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Various aspects of unipotent group

actions in algebraic geometry

Masayoshi. Miyanishi (Osaka University)

§l. ﬁhipotent group actions on complete varieties
1.1, Let k Dbe an algebraically closed field of characteristic
zero. Let G be a connected algebraic group defined over k.
Assume that G acts non-trivially on an algebraic variety V,

g : GXV —>V .
Then we have the canonical Lie algebra homomorphism

o, ¢ 0 := Lie(G) —> H (V,8,),
1 * . .
where (@V:= (Qv/k) . If VvV 1is smooth over k, CA7 is a locally

free O,,-Module associated with the tangent bundle T For

v v
every element 1 of C},'o*(T) is thus a holomorphic (tangent)
vector field of V.

Now assume that V 1is a nonsingular projective variety
defined over k. Let X be a holomorphic vector field on V

such that X Z 0. A point P of V is said to be a zero of

X if X(P) = 0; the set of all zeros of X is denoted by
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Zero(X), which is a closed subvariety of X. Let P g Zero(X).

Then we can consider the Lie derivative LX;

Ly : Tv,P ——)TV’P : LX(Y) = [X,Y] .

X 1is said to be generic at P (or X has a simple zero at P)

if LX is nondegenerate on TV,P;

(or X has only simple zeros) if L

X is ‘said to be generic

is nondegenerate for

X

every zero P of X. If X has a simple zero at P, we can

consider the eigenvalues Gl(P),... ’ en(P) of LX, where n

= dim V. The existence of holomorphic vector fields (or
actions of algebraic groups) on V imposes some restrictions
on the topology and the numerical characters of V. We shall

guote some of the known results.

1.2, Let V be a nonsingular projective variety defined over
k and let X be a holomorphic vector field on V such that

X #Z 0. Let Z:= Zero(X). Define the contraction operator iX

as follows:

.. oP p-1

lX : QX —_ QX
p i-1 v

A...Adxp) = f(-Z (-1) X(xi)dxlA...AdxiA...Adxp).

i (fdx
X i=1

1

p

The definition is well-defined, and if w is an element of

0 P . P 0 p-1
H (V,QV) then 1x(w ) € H (V,Qv ). Let
4}1-= {xen®w,e,) | i, : B°(v,0d) —>u%(v,0.)}
- v X - Y A VAd
is the zero map

Then -6} is a Lie subalgebra of HO(V,@V).
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1.2.1. THEOREM. With the above notations, we have:

(1) (Kobayashi [7]). If O < dim Z < n:= dim V, then Pm(V)
= 0 for every m > 0. Hence (V) = -,

(2) (Carrell-Lieberman [1]). Assume that Z # ¢. Then

nPrd = dimqu(V,Qs) = 0 whenever |p-g| > dimkz .

(3) (Carrell-Lieberman [1]). Every element X of /61 has

zeros. Hence, if hl'0

(V) = dim HO(V,Qé) = 0 then every

holomorphic vector field has zero. Hence, if V has a
h1,0

holomorphic vector field without zero, (V) > 0.

1.2.2. COROLLARY. Assume that dim V = 2 and V has a

holomorphic vector field X with dim Zéro(X) = 0. Then V

is rational.

Proof. The assumption dim Zero(X) = 0 implies hl'O

(V)
= 0. Since X Z 0, we have Pm(V) = 0 for every m > 0. Hence

V is rational by Castelnuovo's criterion of rationality.

1.2.3. THEOREM. Let k =C. Assume that V has a holomorphic

vector field X possessing only simple zeros. For a point P

of Zero(X), let el(P), ..., 6_(P) be the eigenvalues of LX'

n
Assume that Ref.(P) # 0 for 1 < i <n and every point P €

Zero(X). Then the Betti numbers of V are given as follows:

bzp(v) = #{P ¢ Zero(X)| #{3 | Reej(P) >0, 1 <3 <n}=p}

b2p+l(v) = 0, (cf. Carrell-Lieberman [1]).

1.3. Examples.

(1) Let G be a semi-simple algebraic group, let P be
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a parabolic subgroup of G, let T be a maximal torus with
TCP and let V:= G/P. Let t be a regular element of
infinite order in T such that there exists a one-dimensional
subtorus S of T passing through t. Let S act on V via
left translations of G. Let X be a holomorphic vector field

on V defined by the canonical Lie algebra homomorphism
- 1.4 0
O, ¢ /g:— Lie(S) —> H (V,@V) .

