let Q be a point on H, and let C_1 , ..., C_r be irreducible

curves on H such that $C_1 \cap \cdots \cap C_r = \{Q\}$ and that $C_i \cap W \neq \emptyset$ for $1 \leq i \leq r$. For any point Q on H, we can find such a set of irreducible curves. Indeed, H is the affine plane \mathbb{A}^2_k and $H \cap (Y-W)$ has dimension ≤ 1 ; thus we have only to take a set of suitably chosen lines on H passing through Q. Let D_i be the irreducible curve which is the closure of $\pi (C_i \times \mathbb{A}^1_k)$ on X for $1 \leq i \leq r$. Then $C_i \times \mathbb{A}^1_k = \pi^{-1}(D_i)$ for $1 \leq i \leq r$. Since we have

$$(Q) \times \mathbf{A}_{k}^{1} = (C_{1} \cap \dots \cap C_{r}) \times \mathbf{A}_{k}^{1} = (C_{1} \times \mathbf{A}_{k}^{1}) \cap \dots \cap (C_{r} \times \mathbf{A}_{k}^{1})$$
$$= \pi^{-1}(D_{1}) \cap \dots \cap \pi^{-1}(D_{r}) = \pi^{-1}(D_{1} \cap \dots \cap D_{r}),$$

we know that $D_1 \cap \cdots \cap D_r = \{P\}$, P being a point on X. The correspondence $Q \longmapsto P$ defines a morphism $\psi : H \longrightarrow X$ such that $(Q) \times \mathbb{A}^1_k = \pi^{-1}(P)$. If ψ is a dominant morphism, we have $-\infty = \overline{\kappa}(H) \geq \overline{\kappa}(X) \geq 0$,

which is a contradiction. Hence ψ is not a dominant morphism. Let F be the closure of $\psi(H)$ in X. Then, for every point P of F, we have $\dim \psi^{-1}(P) \geq 1$, and $\pi(\psi^{-1}(P) \times \mathbb{A}^1_k) = \psi(\psi^{-1}(P)) = P$. This contradicts the assertion proved in the step (ii). Therefore $\overline{\kappa}(X) = -\infty$.

Natural as it is, the situation of G_a -actions on a polynomial ring $R = k[x_1, \ldots, x_n]$ becomes complicated and worse as n increases. If $n \leq 2$, R is a polynomial ring in one variable over the subring A of G_a -invariants (cf. [9; $\frac{1}{2}$ 1, Chap.I]). However, this does not hold in the case where n = 3. Still, the property that A be a polynomial ring seems to hold without the assumption that A is regular. When n = 3,

another criterion for A to be a polynomial ring is that A contains one of coordinates x_1 , x_2 , x_3 . Thus, if G_a acts linearly on $R = k[x_1, x_2, x_3]$, then A is a polynomial ring. Perhaps, A no longer is a polynomial ring for a general G_a -action on R if $n \ge 4$.

2.3. Finally, we shall state the following result without proof:

THEOREM (cf. [11]). Assume that char(k) = o. Let X =
Spec(A) be a normal affine surface defined over k, possessing
a non-trivial action of the additive group G_a . Then every
singular point of X is a cyclic quotient singularity.

The result no longer holds if X is not affine.

REFERENCES

- 1. Carrell, J.B., Lieberman, D.I.: Holomorphic vector fields and Kaehler manifolds. Invent. Math. 21 (1973), 303-309.
- 2. Fogarty, J.: Fixed point schemes. Amer. J. Math. 95 (1973), 35-51.
- 3. Fujita, T.: On Zariski problem. Proc. Japan Acad. 55, Ser. A, (1979), 106-110.
- 4. Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique. (EGA). Inst. Hautes Études Sci. Publ. Math. 28 (1966).
- 5. Haboush, W.J.: Reductive groups are geometrically reductive:
 A proof of the Mumford conjecture. Ann. of Math. 102
 (1975), 67-83.
- 6. Horrocks, G.: Fixed point schemes of additive group actions. Topology 8 (1969), 233-242.

- 7. Kobayashi, S.: Transformation groups in differential geometry. New York: Springer, 1972.
- 8. Matsumura, H.: On algebraic groups of birational transformations. Rend. della Acad. Naz. del Lincei. 34 (1963), 151-155.
- 9. Miyanishi, M.: Lectures on curves on rational and unirational surfaces. Tata Institute of Fundamental Research. Berlin-Heidelberg-New York: Springer, 1978.
- 10. Miyanishi, M.: Regular subrings of a polynomial ring.
 Osaka J. Math. 17 (1980).
- 11. Miyanishi, M.: Singularities of a normal affine surfaces containing cylinderlike open sets. J. Algebra, to appear.
- 12. Miyanishi, M., Sugie, T.: Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), 11-42.
- 13. Nagata, M.: Invariants of a group in an affine ring. J. Math. Kyoto Univ. 3 (1964), 369-377.
- 14. Nagata, M.: Lectures on the fourteenth problem of Hilbert.

 Tata Institute of Fundamental Research. Bombay 1965.
- 15. Seshadri, C.S.: On a theorem of Weitzenböck in invariant theory. J. Math. Kyoto Univ. 1 (1962), 403-409.
- 16. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley-Interscience, 1978.