Then Zero(X) is a finite set and X has only simple zeros.

Proof. We claim that:

(gP) is a fixed point of S == g_ltg e P =>g e N(T)P.

Indeed, S is the closure of {t" | m ¢ %Z}, and hence (gP) is

a fixed point if and only if g—ltg ¢ P. Then t ¢ ng_l.
Since t is a regular element, T‘CZng—l. Hence g_ng C P.
Therefore g_ng = p_lTp for some element p € P. Hence

gp_l € N(T). Since #(N(T)P/P) < +», there are only finitely
many fixed points of S on V. Let (gP) be a fixed point of

S. Let Q} and @ be the Lie algebras of G and P, respectively.

Now, T i i ifi i i : hE .
r Ty, (gp) 1S identified with <¥4P via Qg,* ng __Q‘TV,(gP)
Then the Lie derivative L on T is identified with
X v, (gP)
Y mod £) 5 ag(gltg) (¥) moa f -

with Y sg

is non-degenerate at

Noting that g—ltg e P, we know that Ly

(gP) .

(2) Let Vv = Pﬁ with homogeneous coordinates (xo,xl,---,Xn)-

Let @gre--s0 be pairwise prime integers such that ag+...+o,



= 0. Let Gm act on V via

g oy o
t(xo,xl,...,xn) = (t XO’t xl,...,t

Then the fixed points of Gm on P% are Ois, where Oi =
=% 3
(6,...,0,1,0,...,0). Let uj,~ xj/xi and Ej = 33; for 0
<n and Jj # i. Then we have
n .
T = I k&. and L ) = (o.=-0,)E..
p",0, §=0 gJ X(EJ 574085
. 1 T e
j#i
Instead,‘consider the following action of Ga on Pi,
01 o
G = {exp(tA) | t € k, A = 0.031 € Mn+l(k)}
Xo B 0
t .l = exp (tA) .l .
x X
n n

A

Then O:= (1,0,...,0) is the unique fixed point of Ga' The

holomorphic vector field X on P"  defined by this action h

the following Lie derivative Ly on T =
: P ,0
= - 9 .
By = xg/%er By Ty (a3 s
n

T = I k&.,

p",0 =1

LX(Ej) =0 if 4§ =1; = _gj—l if § > 1 .

Hence the zero of X at O is not simple.

233

as

1.4. Now, we shall be mainly interested in the unipotent group

actions on complete algebraic varieties. A main problem is the

Carrell conjecture, which we shall state below.
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Let G be a unipotent algebraic group defined over k. We
shall summarize some of the known results on unipotent group

actions.

1.4.1. THEOREM. (1) [Borel fixed point theorem] (cf. Fogarty

[2], Horrocks [61). If a connected solvable affine algebraic

group G acts on a complete algebraic variety V then the

fixed point locus VG is nonempty. If G is unipotent, VG

is connected if and only if V 1is connected.

(2) Let G be a connected affine algebraic group. Then

G is unipotent if and only if, for any connected complete

variety V on which G acts, VG is connected (cf. Fogarty [2]).

(3) Let G and V be the same as in (2) above. Then the

canonical inclusion 1 : V. &>V induces an equivalence

between the categories of etale coverings Et(V) and Et(VG).

In particular, the inclusion 1 yields an isomorphism of

algebraic fundamental groups,

G "
1y ° TTl(V )alg —éﬂl(v)alg ’
(cf. Horrocks [6]).
1.4.2. We also recall the following result:

THEOREM (Matsumura [8]). Assume that V is a nonsingular

complete variety. Then the group of all birational automorphisms

of V, Bir(V), contains an affine algebraic group of positive

dimension if and only if V is birationally equivalent to

Plx W (V. Plx W as notation), where W 1is a complete variety.

Thus, if the Kodaira dimension « (V) > 0, Bir(V) cannot contain

any affine algebraic group.

—~ ¢ -
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1.4.3. Now, we consider the following:

CARRELL CONJECTURE. Assume that a connected unipotent

group G acts on a nonsingular projective variety V in such

a way that the fixed point locus VG consists of a single point.

Then V is rational.

1.4.4. A partial solution of the above conjecture is this:

THEOREM. Let G and V be the same as in the Carrell

— e erma— —— ——

conjecture. Then we have:

(1) If dim V < 2, the Carrell conjecture is affirmative.

(2) If dim Vv = 3, V is one of the following:

(i)‘ V is rationmal,

(ii) Vv ~ Plx W, where W is a nonsingular projective

surface with k(W) > 1 and pg = g = 0, Moreover, W is

simply connected.

Proof. Without loss of generality, we may assume that the
action of G 1is effective, i.e., the canonical homomorphism
G —>Aut (V) 1is injective.

(1) The case dim V =1 is obvious by virtue of Matsumura's
theorem. Suppose that dim Vv = 2. If dim G = 1, the action
of G on V gives rise to a holomorphic vector field X on
V such that Zero(X) = VG, which consists of a single point.
Then, by virtue of Corollary 1.2.2, V is rational. Assume

that dim G = 2. Then G is commutative, i.e., G % G, X G

1 2

with G; » G, ¥ G . By virtue of Matsumura's theorem, V

Plx C, where C 1is a complete nonsingular model of k(VG).
1 1 1

Then G2 acts on C effectively. Hence C M P, and V Vv P X P

_7 -
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Namely, V is rational.
(2) Assume that dim V = 3. Consider first the case where

dim G = 3. Then G has a central series of subgroups
G DGIDGZ >(1) ,

such that G/G1 Y Gl/GZ Y G2 v Ga‘ By Matsumura's theorem,

vV ~ Pl x W, where W 1is a nonsingular projective surface such
G‘)

that W is a complete nonsingular model of k(V “) and the

unipotent group G/G2 acts effectively on W. By virtue of

the above case where dim V = dim G = 2, we conclude that W

Pl X Pl; note that we did not use in the proof the assumption

ve = {single point}. Hence V ~ Pt x Bt x BT, Suppose next

that dim G = 2. By a similar reasoning as above, we know that

vV Pl X Pl x C, where C 1is a nonsingular complete curve.

Since VG consists of a single point, we know that wl(V)alg =

. 1 1
(0) (cf. Theorem 1.4.1, (3)). Since 1rl(V)alg Y ﬂl(P x P C)alg’

we know that ﬂl(C)alg = (0), i.e., C 1is simply connected.
This implies that C g:Pl. Hence V 1is rational. Suppose
finally that dim G = 1. By virtue of Matsumura's theorem,

ALY Pl X W, where W is a complete nonsingular model of k(VG).
We may assume that W is relatively minimal. Let Pl and Py
be the canonical projections from Pl X W to Pl and W,

respectively. Then we have,

1 * .1 * 1

Q vop. R + p,&

BplXW 1 Pl 2w

2 *x 1 x 1 * 2
9] A <FRY) AP,O - + PR .
Pkw lPl 2w 2°W

By virtue of Theorem 1.2.1, (1), we have hl’o(V) = 0 for

—§ -
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i =1, 2, because the action of G yields a holomorphic vector

field X on V with Zero(X) = VG = {single point}. Since

i,0

h (V) 1is a birational invariant (cf. Griffiths-Harris [16;
p.494]1), we know that hl’O(W) = hz’O(W) = 0. Hence pg =q =
0 for W. Moreover, since ﬂl(V)alg = (0), we know that

wl(W)alg = (0). Namely, W is simply connected. If W is
rational, V is rational. Suppose that W is not rational.

If k(W) = 0 then pg = q =0 implies that W 1is an Enriques
surface, which is, however, not simply connected. Hence « (W)

=>__ lo Q-E.D.

1.5. We shall give the following result on the existence of

a Ga—action.

LEMMA (cf. [9; p. 35]). Let W be a variety defined over

k and let 7@ : V —> W EE a Pl—bundle over W. Eﬁ there

exists a nontrivial Ga—action on V whose orbits are contained

in fibers of the projection m, then the fixed point locus VG

contains a cross-section S of w. Then there exists a locally

free CW-Module E of rank 2 such that E is an extension

of O, by an invertible sheaf L on W, V3 P(E), and S is

the cross-section corresponding to L. Moreover, we have
1

HO(W,L_ ) # 0. Conversely, if HO(W,L_l) # 0, there exists a

Ga—action on V along fibers of .

Proof. Let Vi be the union of irreducible components of

VG of codimension 1, and consider Vi as a reduced effective
divisor on V. Since Ga acts on V along fibers of w, each

general fiber contains one and only one fixed point. Hence

9
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(V?-l) = 1, where £ is a general fiber of w. This implies that
VG contains only one irreducible component S, which is a
cross-section of w. Let L = 0 (S) and let E = w*ov(s).

Then we have an exact sequence,

By construction, S is the cross-section corresponding to L.

The remaining part is proved in [9; p. 35]. Q.E.D.

§ 2. Unipotent group actions on affine varieties

2.1. Let k be an algebraically closed field of characteristic

> 0. Recall the following very well-known results:

2.1.1. THEOREM (Nagata [13], Haboush [5]). Let R be a

finitely generated k-algebra and let G be a connected

reductive algebraic group. Assume that G acts on R as

k-automorphisms of ‘R 1in such a way that:

For every f € R, a k-submodule T £9% .of R is a finite
geG

k-module; then we say that G acts rationally on R.

Let RC be the subring consisting of G-invariant elements

in R. Then rC is finitely generated over k.

2.1.2. THEOREM (Nagata [14]). There exists a unipotent

algebraic group G acting rationally on a polynomial ring R:=

k[xl,...,xn] such that RG is not finitely generated over k.

The writer believes that there should exist a rational action

of the additive group Ga on a polynomial ring R = k[xl,...,xn]

G

such that R 2 is not finitely generated over k. If there is

— /0 —



239

such an action, we must have n > 4 by virtue of Zariski's
theorem (cf. Nagata [l4]), and the action is not linear by

virtue of the following result of Weitzenbdck:

2.1.3. THEOREM (cf. Seshadri [15]). Let there be given a

linear action of Ga on a polynomial ring R = k[xl,...,xn],
G
where char(k) = 0. Then R 2 is finitely generated over k.

2.2. For the sake of simplicity, we assume that char(k) = 0.

THEOREM. Assume that G, acts non-trivially on a polynomial

ring R = k[xl,...,xn], where n < 3. Let A be the Ga—

invariant subring of R.  Then we have:

(1) A 1is a finitely generated over k, and A is a unique

factorization domain.

(2) If either n < 2 or A is regular then A is a

polynomial ring over k.

Proof. For the proof of the assertion (1) and'the case
n < 2 in the assertion (2), see Miyanishi [9;8§ 1, 3 of Chap.I].
We éhall prove the assertion (2) in the case where n = 3 and
A is regular.

(i) By virtue of Zariski's theorem [14; p. 52], A is
finitely generated over k. Moreover, A is a UFD and the set
A* of all invertible elements of A is k*:= k-(0). Let Y:=
Spec(R), let X:= Spec(A) and let T : ¥ —> X Dbe the dominant
morphism induced by the injection A <—— R. We shall prove that
the logarithmic Kodaira dimension of X‘ has value K(X) = -,
Then we can apply the following characterization of the affine

plane {(cf. Miyanishi-Sugie [12] and Fujita [3] as well as the
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papers of Iitaka's given in the references of these papers):

Let X = Spec(A) be a nonsingular affine surface. Then

2
k

* —
k and K(X) = -,

*
XnvA if and only if A is a UFD, A

(ii) We claim that 7 : ¥ —> X 1is a faithfully flat,

equi-dimensional morphism of dimension 1.

We shall first show that w7 is surjective. Suppose w 1is
not surjective. Then there exists a maximal ideal g of A
such that mR = R. Let (0,t0) be a discrete valuation ring
of the quotient field K of A such that O dominates Am.

Let R':= R ® O, which is identified with a subring of the
A

field L:= k(xl,kz,x3). Let A Dbe a'locally nilpotent derivation
on R associated with the given Ga—action on Y (cf. [9:;8 1,
Chap. I]). Then A extends naturally to a locally nilpotent
O-derivation in R', and O is the ring of A-invariants in
R', i.e., 0O = {r ¢ R'; A(r) = 0}. By assumption, we have ¢tR'
= R',where t 1is a uniformisant of O. Hence tr =1 for
some element r € R'. Then tA(r) = 0, whence r ¢ O. This is
a contradiction. Thus 7 is surjective.

Secondly, we shall show that every irreducible component of
a fiber of 7 has dimension 1. ©Note that general fibers of

1

T are isomorphic to Ak (cf. [9;8 1, Chap. I]). Hence each

irreducible component of a fiber has dimension 1. Suppose

2
*
that an irreducible component T of a fiber 7 (P) (with P
€ X) has dimension 2. Since R 1is a UFD, there exists an

irreducible element a € R such that T = Spec(R/aR). Since

T is Ga-stable, a is Ga—invariant, i.e., a € A, Let C:=

~i2 -
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Spec(A/aA). Since A is a UFD, C is an irreducible curve on

X and w—l(C) =T wa_l

(P). This is a contradiction because
m is surjective. Thus 1w 1is an equi-dimensional morphism of
dimension 1.

Finally, we shall show that R is flat over A. Let g be
a prime ideal of R and let p = gNA. Then Rﬂ dominates AE.
Since AE is regular and Rg is Cohen-Macaulay, R is flat
over AB (cf. EGA [4; 1IV,15.4.2]). Hence m is faithfully
flat.

(iii) Let U:= {P ¢ X; ﬂ*(P) is irreducible and reduced} .
Then, by virtue of [9; Th.4.1.1,p.46], Wi= 7 T (U) 4is an Al-

bundle over U. We claim that k(X)) = -,

Let H be a hyperplane in Y = Ai such that HNAW # ¢.

Suppose k(X) > 0. Let C be an irreducible curve on H.

Consider a morphism:

m
,Cf’:CXA]]; C—}HXA]];=Y——>X,

and assume that ? is a dominant morphism. Since dim{(C x Ai)

= dim V = 2, we have
- 1 —
- = Kk(C x Ay) 2 k(X) 20,

which is a contradiction. Hence ¢ is not a dominant morphism.

Let D be the closure of ?(C x Ai) in X. Then C x Al C

k
ﬂ_l(D). Suppose CNW # ¢. Then the general fibers of w :

ﬂ—l(D) —> D are isomorphic to Ai. This implies that ﬂ-l(D)
is irreducible and reduced. Since dim(C X Ai) = dim W_l(D) = 2,
we have C X Ai = W—l(D).

Let Q Dbe a point on H, and let Cl' oy Cr be irreducible

— /3 -
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curves on H such that C;N...NC = {Q} and that C,NW # ¢

for 1 <i<r. For any point Q on H, we can find such a

set of irreducible curves. Indeed, H is the affine plane Ai

and HN(Y-W) has dimension < 1; thus we have only to take a

set of suitably chosen lines on H passing through Q. Let

Di be the irreducible curve which is the closure of ﬂ(Ci x<Ai)
on X for 1 < i< r. Then C; x Ai = n—l(Di) for 1 <1i<r.
Since we have
1 _ 1 _ 1 1
(Q) x Ak = (clr\...;\cr) b Ak = (Cl X.Ak){\... [\(Cr X Ak)
-1 -1 -1
=T (Dl)(\...{\ﬂ (Dr)=TT (Dlﬂ...(\Dr),

we know that Dl!\"' ﬂDr = {P}, P being a point on X. The
correspondence Q +——3 P defines a morphism ¢ : H —>» X such

that (Q) X Ai = ﬂ_l(P). If ¢ is a dominant morphism, we have

-o = K(H) > ¥K(X) > 0,

which is a contradiction. Hence ¢ is not a dominant morphism.
Let F Dbe the closure of ¢ (H) in X. Then, for every point
P of F, we have dim w-l(P) > 1, and ﬂ(w_l(P) X Ai) =
w(w—l(P)) = P. This contradicts the assertion proved in the

step (ii). Therefore K (X) = -=, Q.E.D.

Natural as it is, the situation of Ga—actions on a

polynomial ring R = k[xl,...,x ] becomes complicated and

A B

worse as n increases. If n 2, R is a polynomial ring
in one variable over the subring A of Ga—invariants (cf. [9;
$1, Chap.I]). However, this does not hold in the case where
n = 3. Still, the property that A be a polynomial ring seems

to hold without the assumption that A is regular. When n = 3,

*_/5(,._
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another criterion for A to be a polynomial ring is that A
contains one of coordinates X1 Xyr Xge Thus, ifﬁ Ga acté
linearly on R = k[xl,xz,x3], then A 1is a polynomial ring.
Perhaps, A no longer is a polynomial ring for a general Ga—

action on R if n > 4.
2.3. Finally, we shall state the following result without proof:

THEOREM (cf. [11]). Assume that char(k) = o. Let X =

Spec (A) be a normal affine surface defined over k, possessing

a non-trivial action of the additive group Ga' Then every

singular point of X is a cyclic quotient singularity.

The result no longer holds if X is not affine.
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